Constructive second-order proofs

in logical

databases.

Michel de Rougemont

European Computer-Industry Research Centre.
Arabellastr. 17
8000 Munchen 81, West-Germany

Abstract: The constructive second-order proofs that we study
are associated with inductive definitions on classes of finite
structures, where each structure represents a database state. To
an inductive definition of a predicate P on a class K corresponds
a uniform proof of P ie a function which for each structure U

defines a proof of P in U

These proofs use computations on sets and the finiteness of the
structures in a fundamental way, and hence differ from first-order
proofs We show the non-monotonicity of this calculus, and
mention the constructivity of some of its intensional properties

(time and space complexities)

1. Introduction

A logical database ia a [nite structure U, defined by succemmive
expanmons of a database DB with new inductively defined
relations, functions and funclionals. In this puper, we concentrate
on expannons oblained with inductive relations] queries only, but
the notion of conatructible second-order proofs can be generalised

to Jogical databases built with functions and funclionsls.

With a boolean inductive query Q on a clama K of finite
structures U we associste s uniform proof i.e. a function which te
each atructure U of a class K defipes » proof of Q or =Q in U
[depending if the interpretation of Q in U, [Ql“, is true or
false). Uniform proofs are constructible objecta in the following
sense: let Q be an inductive query on the clus K, and let
Klz{Ult{U,IQ]U : U € K}. Then to an inductive query Q,
on the claas K, there corresponds a uniform proof, buill from the
uniferm proof of Q on K.

Inductive queries exactly capture the notion of polynomial time
computability {ss a function of the size of the dats} 19], and
these uniform proofs hence caplure the notion of effectivenesa
time). These procfs use

computations on sets und the finiteness of the structures n s

{computability in polynomial
fundaumental way. They sre second-order proofs, but only cupture
the constructible part of second order logic on finite structures.
We show the non-monolonicity of the corresponding calculus, and
indicate thal some of its inlensional propertien are also

constructive.

In the second section, we review the definition of an inductive
query, and the differences between logic programming and
inductive definability. We give some examples and then describe
compilation techniques. In the third section we introduce the
notion of a uniform proof, and in the fourth section we study
properties of uniform

proofs, namely non-monotonicity and

intensionality.

2. Inductive definability.

2.] Notations: We waume thet deta is given sa sets of tuples

defining relational sets ﬂl""ﬂh‘ -Ei"'l"".j, ifT “1'"’"]’ iz a

tuple of arity j in the set R, where 8yt € D, for & fnite set

D. A database ia a relationsl structure DB= <D, R,,...R. > and a

database achema is the class K of all finite re!ati:nal_:tructum
DB of similar signature. A logical databose (or kmowdedge-base] is
n logical expunsion of s database, ie. & structure U=<D,
Ev"'ﬁk' Rv"'nr I'l,.,..fm, 0,1>, where Rl,..,,R' wre relations on
D, f,,...f, wre functions on D, and 0 and 1 are two distinguished
elements of D; in the complexity arguments, n=[D{; a knowledge
schemo 1 a class K of all finite structures U of similar signature.
For & knowledge-base U, R,...R, are bosc relations, wherean
R, Ry, R .. R, are erpiieit relabions For a class K, let LX)
be classical first-order language with equality, and L,{K) be the
second-order language Let §,...S be new relations) symbols in

the langusge L,(K).

Definition:|5[an inductive aspstern S with paramelers in a
sequence of first-order formulas [F,,..F,] in the langoage L,(K)
UlS;,.8_}, where each S, occurs positively and where the writy
of 5, is rqual to the number of free variables in F,

We write & system an:

5,1 xl...x‘]; yl,.,,,yP):= l-‘l[:r.r..x"lI 'Sl"’sk;"l'"'"p}

8.{ :r.l...xdm; yl,...,yp]<= Fu{x],..x‘- ,Sl...Sl;y:,...,yp]

The parumeter variables are kept constant in & system. I
for i=1,.m d, < d, we say the system is of dimension 4 I
each F, is in disjunctive normal form, i.e. F‘<=>F“V.‘.Fh,
each Fu is the j-tA component of F,. The fixed-point
semantic sssociate for each structure U, the simultaneous
fixed-point [5,)V,..[S_ |V, snd we define the notion of mn
inductive query.

de Rougemont 993

Definition- |1, 2| A query Q[xl,.x'} is inductive on a clan K if
there exists a system with parameters such that for all U:
[Qtxpx HY <=> [Sl{xr..xd‘;xd‘“,.,.,x‘]]U.

2.2. Inductive definability and logic programming.

In classical logic programming data and logical definitions are
treated as first-order axioms and a query is solved by attempting
to find some first-order proof of Q in the theory defined by the
axioms If the data changes, the theory changes and so will the

proof of Q

In the inductive definability framework, we set a fundamentally
different formalism as we distinguish between data and logical
definitions The data determines the finite relational structure U
of a class K. and the logical definitions are taken as inductive
definitions relative to K To a class K we associate a c/ass of
theory, namely the set of true first-order formulas of U (Th(U)),
for each U If the data changes, the structure changes within

the same class K, but the the class of theory does not change.

We only solve inductive queries on the class K Given an
inductive query Q and a structure U, we solve the query Q and
produce a proof of Q or -Q in U To the query Q corresponds a
uniform proof i.e a function which for each structure U
associates a proof of Q or -Q in U. Although we will obtain
different proofs for each structure U (database state), they will
all correspond to the same uniform proof.

Let wus illustrate this fundamental difference with a simple
classical example A more detailed analysis is made in |7,. We

adopt the Prolog notations: in the inductive framework,

replaces the symbol "m-".

Example:Consider two classes of acyclic directed graphs
) '
X ‘
The clase of graphs G {n}),

Ench finite graph is defined a2 &
Glin]=({0.1‘.“.2n}, e>, i=! or im%, where e{ah] <=>
there is an edge from s Lo b. The transitive closure of &
graph in a binery relation te, such that tef{a,bjc=> there is

path from & to b. This new relation tc ¢can be defined w &
logic program und ms an inductive definitioa:

and Gy{n).

mructure

 Logle progrem:(tc on G, (n})

telX , ¥Y) - XY

i e X2}, te(lY).
#(0,2).
(2.3}

o(22-2,22).

994 REASONING

o Inductive definltlon:

te(X ;Y] : e(X,Y)
i elX2), te (2 Y).

The inductive definition defines tc(X,Y) on the class of
finite graphs (in particular on the classes G)(n) and Gz(n)),
where Y is a parameter. in the logic program, tc is
defined by 2 rules, and the inductive definition of tc has £
component*. Let us analyse the q u te{@1]i n both
formalisms.

The inductive definition of tc will be compiled into code
independent of the data (C-code, then machine code), using
call-by-value for the parameter variables, and a call-by-sets
for the recursion variables (see next section). In the case of
tc(0,1), the computation leads to computing {af|te*{s;
DY (nfte'{a)]V},..., it unery sets onsil the closure
ordinal A [less then 2n} is reached. Then we check if D €

{a/lte?(s1)Y.

The query te(D,1) evaluates to false oﬂlln] n d to true

on Gy(n) Let us compare the proofs generated by these two

approaches

Logic programs: On G,{n), te{0,1) evaluates to no, using

negation by failure |3|, in time 0(2"), as all the paths from
0 are considered On G,‘{n:u‘ te(D,1) evaluates to yet but
the complexity analysis depends on the position of the new
atomic clause "e[0,1}.'
the clause "e(0,2) ", the complexity is constant (one step). If
it is inserted after the clause "e(0,2)", the complexity will
be 0(2") The worst-case analysis is therefore 0(2") If we
add data (for example "e(0,1)"), the theory changes, and
the proofs change Each proof of tc(0,l) is specific to a
given finite graph

If this new clause is inserted before

Inductive definability: For all constants o and B, the
uniform proof of (c‘n.ﬂ}. is a constructive second-order
proof that paraphrases the compilation of the inductive
definition It could be represented as The inductive set
A=fa : f!cfc,ﬂ}fu} hat been computed. If @ €A then vyes,
otherwise no. We obtain the same uniform proof
independently of the graphs As we compute a unary set,
the relativized complexity is O(n) It can be pre-computed
at compile-time, and is the basis of the intensional analysis.

On the graphs Gl[n), te{0,1) evaluates to no, using the

implicit negation by inductive cloture’. We use the symbol o
to represent this negation On the graphs G,(n), te(0,1}

evaluates to yet The following labeled trees represent these

proofs:
n e i InGy f.1)

c.1)

We show that the constructive calculus associated with the
inductive definability framework is non-monotonic. The notion of
stratification jIOj in logic programming is a step towards
inductive definability, and towards a distinction between the

structure (the data) and the logical definitions.

!Th woAn{s ! II:[mljlcll"} bas bean compured. A therslore ne.

2.S. The compilation of inductive queries.

Let K be a class of logical databases. Each explicit relation R is
compiled into two C-functions. For simplicity, let us suppose R
binary, and assume that a type-definition set has been defined

that includes the data-structures for base relations (GRIDS).

Rh[’h!’] et 'R'{x,y]
char *x,*y; char *x, *y;
{-} {-}

The C-function Rg assumes that x and y are known strings a
and b representing elements of the domain, and returns 1 if
R{n,b)}Y and 0 if |-R{ab}|”, whereas the function R assumes
that at least one of the variables is unknown or free (value nil),

and returns a pointer to a set.

2.3.1. Compilation rule: |8}
Let ;S,.. .§,.] be a system defining R

s For dimenston O inductions, generate 5, snd S, for

i=1,...,k, Following the cases: Selection, Projection, Join,
Intersection, Union, Expansion

* For inductions of positive dimension d, compile S., and S
as before Pass the parameter by value, and compute the
inductive sets {a}’[Slitn;b]]U}‘..,{afESli{u;b]]U} until the
closure ordinal is reached Project on the recursive variables
if known.

This computation rule defines R, and Ry, and works for
existential induction (Horn-Clauses), and Universal inductions. In
this last case, we compute a set and check that its cardinality is
equal to the cardinality of the finite domain We also compile -*R
by generating -R,{x} and act *~R/x) (using the complement

operator on the finite domain Ds.

2.3.2. Witnewet.
Suppose R is defined on a class of structures where S and T are
"R(xy) - S(xs), T{ry}" The

variable i is quantified existentially. In order to prove [R[l,bllu

explicit by the component

we have to exhibit an element ¢ in D such that [Sll‘t]]u and
[Tic.b)Y

then a join-operation. We will compute |S(a,s)] , and check for

The computation of R, will call for a selection and

each element d of that set if]T(d,b]]u. The first d that we find
with this property is the witness of |R[l.b]|U‘

In an induction of positive dimension, a new element in the
inductive set S at stage i, uses a witness at stage i-1. These
witnesses can be stored together with the inductive sets, at no

extra cost.

3This coastruction is inefficient at soon as the arity of R is 2, but the
intentional analysis will allows us to know in advance that it it inefficient

3. Uniform proofs

Let Q be en inductive query of arity j on a class K where ali
strings are constant symbols. We amocinte to the boclesn query
Q[ll,...,ljl on U & labeled proof-tree, with Q(al,,..,nl] as label of
the root if [Qfa,..a)[V end with ~Qfn,, . .a) as label of the
root if |-'Ql:|1,...,aJ)]U, The uniform procf or constructible
accond-order proof is the function thai sssoriates n labeled proof-

tree wilth each struciure U.

Definltion: A lobeled tree in U is o finite tree where leaves are
labeled with R(b,...b), ¥xT[xb,,..b} or ¢ snd where nodes are
labeled with <R[bl,,...h‘.], i>, where R[bl""'bl:' in in L, (U} and i

is &n integer, wuch that:

o Euach leal is labeled with R(el,.,.‘ej} for an explicit R, with
¥aT{x.b,...,b) for an explicit set-relation T or with c.

« If a node is labeled (R[bl.b.‘,]. i», and its children are
labeled (Rl(bl‘c}}, ij>, <Ryleb,), iy>, then the i-th
component of the inductive definition of R is of the form
"R{xy} : R [x1)Ryy)" *

* | f a node is labeled with <R(b4,,..,b;), i> and its child with
¥xT(x,b,, ,b), then the i-th component of the inductive
definition of R is " R{y¥] . ¥x Tix,y)".

Definition: An effective proof of Q(a,,...,ar) in U is a labeled
tree in U whose root is labeled with Q{al,.‘,‘aj] and an effective
proof of ~@fa,,...,.s)} in V is a labeled tree in U whose root is

labeled with "\Q{n.l.,,.,lj:l.

We write Ul-'Q and Uj- -Q to denote effective proofs of Q and
-Q m U

Definition: A uniform proof of a query Q on a class K is a
function, computable in polynomial time, that associates an

effective proof of @ er ~Q in U, with each structure U of K,

Theorem 1: If Q is an inductive query on a class K, then for

i Uin K, U [= Qiff U, Q and U |= ~Q il U, -Q

Theorem 2: A query Q is computable in polynomial time iff
there is a uniform proof of Q.

Theorem 3: If a class K; is an inductive expansion of a class
K, and if there is a uniform proof of Q on K., then there is a

uniform proof of Q on K.

Theorem 1 is implicit with our definition of |- . Theorem 2 comes
from the equivalence between inductiveness and being uniformly
provable. Theorem 3 is the recursion theorem rephrased in this

context.

Lgimiiar cases handie the compunents with explicic negation, and allow
nodes (o be marked negaiively [c-uRJ(bl.hz:l.b],

de Rougemont 995

4. Properties of uniform proofs.

We show that the calculus amsociated with inductive defintions m
non-monotonsc: the addition of data or logical definitions changes
the provability of a query.

4.0.1. Change of data or transartion.

Consider the clam of directed graphs augmented with te, 1.e
G=< D, ¢ tc, 0> and the following inductive definition: P
<=> ¥x[x=0 v tcix,0))."

To P corresponds a uniform proof of P. Let G,(n] be « graph. as
in section 2. Gy(n) |= P and therefore G(n} |- P Suppose we
sdd a new edge <In+), In+2> to the graph G,{n} {making o
teasisaction on the deta], and define Gyin) s the new

disconnected graph. Gyln) 1= P and therefore Gyfn) |-, -P

4.0.3. Change of a logical definition.
The nob-monotonitity is mmply based on the constructive

negation, as the following example (adapted fom (4]} shows

e Consider the relationsl schema Parent{NAME,NAME] and
Origin(NAME, ADDRESS), 1e <Joe, Adum> 15 o taple of
Parewl meaning that Adam is the parent of Joe, snd <Joe,
Antarcuic> s a tuple of Ongin mesning that Joe lives in
the Antarctic Let DB=<Bird, D,, Parent, Ongin, C> be
the finite sructure with domain Bard and Ds' base relstions
Parent and Ongin given by the following tables, and an
infinjte set of constants C. [(Bird is ithe set of individusla
{Tweety, Bill, Joe, Adam} and D, 1 the set of indivadusls
addresses {Marineland, Antarctic, Adelie})

Purent Ornigin
Tweety| Bill Tweety| Marineland
Bill Joe Bob Antarctic
Joe Adam Adam | Adelie

Let K be the class of structures DB, and lev us define Anc
on K (as te in section 2)

Ancixy) : Pareni(xy]
; Parent{x.,r}, Anc{s,y).

Let K, be the clas of structures Ul= <Bird, D,, Parent,
Ongun, Anc,C>, and let define Penguin on Kl

Penguin{x} : Anc(x,y), Origin!y,” Antarctic®}.

Let K, be the clam of stroctares U,= <Bird, D,, Parent,
Origin, Anc, Penguin, C> and let define fly:

fiy{x) : Bird{x), ~Penguin(x). drlewesrhi>

Consider the query fly(tweety) twewty) -Penguin{Twsery)0
on U,. The effective proof

in DB i

If we find out that Peoguins can alsc originate from Adelie,
we modify the definition of Penguin{x) with.

Penguin(x) : Anclx,y), Origin{y, ™ Antarctic”}
; Anc(x,y), Origin(y, " Adelie®}

996 REASONING

We deal with & new clam
of structures K, The

effefective proofs of
*F'!‘[T*E&t}"} AT <Ane{Twwety, ddam).2

loweny]l -
Parent{ Toonty, Bill) Ane(Bull, Adum),t>
Brdiiweriyl \
Ancilos, Adum]
Frool w 11, and w DE

4.1, Intensionality.
In [B], we showed how to define constructively two intensional
functions time.Q wnd spaceQ, defining the worsi-case Lime and
space complexitiea of an inductive query Q, as a function of the
sise of the duta. The aversnge complexities can be approximated
with similar methods, using statistical information associated with
base relations

these intensional properties, as an effective proofl w built by

The uniform proofs that we introduced share

solving the query In practice given a query Q, one compuies
ume Q (neghgesble complexity), anf f the resuil s greater then
say 20 seconds, a process 13 forked, and = new query can he
inken Once the background process terminates, the consiruciive

proof 18 passed to the parent pracesa through a pipe

References

[1] Barwise)., Moschovakis Y.
Global Inductive Definability
Journal of Symbelsc Logic 43(3):521-5384, 1978.

2l Chandra A., Harel D
Structure and complexily of relational queries
Journal of Computer and System Screnced 25(1)-99-128, 1982

i3] Lloyd IW.
Foundationa of Logte Programmng
Springer-Veriag, 1984

it McCarthy J.: Applications of Circumscripuon to Formalieing
Common-Sense Knowledge,
Artificial Intelligence 28(1)-85-116, 1986

|5] Moschovakes Y.
Elementary Induction on Abstraet Structures.
North-Hollsed, 1974

[]] de Rougemont M.
The Computation of Inductive Queriea by machines.
In Logic, Language and Computati ASL, 1985,
Abntract in Journal of Symbolic Logie 51{3): B39, 1986,

|7} de Rougemont M.
Logic on finite struclures and logic programming.
Computers and Artificiol Inteligence 5{6), 1988.

|8] de Rougemont M.
The intersional compilation of logic programs.
In Europton ASL-meeting, Hull.. ASL, 15868

|#] Sasomov V.
Polynomisl Computability and Recursivity in hnite domains
Elektronische Info. end Kyhernetik, {16):318-323, 1980.

[10] Sebelik 1., Stepanek P.
Horn clause programs suggested by recursive functions.
In Logic program workshop., 1980

