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Abstract 

We consider the problem of minimizing depth-first search effort 
for the generation of all solutions to a problem stated as a con­
junction of subproblems. For a sequence of subproblems that 
share no variables, the effort is minimized by ordering the sub-
problems in decreasing ratio of NC/(N - 1), where N and C are 
the number of solutions and the search effort of obtaining a sol­
ution to the subproblem. If a conjunctive problem has an arbi­
trary number of subproblems sharing variables among them, we 
assume that in the solution sets of the subproblems, each argu­
ment variable is bound to elements of its domain with equal fre­
quency. Under this uniform distribution assumption, we derive 
a set of necessary conditions that must be satisfied by an optimal 
depth-first sequence. If the distribution assumption does not 
hold for a conjunctive problem, then the search effort can be 
optimized only if the sequencing of subproblems is suitably 
interleaved with the actual enumeration of solutions to the 
problem. 

1. Introduction 
In this paper we consider the problem of optimization of search 
effort for the generation of all solutions to a problem that is 
stated as a conjunction of subproblems. Conjunctive problems 
arise frequently in many applications of Artificial Intelligence as 
well as in database applications of logic. Depth-first search with 
backtracking is a commonly used problem-solving search tech­
nique used in such applications. it is the default strategy for the 
control of inference in sequential Prolog. Our motivation here 
is to develop search ordering conditions for the optimal control 
of depth-first search required in such problem-solving systems. 
Knowing what constitutes optimal ordering conditions or a 
characterization of the conditions that can be used systematically 
to improve a given ordering is critical for optimizing the effi­
ciency of problem-solving systems. 

A conjunctive problem has the generic form: 

It has been recognized [SMI85a] that a significant weakness of 
backtracking is that the computational effort in searching for all 
feasible solutions to a conjunctive problem is quite sensitive to 
the sequence in which the subproblems are considered. In the 
next section, we review related work on controlling the search 
required to generate all solutions to conjunctive problems. In 
Section 3, we present our results on how to order subproblems 
such that the search effort for generating all solutions is mini­
mized. The results are summarized as follows. We show the 
conditions for optimal ordering of subproblems of a conjunctive 
problem that has: a) many independent subproblems, or b) ex­
actly two dependent subproblems. For conjunctive problems 
with an arbitrary number of dependent subproblems, we derive 
necessary conditions for optimal ordering. The conditions can 
be used for systematic transformation of a given ordering of 
subproblems into a locally optimal sequence of subproblems. In 
Section 4 we present our conclusions. 

2. Related Work 
The problem we consider here, namely, the efficient generation 
of all solutions to a conjunctive problem with backtracking as the 
basic problem-solving strategy, has been addressed in the past 
by a number of researchers. The work of Warren [WAR81], 
Smith [SMI85a] and Smith and Genesereth [SMI85b] are espe­
cially pertinent to us. 

Warren [WAR81] considered the efficient evaluation of data­
base queries, which may be regarded as a class of conjunctive 
problems, expressed in the Prolog language. Warren developed 
a heuristic approach for improving the efficiency by a suitable 
reordering of the subproblems of a conjunctive problem. The 
approach, demonstrated experimentally in a system for natural 
language question answering, relies on the availability of statis­
tical information such as the number of solutions to each sub-
problem, the number of distinct values for each argument in a 
solution, etc. Two important assumptions are made in 
[WAR81). The first assumption made is that the uniform dis­
tribution of attribute values holds. The uniform distribution as­
sumption holds if in the solution set of a problem, each argument 
variable of the problem is bound to elements of its domain with 
equal frequency. 

The second assumption made implicitly in [WAR81] is the uni­
form cost assumption. The assumption is that the cost of ob­
taining a solution to a subproblem is the same across all 
subproblems, i.e., each subproblem is computationally just as 
hard as any other subproblem in the conjunctive problem. We 
note that there are many applications for which the uniform cost 
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assumption does not hold. To illustrate this, consider a 
conjunctive problem consisting of three subproblems, say, 
and P, Suppose the solutions to Subproblem P, are explicitly 
available and stored in the main memory of a computer; solutions 
to Subproblem are also explicitly available but stored in a 
slower peripheral device, such as a disk; and, solutions to P3 are 
not explicitly available but a problem-solving search procedure 
can determine the solutions after possibly applying certain in­
ference procedures. In such a situation, the cost (or equivalently, 
the time needed) for obtaining a solution is very unlikely to be 
the same across different subproblems. For the purpose of effi­
cient solution of conjunctive problems under such more general 
conditions, we relax the uniform cost assumption and allow the 
cost per solution depend on the subproblem being solved. We 
still assume, however, that for any given subproblem the cost of 
obtaining a solution is constant, i.e., it does not depend on the 
specific solution obtained for the subproblem. 

Relevant analytical work on optimal static ordering of the sub-
problems of a conjunctive problem has recently been reported 
by Smith and Genesereth [SMI85a] [SMI85b] Static ordering 
means the planning, i e , the decision on how to sequence the 
subproblems, is made before the actual backtrack enumeration 
effort is undertaken Once an ordering of the subproblems is 
chosen it is left unchanged during the entire enumeration phase 
of problem-solving. Smith and Genesereth have addressed how 
a problem-solving system can minimize the effort in generating 
all solutions by using information provided to the system re­
garding average number of solutions to each subproblem The 
uniform distribution assumption regarding attribute values and 
the uniform cost assumption have also been made in [SM185b] 
The work cited above, based on assumptions of uniform cost and 
uniform distribution, provides a good starting point for us 

We note that the total search effort in enumerating all the sol­
utions to a conjunctive problem typically depends on both: a) 
how the values of each argument variable are distributed in the 
solution set of each subproblem, and b) the cost associated with 
the solution of each subproblem In this paper, we consider the 
impact of relaxing the assumptions of uniform cost and uniform 
distribution, on optimizing the search ordering. 

3. Results 
Consider the problem G(S) stated in (1) Suppose the solutions 
to G are enumerated by solving the subproblems in the sequence 
shown in (1). Let Nt and C, be respecnively the number of sol­
utions and the cost of obtaining a solution to Subproblem P„ 
given that subproblems P] through have been solved. Assume 
the root of the search tree is at Level 0. There are N, solutions 
to P, and each solution is represented by a node at Level 1 
Corresponding to each solution of P1, there arc solutions of P2 

and hence, N1N2 nodes at Level 2 In general, at Level / of the 
search tree, there are . nodes. Thus, the total number 
of nodes in the backtrack search tree corresponding to the se­
quence expressed in (1) is: 

(2) 

Since there are N1 nodes at Level 1, each requiring a search effort 
of C„ the total search cost at Level 1 is N1C1. In general, the total 
search effort at Level i is the product of the number 

of nodes at Level i and the search effort per node at that level. 
Thus, the total cost of the backtrack search algorithm corre­
sponding to the sequence expressed in (1) is : 

3.1 Independent Subproblems 
A Subproblem P,(S) is defined to be independent of Subproblem 

if S, has no variable in common with S, Two 
subproblems that share at least one common variable are defined 
to be directly dependent. Two Subproblems, I, are 
considered indirectly dependent if there exists a Subproblem 

„ . . „ j such that P, is directly dependent on Pk and Pk is de­
pendent, either directly or indirectly, on Pr For a sequence of 
independent subproblems, the following result shows the condi­
tions that must be satisfied by an optimal ordering of subprob­
lems. The result holds regardless of the distributions of argument 
variables The proof can be found in [NAT86] 

Result Let a conjunctive problem, expressed as in (1), have 
Subproblems through that are pairwisc independ­
ent, i.e., no subproblem shares a variable with any other sub-
problem. Then the ordering that minimizes (3), the cost of 
generating all solutions to the problem, is to sequence the sub-
problems such that: 

Special Case (i). If each subproblem has the same number of sol­
utions _ _ then the subproblems must be 
ordered in decreasing order of their costs, i.e., Subproblem P, 
should be solved before Subproblem P, whenever 

Special Case (ii). If the cost of obtaining a solution is identical for 
the subproblems then the subprob­
lems must be ordered in ascending order of their number of sol­
utions, i.e., Subproblem P, should be solved before Subproblem 
P, whenever 

It is significant to note that the above result can often be used 
even if, in practice, a given conjunctive problem expressed in the 
form of (1) may have the property that every pair of subprob­
lems is dependent, cither directly or indirectly, on each other. 
A problem-solver can use the knowledge about optimal ordering 
conditions for independent subproblems even if the given 
conjunctive problem contains only dependent pairs of subprob­
lems. 

3.2 Dependent Subproblems 
Typically, the number of solutions to P,(S,) depends on all the 
subproblems that were solved prior to Pr The objective of min­
imizing the search cost is equivalent to choosing the best per­
mutation of the set of subproblems such that the cost expressed 
in (3) is minimized. A conjunctive problem is considered feasible 
if there exists at least one solution to the problem. 
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From (4) we obtain the following results for special cases. Case 
(i): If the search cost per solution of each subproblem is the same 

then the subproblem with fewer solutions should 
be solved first. Case (ii): If the two subproblems have an equal 
number of solutions and the conjunctive problem 
has at least N, solutions, then the subproblem that is more costly 
should be solved first; otherwise., the less costly problem should 
be solved first. 

3.2.2 At Least Three Subproblems in a Conjunctive Problem 

We next consider conjunctive problems that are expressed as a 
conjunction of three or more subproblems. We relax the uniform 
cost assumption but assume the uniform distribution assumption 
holds for the individual subproblems. If a subproblem has t sol­
utions, and X is one of its argument variables with domain 

, our assumption is that for any specific 
value of X, there will be exactly t/K solutions to the subproblem. 

Suppose a conjunctive problem expressed as in (1) is solved by 
ordering the subproblems in two different sequences, and 
as follows: 

The subproblems solved at each level of the search tree traversed 
by a backtracking algorithm is shown in Fig. 1. Note that each 
level of the search tree corresponds to exactly one of the m dis­
tinct subproblems of the conjunctive problem. The two search 
sequences, R1 and R2 differ in only the relative ordering of Sub-

problems Pt and P,. Consequently they spend exactly the same 
computational effort at all levels except at Level / and Level 
(i + 1) of the search tree. For a given ordering of the subprob­
lems, let Cost(Levelj) be the search cost incurred at Level j of the 
search tree corresponding to the ordering. Note that 
Cost(Leyelj) is the product of the total number of attempts to find 
a solution to the subproblem considered at Level j and the aver­
age cost per solution attempt of the subproblem. We have, 

Let Q denote the total number of partial solutions to the the first 
(/ - 1) subproblems of either sequence. We have to distinguish 
two possible cases that may arise. 

Cased): The set of variables in S, that are bound when Pt is solved 
is disjoint from the set of variables in S1+1 that are bound when 
P1+1 is solved. 

Cased!): The set of variables in S, that are bound when P, is solved 
contains at least one variable that also occurs in S1+1. 

Let a, denote the number of solutions to P, given that the initial 
sequence of subproblems, , has been solved. Let 
a1+1 denote the number of solutions to P1+1 given that the initial 
sequence of subproblems,P1 ....,P1 has been solved. 

Case(i): The difference in search costs of sequences R1 and 
R2, Cost(R1) - Cost(R2), equals: 

From the condition expressed in (5) we obtain the following re-
suits for ininimizing the average search cost. 

Natarajan 957 



a) If the search cost per solution of Subproblems P, and P1+1 is the 
same (i.e., C, = C1+1l), then the subproblem with fewer solutions 
should be solved first. 

b) If the two subproblems have equal number of solutions (i.e., 
and the conjunctive problem is feasible, then the sub-

problem that is more costly should be solved before the less 
costly problem. 

If neither the number of solutions nor the cost per solution of 
Subproblems are equal, then Subproblem P, should be 
considered before P1+1 whenever: 

c) P, is more costly than and the condition • 
holds. 

d) P, is less costly than P1+1 and the condition a,C, < a1+1C1+1 

holds. 

In the general case, the decision about whether Subproblem P, 
should be solved before P1+1 is resolved by evaluating the condi­
tion expressed in (5). 

Case(iii): The size of the domain of a variable is the cardinality 
of the set of distinct values that can be bound to the variable. 
Let s represent the product of domain sizes of each variable that 
occurs in both S, and S1+1 and has not already been bound during 
solution of the sequence The difference, 

, in search costs of sequences R, and R2 that 
differ in only the work done at Levels / and equals: 

Thus, Sequence R1 is better than R2, if and only if, 

(6) 

From the condition expressed in (6) we obtain the results anal­
ogous to (a), (b), (c), and (d) in case (i) above for minimizing 
the average search cost. In the general case, the decision about 
whether Subproblem Pi should be solved before P1+1 is resolved 
by evaluating the condition expressed in (6). 

The conditions for optimal ordering of subproblems derived in 
this section (3.2.2) are based on the key assumption of uniform 
distribution of arguments of each subproblem. The uniformity 
of distribution means that the structure of the search tree has the 
following characteristic. At any level of the search tree, the 
number of sons of each node at that level is the same. Ordering 
of subproblems has an impact on the degree (i.e., number of 
sons) of nonterminal nodes at each level of the search tree. At 
each specific level of the tree, the degree is uniform. Search or­
dering that minimizes total search effort is one of the ml possible 
sequences in which m subproblems may be statically sequenced 
before the enumeration effort begins. 

We briefly discuss what will be the impact of non-uniform dis­
tribution of arguments of subproblems. Suppose one is inter­
ested in generating all solutions to a conjunctive problem for 

which the uniform distribution assumption does not hold. Typi­
cally, search effort for such a problem can not be optimized by 
restricting to the class of static orderings of subproblems ( see 
[NAT86] for details). For such problems, the minimization of 
search effort requires that search ordering be context-dependent, 
i.e., whenever a decision has to be made on what subproblem to 
solve next, it must take into account the existing binding envi­
ronment at that instant. With this technique, the planning (i.e., 
sequencing of subproblems) is interleaved with the enumeration 
of solutions. This technique of dynamic search ordering or search 
rearrangement [BIT75] has been effectively used in the solution 
of combinatorial puzzles. The technique holds potential for effi­
cient solution of conjunctive problems in general problem-
solving applications that are characterized by non-uniform 
distributions. 

4. Conclusions 
In general, an optimal depth-first search sequence, that mini­
mizes the total computational effort for solving conjunctive 
problems, depends on both: a) how the values of each argument 
variable are distributed in the solution sets of the subproblems, 
and b) the cost associated with the solution of each subproblem. 

For a sequence of independent subproblems, we stated the opti­
mal ordering conditions that can be used even if a given 
conjunctive problem has only dependent pairs of subproblems. 
For a sequence of three or more dependent subproblems, if the 
uniform distribution assumption holds and the uniform cost as­
sumption is relaxed, then we showed search ordering conditions 
that can be used for systematic transformation of a given order­
ing of subproblems into a locally optimal sequence of subprob­
lems. If assumptions regarding both the distributions and costs 
associated with subproblems are relaxed, then dynamic se­
quencing of subproblems is necessary to minimize the search ef­
fort. Issues related to the use of dynamic search ordering for 
improving search efficiency merit further study. 
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