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Abst ract 
We have recast the problem of t ru th maintenance in 
a setting of algebraic equations over Boolean lattices. 
If a method of labeling propositions to justi fy them 
according to some reasoning agent's constraints of be­
lief happens to conform to the postulates of Boolean 
lattices, the labeling system can be reformulated as 
an algebraic equation solving system. A l l t ru th main­
tenance systems known to us can be so reformulated. 
This note summarizes our investigations into the ex­
istence and structure of solutions of these algebraic 
systems. Our central result is a unique factorization 
theorem for lattice equational systems and their solu­
tions. Our theoretical results are interpreted to com­
pare various styles of t ru th maintenance and to reveal 
certain computational difficulties impl ici t in the alge­
braic structure of t ru th maintenance. 

I . I n t roduc t ion 
Lattice-theoretic t ruth maintenance is a single theoretical 
framework that subsumes various notions of t ruth main­
tenance, including the assumption-based justifications re­
ported by de Kleer [de Kleer, 1984, de Kleer, 1986a, de 
Kleer, 1986b, de Kleer, 1986c] and the nonmonotonic jus­
tifications reported by Doyle [Doyle, 1979a, Doyle, 1979b, 
Doyle, 1978].and Goodwin [Goodwin, 1982, Goodwin, 
1985, Goodwin, 1984, Goodwin, 1987]. Our complete body 
of work on lattice-theoretic t ruth maintenance includes 

• An analysis of the algebraic structure of t ru th main­
tenance 

• An investigation of the abstract and concrete compu­
tational complexity of t ruth maintenance 

• A formal account of the embedding of other forms of 
t ru th maintenance in the lattice-theoretic paradigm 

In this note we focus on the first aspect, because of its 
intrinsic interest, and because this aspect is a precursor to 
the others. Our express aim here is to present the lattice-
theoretic account of t ruth maintenance, cite the more im-

*This work was partially supported by the Defense Advanced Re­
search Projects Agency (DARPA) under USAF/Rome Air Devel­
opment Center contract F30602-85-C-0033. Views and conclusions 
contained in this paper are those of the authors and should not be 
interpreted as representing the official opinion or policy of DARPA 
or of the U.S. government. 

portant algebraic results vis a vis this account, and inter­
pret these results so as to cast a qualitative light on various 
computational considerations of t ruth maintenance. Read­
ers interested in other aspects of our theoretical work or 
our practical experience with an implementation embody­
ing this theory are referred to [Benanav tt a/., 1986]. 

The init ial motivation for this work was the desire 
to unify in a single abstraction the t ruth maintenance 
paradigm of Doyle and Goodwin, and that of de Kleer. 
The systems of these investigators can be viewed as con­
straint propagation mechanisms. Given a disjunctive set 
of sets of premises and a set of (monotonic) deductive con­
straints, de Kleer's ATMS tells a client problem solving 
system what things it is currently obliged to believe, as­
suming one or another of the sets of premises. Doyle's and 
Goodwin's TMS's, on the other hand, tell the client prob­
lem solving system what things it is currently obliged to 
believe, given a single set of premises under deductive con­
straints, some of which may be nonmonotonic in nature.* 
Our original intuit ion was that it should be possible to 
account simultaneously for multiple sets of premises and 
nonmonotonic deductive constraints.**'*** 

This intuition arose from the striking similarity ob­
served between the computations of t ruth maintenance 
systems and the computations of global flow analysis 

*A monotonic deductive constraint obliges a rational agent to be­
lieve its consequent, given that it currently believes all of its an­
tecedents. A nonmonotonic deductive constraint obliges a rational 
agent to believe its consequent given that it believes all of its mono­
tonic antecedents and none of its nonmonotonic antecedents. 

" T h e intellectual challenge of unifying these two approaches to 
truth maintenance is sufficient motivation for proceeding. Nonethe­
less, we note that de Kleer [de Kleer, 1086b], and Morris and Nado 
[Morris and Nado, 1986] are practically motivated to augment their 
assumption-based truth maintenance systems to support some form 
of nonmonotonic justification. In our approach nonmonotonicity will 
be "built-in" rather than "added-on". Although we will not do so 
here, it can be shown that our conceptually parsimonious approach 
is at a computational advantage relative to the attempts of de Kleer, 
and Morris and Nado. 

***We have recently been made aware of the work of McDermott 
[McDermott, 1983] whose perspective on truth maintenance has 
much in common with our own. Indeed, his concrete solution to what 
we will eventually define as even equational systems appears to be 
identical to ours, though arrived at from a quite different point of de­
parture. Our investigation is broader in both the scope of equational 
systems investigated, and in the characterization of those systems' 
structures and solution spaces. 
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that underly modern optimizing compilers [Aho and Ull-
man, 1977, Hecht, 1977, Schaeffer, 1973, Waite and Goos, 
1984]. Global flow analysis can be couched in the following 
terms: Given the constraints imposed by individual pro­
gram statements and their interconnecting topology, what 
facts is a reasoning agent (in this case concerned with pro-
grams) obliged to believe about the state of computation 
at various points in the program's control flow? In a sense 
the information propagation problem solved by global flow 
analysis can be viewed as the dual of the t ruth maintenance 
problem. The former assigns propositions to contexts es­
tablished by various paths through a program. The latter 
assigns contexts of belief to propositions under various de­
ductive constraints. There are two principal methods of 
solving information propagation problems. Both hinge on 
solving systems of equations whose unknowns range over 
the domain of an algebraic lattice. The work that we 
wil l describe presently retains the idea of equations over a 
lattice, but for various technical reasons (principally non­
monotonic constraints) the solution methods used in global 
flow analysis are inappropriate. A rather different solution 
method has been developed. 

I I . Lat t ice Equat ional Systems 

* In this report we assume B to be a recursive set, its operators to 
be total recursive functions, and its partial order to be a recursive 
relation. 

once on the left-hand side of an equation. The equation on 
whose left-hand side s appears wil l be called the s equation, 

wil l be sub- or superscripted when it is useful to 
distinguish among various equational systems. Unless the 
context is ambiguous, we wil l freely say 'system' without 
modifiers. A lattice equational system should be inter­
preted as encoding the way a reasoning agent's belief (or 
disbelief) in a collection of propositions entails belief in 
others. If is a lattice equational system such that the 
right-hand side of each equality is of the form 
where each XXJ is an element of B or an unknown (pos­
sibly complemented), then is said to be in disjunctive 
normal form.* Since we can transform any form into dis­
junctive normal form, we will usually treat forms over B 
and lattice equational systems as if they were in disjunctive 
normal form. 

A solution to a lattice equational system, is a func­
tion, T, from the lattice unknowns into B such that if for 
each equation in the system, each unknown s in the equa­
tion is replaced by T(s) the equation holds in B. Moreover, 
T takes any unknown, s, not on the left-hand-side of some 
equation in into 1, and in that regard the system im­
plicitly has the equation s = . 1 . We wil l interpret lattice 
equations as constraints. A solution, then, is a labeling of 
propositions with situation *. In particular, the situations 
are those in which a reasoning agent is obliged to believe 
the correspondingly labeled proposition given acceptance 
of the constraints imposed by the system. We wil l often 
subscript T' with the name of the system of which it is a 
solution. A justification of a disjunctive normal form lat­
tice equational system, is an ordered pair, 
where s appears on the left-hand side of some equation 
in and X is a d'sjunct on the right-hand side of that 
same equation. Also, s is called the consequent of the jus­
tification d and each conjunct of the disjunct X is called 
a nonmonotonic or monotonic antecedent of d depending 
on whether or not it is complemented. The sets of mono-
tonic and nonmonotonic antecedents of d are respectively 
denoted a(d) and a(d). A justification, d, is valid wi th re­
spect to a situation, A, and a solution, T, of an equational 
system if and only if, 

*We use disjunctive normal form for notational convenience. 
While its existence is required in establishing some of the formal re­
sults that we cite, it plays no essential role in lattice-theoretic truth 
maintenance computations. 
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2. For every justification d, in , Valid(j4,-,d,r) 

3. Every unknown, s', that is a monotonic antecedent of 
some d in is also the consequent of some justifi­
cation d' in 

A solution to a lattice equations] system is well-founded if 
and only if it is well-founded with respect to the system at 
every lattice unknown mentioned in the system. 

We interpret justifications, validity and well-founded-
ness in the following way: Validity describes the circum­
stances under which the consequents of a justification are 
to be believed given the belief status of the antecedents. A 
justification therefore constitutes an independent source of 
support justifying belief in a consequent. Chaining justifi­
cations together constitutes a supporting argument. Since 
we wish our arguments to be noncircular, we impose an 
additional condition, well-foundedness, to guarantee that 
state of affairs. 

Let us first consider some uninterpreted equational 
systems, all taken to be over the Boolean lattice, B, having 
at least two distinct elements: The system 

has one well-founded solution, On the other 
hand, any of are also solu­
tions, though not well-founded. The system 

the classical "odd loop" of Doyle's TMS, has no solutions, 
well-founded or otherwise. The system E3 

has one well-founded s o l u t i o n , . The 
system 

has well-founded solutions 
The system 

has a single solution and it is not well-
founded. Finally, 

" I N " and ± as "OUT" , it should be apparent to readers 
familiar wi th the TMS's of Doyle and Goodwin how lattice 
equational systems correspond to their TMS nodes and 
justifications. 

The correspondence with de Kleer's ATMS is a l i t t le 
harder to convey, and we shall attempt only an approx­
imation here.* We shall do this by actually interpreting 
a lattice equational system with respect to a toy applica­
tion. Imagine a simple series-connected circuit consisting 
of a voltage source, V, of 5 volts connected to resistor R1 at 
node n1, which in turn is connected to resistor R2 at node 
n2, which is connected to ground. The application is a pro­
gram that diagnoses ground faults in electrical circuits. In 
its t ruth maintenance database it has the following system 
of equations, 

The situations A, B i , and B2 respectively correspond to 
the assumption that the voltage source, V, and resistors, 
R\ and R2, are working. s-[ corresponds to the proposition 
that voltage at node n1 is held at 5 volts. s2 corresponds 
to the conjunctive proposition that the current into the 
resistor and node n1 is the same as the current out of the 
resistor at node n2 and that the voltage drop across 
the resistor is the product of its resistance and the cur­
rent through. 63 corresponds to the conjunctive proposi­

tion that the current into the resistor R2 at node n2 is 
the same as the current out of the resistor at ground and 
that the voltage drop across the resistor is the product of 
its resistance and the current through. Finally, corre­
sponds to the proposition that the voltage at node n2 is the 
product of 5 volts and the resistance of divided by the 
sum of the resistances of _ and ~ The equations can 
now be interpreted as saying that the propositions associ­
ated with , and s3 hold whenever the corresponding 
assumptions can be believed. The proposition associated 
wi th 34 is believed whenever the propositions associated 
wi th , and are believed. A solution to this sys­
tem wil l tell us the circumstances under which the various 
propositions are to be believed. Since the well-founded so­
lution is a 
reasoning agent believes the propositions associated with 

in situations whose meets with (respec­
tively) A,B1,B2 and . 

In the foregoing examples we have made implicit use 
of the fact that any set of TMS or ATMS justifications 
has equivalent renderings in the lattice-based formaliza­
tion. For our last example we consider the classical prob­
lem of adding facts to or deleting facts from worlds or 

•Readers interested in the precise details of encoding these other 
truth maintenance systems in the lattice-theoretic paradigm should 
consult [Ben anav et a/., 1986]. 
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states. To begin wi th , we interpret situations as worlds or 
states. We have already asserted that every fact or propo­
sition, p, has an associated unknown, say 3p. We wi l l also 
posit additional unknowns, sa and sd, corresponding to the 
beliefs (respectively) that p has been added and that p has 
been deleted. Consider now the system of equations 

The well-founded solution of this system is 
. Our interpretation of this solution is that 

a reasoning agent believes p just in case he believes himself 
to be in a world or state whose meet with A -B is not ±. 
In addition, we can use the lattice partial order to encode 
inheritance among worlds. Notice that the_fact p wil l be 
added to any world, A' such that and deleted 
from any world, B' such that 

I I I . The Existence o f Solutions 
We have seen how lattice-theoretic t ruth maintenance is 
connected to some well known models of t ruth mainte­
nance; we now turn to the challenge of actually solving 
t ru th maintenance problems is this new paradigm. We 
have already seen in _ that solutions need not exist, 
but even if they do (as in _ „ , , there may not be well-
founded ones. It is well known that general polynomial 
equations in rational coefficients cannot be solved by ap­
plying the operations of addition, multiplication, and ra­
tional root extraction to their coefficients [Birkhoff and 
MacLane, 1965, van der Waerden, 1953]. By analogy we 
might ask about the solvability of lattice-equational sys­
tems by taking meets, joins, and complements of lattice 
expressions appearing in the equations. Put another way, 
could it be the case that the equations are not solvable by 
applying the obvious operations to the available data? To 
answer this question we must first formalize our notion of 
the 'available data'. 

A surface element of a lattice equational system E is 
an element of B that actually appears in E. The Boolean 
lattice generated by meets, joins, and complements over 
the surface elements is called the surface lattice. An atom 
of the Boolean lattice, 5, is any element, 
_L, such that there is no . satisfying 
A lattice is atomic if each of its elements is the join of 
atoms. If E contains only a finite number of equations, the 
number of surface elements is finite and thus the surface 
lattice is atomic. The atoms of this lattice wil l be called 
surface atoms. A surface solution is one such that for every 
lattice unknown, s, that appears in E, T(s) is in the surface 
lattice. Consider again the system, E4. Note that it has 
many possible well-founded solutions (depending on the 
Boolean lattice wi th respect to which the system is being 
interpreted) of which only two, and 

are surface. Our question posed in the 
last paragraph is answered by the following: 

T h e o r e m I I I . l If a finite lattice equational system E 
over B has a well-founded solution, then, it has a well-
founded surface solution. 
Thus we see that if there are any well-founded solutions at 
all, we are guaranteed that some of them can be computed 
by taking meets, joins, and complements over the available 
data. 

Thus far we have established a framework within 
which we can formally describe t ru th maintenance prob­
lems and within which solutions can be connected with 
the available data in the equations. For this framework to 
be truly useful we must provide a way of finding solutions 
other than by blindly enumerating candidates and testing 
them. Suppose we could obtain a solution. How do we 
know that this is the only solution? Or even the only sur­
face solution? To convey some idea of the challenge of this 
problem consider the system 

This system has 2n well-founded surface solutions, s is 
always ± and we are free to choose ± or T as the value 
of each of the odd-indexed unknowns. The usual method 
of solving algebraic equational systems is by using sub­
stitution together wi th other "legal" (with respect to the 
algebraic system in question) transformations to produce 
a new lattice equational system whose solutions are also 
solutions of the original. Because of the algebraic nature 
of the meet and join operators there is no obvious way 
of effecting such a transformation. Before introducing the 
more novel transformation that we wil l need, let us first 
formalize the notion of substitution that we wil l be using. 

Let E_, be E less its s equation. Systems wil l be pre­
sented always according to some fixed lexical order. This 
is possible since each system is obviously a recursive set. 
Hence it is reasonable to speak of the n t h occurrence of 
the unknown, a, on the right-hand side of an equation in 
E. We define a local substitution, a.n as follows: If the s' 
equation is the locus of the n t h occurrence, then 
is E_v together with a new s' equation wherein the n t h 

occurrence of s is replaced by the right-hand side of the 
s equation in If there is no n t h then asnfl 

Suppose there are k s's in E before the s equation, m in 
the s equation, and n after the s equation. The (global) 
substitution transformation of under s, (o,(E), is 

This transformation has the effect of replacing every right-
hand side occurrence of s (except those in the s equation) 
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solution. Can we generate all of the surface solutions by 
varying the order of elimination? Unfortunately the an­
swer is no as can be seen by examining the following sys­
tem, 

only three of whose four well-founded solutions can be pro-
duced by varying the order of elimination. As suggested by 
the statement of the theorem, there are odd lattice equa-
tional systerns some of whose elimination sequences do not 
produce solutions. Such a system is 

Addressing either of the aforementioned deficiencies re­
quires the separability results of the next section. 

I V . The St ructure o f Systems 
and Solutions 

In this section we discuss some separability results for lat­
tice equational systems. These results are of two classes: 
topological and algebraic. They are important because 

• They provide the machinery from which all surface 
solutions to all equational systems may be generated 

• They provide the basic perspective for analyzing the 
abstract complexity of the t ruth maintenance problem 

• They suggest concrete "divide and conquer" algo­
rithms for solving the truth maintenance problem by 

- supporting "lazy evaluation" of the solution vis a 
vis any given unknown 

- supporting incremental update of solutions as jus­
tifications are added or removed 

- enabling parallel solution methods 

The ut i l i ty of the previous theorem becomes clearer when 
we combine the computation of strongly connected subsys­
tems of a system with reduction and minimization. Since 
we need to do only substitutions through uncomplemented 
occurrences of unknowns in the original system in order to 
reduce i t , the resulting system has exactly the same well-
founded solutions as the original. Reconsider now E8 . If 
we minimize with respect to s and reduce again we get the 
reduced system: 

The system has now been separated into n + 1 strongly 
connected subsystems, each of which is disconnected from 
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the surface solutions. In particular, all four of the well-
founded surface solutions of £9 can be produced by tak­
ing the Goodwin projections with respect to the surface 
atoms, A and A, solving the two resulting systems, "mul­
t iplying" the resulting solutions by A and A respectively, 
and "adding" the results. Since each projected system has 
two solutions, the overall system has four. Elsewhere [Be-
nanav et al.\ we have shown the problem of solving gen­
eral lattice equational systems to be NP-hard in the size 
of the system. We see now how this might arise: Using 
the algebraic results that we have cited can produce solu­
tions at the cost of composing two potentially exponential 
processes, the projection by surface atoms and the finding 
of minimization and substitution sequences that actually 
produce a well-founded solution. 

V. Conclusions 
In the foregoing we have introduced a general model of 
t ru th maintenance couched in a lattice-theoretic frame-
work. A l l of the t ruth maintenance systems familiar to 
us in the literature can be construed as solving systems of 
lattice equations. Indeed, those systems can be properly 
embedded in our lattice-theoretic formalism. We intro­
duced the fundamental transformations of substitution and 
minimization and showed how they could be used to pro­
duce solutions of even lattice equational systems. We have 
cited a number of theoretical results about the algebraic 
structure of t ruth maintenance systems and interpreted 
these results in terms of concrete examples. We have used 
these examples to illustrate how a given formal algebraic 
result either reveals some intrinsic difficulty, or how it can 
be used to computational advantage. Finally, we sketched 
how our separation results can be used to generate all of 
the surface solutions of an arbitrary lattice equational sys­
tem. The principal technical contributions of those aspects 
of our work on lattice-theoretic t ruth maintenance that we 
have presented in this paper are: 

• The formalization of t ruth maintenance in a way 
that properly includes nonmonotonic justifications 
and assumption-based justifications 

• The presentation of a point of view from which one 
can algebraically analyze the structure of t ru th main­
tenance problems and the construction of solutions to 
those problems 

• The motivation of the algebraic results wi th compu­
tational and phenomenological interpretations 

Though not the topic of this paper, it is also from this same 
lattice-theoretic point of view that we have carried out the 
analysis of the abstract and computational complexity of 
t ru th maintenance. 
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