
Const ruc t ive second-order proofs
in logical databases.

Abst rac t : The constructive second-order proofs that we study

are associated with inductive definitions on classes of finite

structures, where each structure represents a database state. To

an inductive definition of a predicate P on a class K corresponds

a uniform proof of P i.e a function which for each structure U

defines a proof of P in U

Miche l de Rougemont

European Compu te r - I ndus t r y Research Cent re .
Arabe l las t r . 17

8000 M u n c h e n 8 1 , Wes t -Germany
In the second section, we review the definition of an inductive

query, and the differences between logic programming and

inductive definability. We give some examples and then describe

compilation techniques. In the third section we introduce the

notion of a uniform proof, and in the fourth section we study

properties of uniform proofs, namely non-monotonicity and

intensionality.

These proofs use computations on sets and the finiteness of the

structures in a fundamental way, and hence differ from first-order

proofs We show the non-monotonicity of this calculus, and

mention the constructivity of some of its intensional properties

(time and space complexities)

1. Introduction

de Rougemont 993

Definition- is inductive on a clan K i f

there exists a system w i t h parameters such tha t for al l U:

2 .2. I n d u c t i v e d e f i n a b i l i t y a n d log ic p r o g r a m m i n g .

In classical logic programming data and logical def ini t ions are

treated as f i rst-order axioms and a query is solved by a t tempt ing

to f ind some f irst-order proof of Q in the theory defined by the

axioms If the data changes, the theory changes and so w i l l the

proof of Q

In the induct ive def inabi l i ty f ramework, we set a fundamenta l ly

different formal ism as we dist inguish between data and logical

def in i t ions The data determines the f in i te re lat ional structure U

of a class K. and the logical def ini t ions are taken as induct ive

def ini t ions relat ive to K To a class K we associate a c/ass of

theory, namely the set of t rue f irst-order formulas of U (T h (U)) ,

for each U If the da ta changes, the structure changes w i t h i n

the same class K, but the the class of theory does not change.

We only solve induct ive queries on the class K Given an

induct ive query Q and a structure U, we solve the query Q and

produce a proof of Q or -Q in U To the query Q corresponds a

uniform proof i.e a funct ion which for each structure U

associates a proof of Q or -Q in U. A l though we w i l l obta in

dif ferent proofs for each structure U (database state), they w i l l

a l l correspond to the same uni form proof.

Let us i l lustrate this fundamenta l difference w i th a simple

classical example A more detailed analysis is made in |7,. We

adopt the Prolog notat ions: in the induct ive framework, " • "

replaces the symbol "■ - " .

ExampIe :Cons ide r two classes of acyclic directed graphs

The induct ive def in i t ion defines t c (X , Y) on the class of
f in i te graphs (in part icular on the classes G } (n) and G 2 (n)) ,
where Y is a parameter. in the logic program, tc is
defined by 2 rules, and the induct ive def in i t ion of tc has £
component*. Let u s analyse the q u e r y i n both
formal isms.

The induct ive def in i t ion of tc w i l l be compiled in to code
independent of the data (C-code, then machine code), using
cal l-by-value for the parameter variables, and a call-by-sets
for the recursion variables (see next section). In the case of
t c (0 , l) , the computat ion leads to comput ing

The query evaluates t o false o n a n d t o true

on G 2 (n) Let us compare the proofs generated by these two

approaches

Log i c p r o g r a m s : evaluates to no, using

negation by fai lure |3|, in t ime 0 (2 n) , as all the paths f rom
0 are considered evaluates to yet, but

the complexi ty analysis depends on the position of the new
atomic clause " If this new clause is inserted before
the clause "e(0,2) ", the complexi ty is constant (one step). If
it is inserted after the clause " e (0 , 2) n , the complexi ty w i l l
be 0 (2 n) The worst-case analysis is therefore 0 (2 n) If we
add data (for example n e (0 , l) ") , the theory changes, and
the proofs change Each proof of t c (0 , l) is specific to a
given finite graph

I n d u c t i v e d e f i n a b i l i t y : For all constants o and the
uni form proof of is a const ruc t ive second-order
proof that paraphrases the compi lat ion of the induct ive
def in i t ion It could be represented as The inductive set

hat been computed. If then yes,
otherwise no. We obtain the same uni form proof
independently of the graphs As we compute a unary set,
the relat ivized complexi ty is O(n) It can be pre-computed
at compi le- t ime, and is the basis of the intensional analysis.

On the graphs evaluates to no, using the

impl ic i t negation by inductive cloture2. We use the symbol o
to represent this negation On the graphs

evaluates to yet The fo l lowing labeled trees represent these
proofs:

In G,

We show that the constructive calculus associated with the

inductive definability framework is non-monotonic. The notion of

stratification jlOj in logic programming is a step towards

inductive definability, and towards a distinction between the

structure (the data) and the logical definitions.

994 REASONING

2.S. The compi lat ion of induct ive queries.

Let K be a class of logical databases. Each explicit relation R is

compiled into two C-functions. For simplicity, let us suppose R

binary, and assume that a type-definition set has been defined

that includes the data-structures for base relations (GRIDS).

The C-function RB assumes that x and y are known strings a

and b representing elements of the domain, and returns 1 if

and 0 if whereas the function Rf assumes

that at least one of the variables is unknown or free (value nil),

and returns a pointer to a set.

2.3.1. Compi la t ion rule:

be a system defining R

• For inductions of positive dimension d, compile S., and S,f
as before Pass the parameter by value, and compute the
inductive sets until the
closure ordinal is reached Project on the recursive variables
if known.

This computation rule defines Rb and Rf, and works for

existential induction (Horn-Clauses), and Universal inductions. In

this last case, we compute a set and check that its cardinality is

equal to the cardinality of the finite domain We also compile -^R

by generating and act *- (using the complement

operator on the finite domain D3.

2.3.2. Wi tnewet .

Suppose R is defined on a class of structures where S and T are

explicit by the component The

variable i is quantified existentially. In order to prove

we have to exhibit an element c in D such that and

The computation of Rb will call for a selection and

then a join-operation. We will compute |S(a,s)| , and check for

each element d of that set if The first d that we find

with this property is the witness of |

In an induction of positive dimension, a new element in the

inductive set S at stage i, uses a witness at stage i-1. These

witnesses can be stored together with the inductive sets, at no

extra cost.

• If a node is labeled and its children are
labeled then the i-th
component of the inductive definition of R is of the form

• I f a node is labeled with <R(b1,,..,b/), i> and its child with
then the i-th component of the inductive

definition of R is

Def in i t ion: An effective proof of in U is a labeled

tree in U whose root is labeled with and an effective

proof of in V is a labeled tree in U whose root is

labeled with

We write to denote effective proofs of Q and

Def in i t ion: A uniform proof of a query Q on a class K is a

function, computable in polynomial time, that associates an

effective proof of , with each structure U of K,

Theorem 1: If Q is an inductive query on a class K, then for

Theorem 2: A query Q is computable in polynomial time iff

there is a uniform proof of Q.

Theorem 3: If a class K1 is an inductive expansion of a class

K, and if there is a uniform proof of Q on K., then there is a

uniform proof of Q on K.

Theorem 1 is implicit with our definition of |- . Theorem 2 comes

from the equivalence between inductiveness and being uniformly

provable. Theorem 3 is the recursion theorem rephrased in this

context.

3This coastruction is inefficient at soon as the arity of R is 2, but the
intentional analysis will allows us to know in advance that it it inefficient

de Rougemont 995

996 REASONING

