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Abstract

We present matrix proof systems for both constant- and
varying-domain versions of the first-order modal logics K, K4,
D, D4, T, 84 and 86 based on modal versions of Herbrand's
Theorem specifically formulated to support efficient automated
proof search. The systems treat the mil modal language (no
normal-forming) and admit straightforward structure sharing
implementations. A key fsature of our approach is the use of a
specialised unification algorithm to reflect the conditions on the
accessibility relation for a given logic. The matrix system for
one logic differs from the matrix eystem for another only in the
nature of this unification algorithm. In addition, proof search
may be interpreted as constructing generalised proof trees in
an appropriate tableau- or sequent-based proof system. This
facilitates the use of the matrix systems within interactive en-
vironments.

1 Introduction.

Modal logics are widely used in various branches of artificial intel-
ligence and computer science as logics of knowledge and belief (eg.,
[Mo080,HM85,Kon84]), logics of programs (eg., [Pne77]), and for spec-
ifying distributed and concurrent systems (eg., (HM84,Sti85b). As a
consequence, the need arises for proof systems for these logics which
facilitate efficient automated proof search.

Traditional proof systems for modal logics, such as tableau- or
sequent-based systems are readily available (eg., [Kan57,Nis83,Fit83]).
While these systems are to some extent human-oriented, the proof
rules form an inadequate basis for automated proof search since they
generate search spaces that contain considerable redundancies. The
redundancies arise mainly from the characteristic emphasis on connec-
tives and the proof rules for modal operators and quantifiers.

The matrix methods for first-order classical logic, pioneered by
Prawits [Pra60], and further developed by Andrews [And81j and Bibel
[Bib8l], have been demonstrated to be less redundant than the most
efficient of the resolution based methods for that logic [Bib82b|. The
methods combine an emphasis on connections (drawn from the reso-
lution methods) with an intensions! notion of a path.

In this paper we present matrix proof systems for the modal log-
ics K, K4, D, D4, T, 84 and 85, based on modal versions of Bibel's
"computationally improved* Herbrand Theorem for first-order classi-
cal logic [Bib82cj. We consider both constant- and varying-domain
versions of the first-order modal logics.

The major features of our approach may be summarised as follows.
Validity within a logic is characterised by the existence of a set of
connections (pairs of atomic formula occurrences: one positive, one
negative) within the formula, with the property that every so-called
atomic path through the formula contains (as a subpath) a connec-
tion from the set (§ 2.4). Such a set of connections is said to span
the formula. For classical propositions! logic this condition suffices
[And81,Bib8l|. For first-order logic a substitution (of parameters or
terms for variables) must be found under which the (then proposi-
tional) connections in the spanning set are simultaneously complemen-
tary. Conditions are placed on the substitution that ensure amongst
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other things that a proof within a particular tableau- or sequent-based
proof system is constructable from the connections and the substi-
tution [Bib82c, Wal86). This basically amounts to ensuring that the
restrictions found on the traditional quantifier rules can be met.

For the propositions! modal logics we keep the basic matrix frame-
work but define a notion of complementarity for atomic formulae that
ensures the existence of a proof in one of Fitting's prefixed tableau
systems [Fit72,Fit83|. This amounts to ensuring that, semantically:
the two atomic formulae of a connection can be interpreted as inhabit-
ing the same "possible world," and proof-theoretically: that they can
be given the same prefix (| 2.5.1). The key observation is that this
can be established by noting the position of the atoms relative to the
modal operators in the original formula and utilising a specialised uni-
fication algorithm operating over representations of these positions.
Clearly, this notion of complementarity is logic-dependent, a depen-
dence which is reflected in the choice of unification algorithm. Lifting
these results to first-order constant-domain modal logics is simply a
matter of combining this modal notion of complementarity with the
first-order notion (§ 2.5.2).

For the varying-domain versions we index individual variables with
the prefix of their quantifier. The substitution of one variable for
another is permitted provided their prefixes can be unified ($ 2.5.2).

Checking a formula for validity within a modal logic is therefore
reduced to a process of path checking and complementarity tests per-
formed by a specialised unification algorithm (5 3). During this process
extra copies may need to be considered of universally quantified for-
mulae and/or formulae dominated by a modal operator of "necessary"
(Q) force. The duplication in both cases is managed by an extension
of Bibel's indexing technique or multiplicity [Bib82a] which supports
the implementation of the matrix systems using structure-sharing tech-
niques [BM72]. The notions of multiplicity, substitution and spanning
sets of connections form the basis of the relationship with Herbrand's
Theorem.

A number of authors have attempted to adapt computationally
oriented proof systems for first-order logic to the modal logics con-
sidered here (eg., [Far83,AM66a,Kon86]). We compare our approach
favourably to theirs in Section 4.

2 The modal matrix system*.
2.1 Preliminaries.

We amsuma familinrity with the ususl definkiion of the modal language
and formulas. We it A, B range over formulne and P, Q range over
atomic formulas.

A pair {Q, R}, comprising » non-ampty set G and & binary relation
R on C is called & fréme. Lot D be soms non-empty set. A first-order
Jrams over D is u tripls {0, R, P} whers (G, R} baframe and P s s
mapping from G to non-smpty subsets of . P(w) cun be interpreted
» the set of individuals that "exist® in the world w.

We can obtain different versions of the fmwt-order logics by re-
siricting the way in which P varies from world to world. For ex-
umple, we could require the constani-domain condition: for v, w' € @7,
F{w) = P(w'). Axiomatically, constant-domain modal logics are ob-
tained by including the so-called Barcan formuls ¥z Ax = D¥zds
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£ | Condition on R
X | no conditions

K4 | iransitive
D | idealication

D4 | idealisation, transitive
T | rellaxive

84 | reflaxive, ansitive

95 | equivalence

Table 1: Conditions on accessibility relstions.

TAAB T (:,115 | w‘}‘“.’1
{Av B0} | (4,0 |(8,0
(A= B,0}{(4,1})(B,0)

(~4,1) [ {4,0) [ {4,0)
{-A,0 {A, 1) | (A1)

. By 8 | m i | &
ARBY [TAO[(B,0) TOAD ({40 (a4, 00 | (4,00
{Av B}y [{A4,1)](B1) {OA, 1) | (A, 1) {3zA,1) | (4,1}

(A= B,1) [{4,0}] (B,1)
Table 2: Clamsification of signed formulse.

as an additional axiom. Our purpose here is not to choose between
these possibilities but to develop matrix proof systems for each of the
variants.

If we restrict R to satisfy the conditions outlined in Table 1, we say
that (G, R, P) is an £-frame over D, where L is the logic associated
with the conditions. The "idealisation" condition is that for every
element » € G' there is some element w' € G wuch that w R w'. Once
again our purpose is not to choose between these logics but to develop
matrix proof systems for each.

An L-model over D is a pair {{G,R, P}, |} where {G. R, P) is
an L -frame over D and |[f- is a relation between elements of G and
sentences such that: for allw € &

Lul-AABifw|- 4andw |- B.

2wl Av B iff either w |- A or w {- B.

3. w|- Aw» B iff sither w|£A or v |- B.

¢ w il ~Af wlif A

b wi-CAiffforsliveEGwithw Rv, v |- A.
6. w |- OA iff for some vE G with w R, v [ 4.
T. w [ VzA iff for all 4 € P{w), w |- Ald/z].

8. w [ Az A iff for some d € P(uw), w |— Ald/z].

Satisfaction in a model and validity are defined as usual.

A stgned formula is a pair (A;n) where A is a formula and n €
{0,1}. We let AT, Y range over signed formulae. Informally, the signs
"1" and "0" should be interpreted as the qualifiers "is true" and "is
false" respectively. For ease of exposition we use a uniform notation
due to Smullyan and Fitting that classifies signed formulae according
to their sign and major connective/operator as shown in Table 2.

2.2 Formula occurrences.

A formula tree for a signed formula is a variant of its formation tree
containing additional information as to the polarity of its subformula
occurrences (i.e., whether an occurrence of a subformula is negative
or positive within the formula). It is best explained by example. A
formula tree for the signed formula
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Figure 1: A formula trea.
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Figure 2: An Indexed formula tree.

A multiplicity u for X ja the combination of » modal and first-order
multiplicity thus: for a position k of the formula tree
k€ Lh;

Ma [t}l
ulk) = { mo(kl, kel
undefimed, otherwise,

If 4 i & multiplicity for X we define the (indexed) formula tree for
the indexed formula X as & tree of indexed positions of the form k=,
where & ia u position of the basic farmula tree for X and « is a sequence
of positive integers defined an follows: if k; < kg < --- < &k, < &,
1 € n, are those vy~ and g-type positions that dominate k in the
basic formuls tree for X, then

W 112 %2 uk), 1<ign}

The ordering in the indexed tree <* is defined in terms of the ordering
on the underlying tree: for indexed positions £* and {7

=€{(inf -

<" if k<l and r=x#

where § 10 some sequence of positive integers. The polarity and label
of an indexed position k™ is taken to be the same as the polarity and
Iabel of its underlying position k except that, in the case of atomic
formulae, individual variables are indexed with the index of the child
of their qmttﬁar pultlom {ie,n o of (73 posmnn] vo as to dintinguwish
the different inst queatly, ind pouitions inherit the
type of their underlying poomon also.

Figure 2 shows the indexed formula tree for the example formula
of Figure 1 with a multiplicity of ug(as) = 2 and constant (ie., 1}
otherwize. As a convention we omit indices consisting of the empty
seguence.

We let u, v, possibly subscripted, range over indexed positions when
we are not interested in the index, und drop the superscript on <. We
sbuse cur notation and let 14, ITg eic, denote the veta of indexed posi-
tions of an indexed formula tree of the appropriste types. Henceforth
we shall refer to indexed presitions simply as positions.

Remark. Bibel's notion of » multiplicity [Bib82a] correaponds to
our notion of & first-order multiplicity. We have altered his definition
slightly to support the symmotry between the trestment of modal op-
srators and quantifiers obtained above. Notice that, for an indexed
formula, the set Ty and the set of distinct universally quantified vari-
ables, and the sat Ay and the sot of distinet existentially quantified
variables in tha formuls are in 1-1 correspondence, We shall make wse
of thin obeervation in the sequel g

1.4 Paths and connections.

Let X*® be an indexed formula. A poth throngh X* is & subweet of the
positions of ita formula tras defined below. We aball uee #, ¢, possibly
subscripted, to danote paths, and adopt the aotation s{a”| 4o denote

a path y with an occurrence of & distinguished a-type position with
index x. Similarly for the other types. The set of paths through X*,
ia the smallest set such that:

1. {kf,] } is & path, where ko" in the root position of the formula
tree for X*;

2. if s|a™] is & path, so s {s — {a*}) U {a,®, ag™};

3. i a]5%] o n path, so are (s — {£°}) U {8~} and {5 — {#}) L {8°);

. if al#=] is & path, soin s U {1™}, 1 € 5 < pnr(mo);

. if a[n*| is & path, so is s U {xo*}.

- if af1™) is u path, s in s U {16™}, 1 < § < pglwo);

. if 2]6%] in w path, so i v U {5"}.

The path {s — {a"}) U {a1*,03%} & said to heve been obicined by

reduction on o™ from s{a=]. Similarly in the other cases.

Each path s through X determines a set (branch or sequent) of
positions as follows

FCT- S TN

Sf}={s|z<y forsome yea}.
A path, s, through X* is un atomsc path iff for k™ € », either
{a} k is Iabelled by an atomic formula; or
{b) k€ 1/ and for all 5, 1 £ 7 < pur(rn), ™! € S{s); or
{c) k€T, and forall §, 1 £ 5 < pg(1e}, W™ € S{a).

Remark. Our definition of path differs from Andrews' [Andfl] and
Bibel's |Bib81] definition so as to demonatrate the relationship betwean
the matrix methods and tablean/sequent methods. Ench clause in the
definition, when interpreted as opontmg on the branch associated Imh
the path, corvesponds to an anslytic tableau rule [Smuts, Fits3]. A
path is a representation of the snused formulae on & branch, Further-
more, for a given multiplicity, the branch associated with an atomic
path is complete. These relationships are discussed in more detuil in
[Walte|. g

Consider our example [signed) formuls indexed as in Figure 2. If
we distinguish its a-type subformulue from its S-type subformulae by
placing the components of the former side-by-tide and the components
of the latter one above the other, we obtain n nested matriz thus:

OOvs ( ( O (Pzl) A (Q,m)) ( O (Pzl) AT (Q,m)))

© w(pyn)
= M .
(i)

Notice that the two instances of the subformula Pz AQz are considered
to be the components of an implicit a-type formuls. This follows
from the ~ clause (6} of the definition of paths above. If we omit the
connectives and operators we are left with the skeleton matrix:

Q1)

which corresponds in part to the so-called "deep formuls” in the ox-
pansion tree approsch of Miller [Mila4).

The atomic elements of an atomic path are simply the horisontal
mairix paths throogh such & matrix. In this case there are two atomic
paths through the formula, one with atomic elements {Pz('}, Q1)
Pzi?, Qrl¥, Pyl1)} and one whoes atomic elements are { Px{t), Qail),
P Gzl Q:m; More precisaly, we should express these sets aa
positions thus: {agl v “{111 “?}t ‘is}l “(Illl} and {‘“] ‘tll}' dg‘], d'tl’,l

L
g B

A connection in an {indexed) formula is & subpath of s path through

the formula cansisting of two positions labelled by an atomic formula

Pyleh
(Pzt¥) Q) (P2l® Qst7) ( v )
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with the aame predicats symbol but of differant polarities. A set of
conaections is said to span the formula just when svery stomic path
through it containe a conmecticn from the set.

For exampla, the $wo coanactions {ut.”.au,]] and {a“] um} span
thandeudfornuhd-?hpdsbon So dow the conmsction
(a3",af3)} aad (a{? o) -

2.6 Complementarity.

As remarked shove, for a given maltiplicity, the atomic paths through
an indexed formula serve $o represent the branches of s complete an-
alytic tablesn with the main formuls at its root. In the same spirit,
we with to interpret connections as the two formuls occurrences that
stomically closs the branches on which they occur.

For propomsitional kgic, connections are complementary by defim-
tion. SBince there is 10 need for mukiplicities (no modal operatorn
or quantifiers) this obssrvation lends to a simple charscterisation of
Theoram 2.5.1 (Andrews,Bibel) A propositional formula A is
walid iff there exsats & 2st of connactions that apans {A,0).

This thearem & the metrix conaterpart to the lollowing theorem for
analytic tableamx:

Theorem 3.5.2 (Bmullyan) A propositional formuln A i vahd 1ff
there exssts an stomically closed analytic taMirau for (A,0).

The matrix theorem is more appropriate as & basis for sutomated
proof search because there is 1o need to actually comstruct s tablesu.
The spanning comdition simply ensares that » tableau of the appre-
pristes form caz be construcied; we senrch for & spanning set of con-
nections directly rather than via the connective oriented tablesu rules
[Walss).

In the presence of modal operators and quantifiers we must be more
careful We deal with modal operators first.

2.53.1 Propositional modal wystems.

Informally we must eneure that the two atomic formulae represented
by the positions of & connection can be considered to inhabit the same
posible world In terms of tableanx, this involves synchronising the
choices of possible worlds made doring the reduction of the modal
{sub)fornmalas that contuin these atomic formulse aa subformulas; or,
in terma of positions, the reduction of the 4~ snd x-type positions that
dominata the positions of the connection in the formula tree.

The following definitions are introduced for & given (indexed) for-
muls tree for & given {indexed) formuls X*.

Lot Ty denote the union of 1y and II;,. We associate & sequence of
positions called & prefiz, denoted prefu), with each position v of the
formuls tree as follows: f u; < ug < - < up € 1, 1 < n, nre those
Tir-elements that dominate u in the formula tres, then

profy) = {[:f.”’ " ton)s K k4,0, 04,7, 84;

The prefix of & position encodes ita modal context within the formala
tree. We shall nae p, ¢ t0 deaote prefixes.
For example, the prefix of ¢m (ﬂg‘,dgﬂ. ) whils the prafix of

aly & (mi},’)

Wemphuurhucndkiauonnbinrynmionﬂo Ty xTL
as shown in Table 3. Buch & relation is an L-occessibility relation
provided i satisfles the propertiss associsted with £ in Table 4.

Ramerk, These definitions are adapted from Fisting [Fit72,Fi83].
Each prefix “names”® » pomsible world. Since the positions of the (in-
dexed) formuls tres correspond to signed subformnlae of X*, » position
taken together with its prefix corresponds to his notion of » prefized
sigasd (sub)formula. The prefix identifies the world in which the sab-
formuls i taken to be true or false depending om ite sign. Binary
relations on prefixes ars thus used to reprasant the properties of the
sccomibility relation for & given bogic. g
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Property | Condition: For p, ¢ € TL
genonal [ pRopg, [g[ =1

reflaxive | p Ry p

transitive | p Ro pq, [¢] 2 1

Table 3: Prefix conditions.
L Propertive of Ry

K, D [ goners
T peneral, reflexive
general, transitive
84 goneral, reflexive, transitive
.13 every prefix accemible from svery other prefix

Table 4: Acceasibility on prafixes.

We have indicated that the two positions that constituts a connec-
tion must be interpreted as inhabiting the same possible world; 1.c.,
have the eame prefix. We sosure this by building & modal ssbstiin.
tion opr under which the prefines of the positions are identical The
discussion below motivates the ensuing definitions.

Consider a »-type ponition u with prefix p. The samantic clause for
the subformuls rocted at « allows us to conclade that the subformuls
rooted at the child of u, say v, has the same truth value {sign) in any
world accessible from the world dencted by p. By definition, the prefix
of v is {pu} wince v s of vy-type. Tables 3 and 4 give ws the conditions
under which a prefix can be considersd to be sccessible from p.

Take D4 for example. Any prefix of which p is a proper initial
subsequence will be sccessible from p. Consequently, if we consider v
to be a “variable® and allow it to be instantinted under some map-
ping aar: by — T to any non-emply sequence we can guarantee that
the image of (pv} under {the homomorphic extension of) oy will be
accessible from the image of p under (the homomorphic extension of)
oa. In the case of 54, we allow v to be instantinted with any sequence
including the empty sequence to refioct the reflexivity of the 84 ac-
cessibility relation. For 85, since our motion of prefix in different, we
need only comsider unit saq as possible instantistions for such
*varishles.”

Now consider a w-typa position u with prefix p. The semantic
clause for the snbformula rooted at u allows us to conclude that the
subformuls rootad at the child of u, say v, has the smne tyuth value
[sign) a2 u in soms world acceasible from the world denoted by p.
Again, by definition, the prefix of v is (pv) since v is of & wp-type.
From the tables we can see that (pv) itself in accemsible from p by
virtue of the fact that accemibility ralations on prefixes for all of the
logicy satisfy the geners! condition. Conssquently we consider xg-type
positions as "comstants® under the mappings ou introduced above.
In the context of w tablsan proof, the choice of this peesible world
must be arbitrary; v.e., the prefix (pv) must be new to the tablean.
The “consinat® v can oaly be introduced in a prefix by the redaction
of v's parent u, or by the reduction of s »-kype powikion imtroducing
» “variable® (8 vo-type position) whose image under oy contains v.
To preserve soundnem thurefors, we must snsure that the former can
occur before the initer. »

A modal substitution aur: 14 — T3, induces an equivalance relation
~u; und & relation Ty on Thy % T as follows:

1. If op(u) = v for some v of vo-type, then v~y v.

2. ¥ rur{u) = p and p is not & unit sequence consisting of a yy-kype
position, then for all v X p, v C s u; where X j» the subsequence
relation on Ty,

3. If v Car u and u ~ps t', then v Car o',
A modal substitution oa is £-odmissibie provided
1. o respects L-sccessibility relations Ry, t.¢., for il p, g €T,

pRoy impliss of(p) Roofle)



where 0% T3 — Tj; is the homomorphic extension of oy to
TS

2. (K-logics only) u ~ar ' implies v C gy u (and hence v Cpy 1)
for some position v.

. a=([<u Eu}+ is irreflexive, where C a is the relation induced
by our described above.

The appropriate notion of compl tarity for the propositional
modal logics under consideration is as follows: (for an indexed formula
X*) if o is an L-admissible modal snbatitution for X* a connection
{u,v} in X" in said to be opr-complementary iff

1. ofy(prefu)) = of{pre(v)).

Remarks. The relation v Cps u should be interpreted as a pre-
scription that “position v should be reduced before position u,” in the
sense of tablenux, The relation <1 in called the reduction ordering. Its
irreflexivity eneures that we could construct an analytic tablesu with
X as root using the generic prefixes instantiated by oy, no that all
of the restrictions on prefixes mentioned above are met. This method
of representing the restricticns on traditional modal tablean rules is
an adaptation of the method used by Bibel [BibB2a| for the classical
auantifier roles.

Suitable mappings can be computed using variants on a string-
unification algorithm. In all cases the set of most general unifiers is
finite but not necessarily a singleton [Sie84j. For S5 the standard
unification algorithm suffices. The admissibility check is an check for
acyclicity if <q is interpreted as a directed graph.

The extra condition for the K-logics is a translation into the current
setting of Fitting's notion of a used prefix. Basically, since these logics
are not id e aliz able we must ensure that each prefix (under cry) of a
vo-type position (formula) has been introduced by the reduction of a
Tr-type position (formula) beforehand, pj

We have proved the following theorem:

Theorem 2.5.8 A propositional modal formula A is C-valid iff there
is a modal multiplicity pM, an L-admissible modal substitution om and
a set of a M -complementary connections that spans the indexed formula
(A, 0

The proof involves showing that starting from a tableau with {A; 0)
at its root we can construct an atomic ally closed prefixed tableau by
following the reduction ordering induced by the substitution, and pre-
fixing each subformula with the image under the substitution of the
prefix of its root position. The multiplicity indicates the number of

times a given z/-type formula is reduced to form the tableau. Complete-
ness involves showing that a suitable modal multiplicity pu can be
constructed to form a modal Hintikka set from the set associated with
any non-complementary atomic path (i.e., unclosed branch) through
(A’o By

Although we have used tableau systems to motivate the definition
of the matrix systems, no tableau construction is actually performed
in the use of such methods. The theorem above is utilised directly.
(See Section 3.)

2.5.2 Fir it-order modal systems.

Extending the propositional matrix systems presented above to first-
order modal logics is straightforward. We consider both constant- and
varying-domain versions.

For constant-domains, a pair of atomic formulae labelling the po-
sitions of a connection can be interpreted as complementary if we can
find a first-order substitution OQ of parameters for individual variables
that render the two atoms identical.

For varying-domains, the modalities and quantifiers interact. Uni-
versally quantified variables only range over those individuals that 'ex-
ist" in the world denoted by the prefix of their quantifiers. Existential
quantifiers express the existence of individuals only in the world de-
noted by their prefixes. Consequently, our first-order substitution OQ
must respect the modal substitution oM.

Instead of introdacing an explicit net of parameters we note that
there in & 1-1 correspondence between I'y and the set of distinct uni-
versally bound variables, and A and the set of distinct existentially
bound variables within the indexed formula. Consequently first-order
substitutions are idered over these positions rather than individ-
ual variables. Notice that the position corresponding to the individual
variable z quantified at a position u is the child of 4 in the formula
tree,

More formally, let Ty denote the set I'o U Ag. A first-order sub-
utitution is a mapping og:Tg — Tg. For soundness, we musi place
restrictions on first-order substitutions to ensure that the positions rep-
resenting parameters introduced for existentinlly bound varisbles {Ag)
are indeed arbitrary. In terms of tableaux, we must ensure that such
positions are introduced [by the reduction of their parent) before the
introduction of any p representing & universally bound variable
which receives the same parameter under the substitution og. The
similarity between these restrictions on quantifier reductions and the
restrictions on modal operator reductions is not accidental [Smu70].

A first-order substitution og: [y — Ty; induces an equivalence re-
lation ~g and & relation Cg on Ty % Ty ue follows:

1. If gg{u) = v for some v of yg-type, then u~g v,
2. If rgu) = v for some v of dp-type, then v Cg u.
3. HeCguuwnd u~gu', then v Cg u'

A combined substitution is a pair consisting of a modal substitution
and a first-order substitution. A combined substitution {aas, &} is £-
admissible provided

1. ops Tespects [-accessibility relationa, as before.

2. {K-logics only) u ~p u' implies v Cps u (and hence v Ty o)
for some poeition v.

3. a=(curu UCg)" is itreflexive, where Ty and Cg are the
relations induced by oar and og respectively as described above
and in § 2.5.1.

For constant-domains the appropriate notion of complementarity is
as follows (for an indexed formula X*}: Let & be an Il-admissible com-
bined substitution for X". A connection {u,u} is & -complementary
iff

L. oF{pre(u)) = ol (pre(c)).

way: (for an indexed formuly X*) if o is an L-admissible combined
substitution for X*, a connection { u,v } in X# is o-complementary iff
L a¥eipre(u)) = o{pre(v)).
2. ogflabel{u)) = ag{label{v)).

3. I og{u’) = v, then o (pre(u'}) = o (pre(v).

Note the addition of the third clause by which the modal and first-
order substitution interact.

Remark. We have blurred the distinction between an individual
variable and the position that represents it in order to state the second
condition,

Consequently we have:

Theorem 2.5.4 A (first-order) modal formula A 1 £-valid iff there is
a multiplicity u, an L-admissible combined substitution a and a set of
a-complementary connections that spans the indexed formula ( A.U}”-

Once again we utilise tableau techniques to prove this theorem.

3 Proofsearch in the matrix systems.

The matrix systems presented above reduce the task of checking a
modal formula for validity to one of path checking and complemen-
tarity tests. The path checking is performed by adding connections
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Figure 3: Reduction relation for connections 1 and 7'

1 2 3'

Conn. ‘[l“ y “ilﬁl “l” » “i‘l} ﬂ‘l’.l , 3

Mopre. AL " =, '
e el ol el

Al ai‘.’

8 —ayy

Q-pre. | a930,00810 | 008305, a08) | 90020s, doBjp

Table 5: Connections and unification problams.

te & set and eliminating all those stomic pathe that contain the new
conaection. If all stomic paths can be eliminsted in this manner, the
formuls is valid. Complementarity tests are porformed as anch connec-
tion is added. Bibel [Bib82b,Bib82a) shows how some of the standard
resclution search sirstegies can be utilised for thie procass. His results
cArTY over %o our modal systema without change.

Consider the example {indaxad) formuls of Figure 2. Ignoring the
first-order features for the momant, the connection { u&“.a{,;] } givas

rise to the probiem of anifying the prefixes (m,a,a‘.“) and (q,a{:,‘),
where we have overlined the vy-type [*variable”) powitions. We can
immaedistely sees that such n connection cannot be mads [proposition-
ally) complementary {conditicn 1) naless the accessibility relation of
the logic is transitive. If thiy is the case, the {most general) unifier
sands Eﬂ,’ to the sequence nga;agn

The second conmection {am “[114'} gives rise to the problem of

unifying (aoaza;l‘.”) and (uo!‘l:,') Since l(l:,’ has the value a-;a,a‘.“
under the current modal substitution, we can make tke two connactions
[ propositionally) complementary if we sead l‘.‘l to at““.

Consider now the first-order features of our example formala. In
addition to the modal substitotion we must build & Grei-order substi-
tution which unifies the Isbels of the connectiona.

For the first connection we must wnify Pr{!} witk Py('). This
gives rise to the problem of unifying 2(") with al}. The most ganeral
unifier simply mapa the former position to the latter. 3o far se good.
Consider now the second cotnection. That gives rise $o the problam
of unifying @=/" with @s}), e, 2" with of}). Clearly we cannot
build & consistent mapping for 75’ which unifiw both labels.

Due to the multiplicity of a4 there is an alternative conmection
a",ald } which together with the first also forme » spaaning set
{§ 2.4). Propositionally, this connection gives ua the problem of wnify.
ing (uomglm) and (a.a‘,“) which in easily accomplisked by map-
ping !‘.” to ay ( {recall that 4(1) is already mapped io 0y "), At
the frst-order level we must unify Q=% and @5V, i.u., WP with of}
which ¢s2 now be sccompliished.

The reduction ordering induced by these substitntions is shown as
a graph in Figure 3. Notica that it is cyclic. It is ensy to show that no
increass in moliiplicity can ovarcoms this. Conssquantly we concluda
that the formuls is not valid in the first-order constant domain versioas
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of the transitive logics.

We can also check the third condition to determine the status of
the formula with respect to the varying-domain logics. Our first-order
substitution mapped n‘," to ¢m snd l‘.’l' o ¢".}. Thse prefix of il‘lIJ
is (agagas) whils the prefix of af!) is (sglm . Under the modal

substitution this latter praflx becomm (mga lll) Since these two
prefixes cunnot be unified the connections are not complementary in
the varying-domain logics. (Notice that we do not even get as far ns 2.
cyclicity chack in this cass.) The prefixes and unifiers are summarised
in Table 5.

The path checking process may be interpreted as constructing proof
trees in a prefixed tableau/sequent based proof system where the pre-
fixes contain "Skolem" variables and are interpreted as "Skolem* func-
tions. The appropriate systems are similar in spirit to those of Jackson
and Reichgelt [JR87]. This has been utilised in implementations to
provide a human oriented interface to the search [WW87]. Note that
we are concerned with an interface to the search itself rather than the
presentation of an already constructed proof for which the techniques
of [And80,Mil84] are applicable.

4 Related work

There are two main approaches for extending resolution techniques to
modal logics. The first is to restrict the syntactic form of formulae,
so that an appropriate modal clausal-form may be defined, and ap-
ply clausal resolution techniques (eg., [Far83]). Bibel's comprehensive
comparison of clausal resolution-based methods and his matrix method
for first-order logic [Bib82b] suffices to demonstrate the advantages of
proof search based on the matrix approach for modal logics presented
above.

The second approach is to restrict the application of the resolu-
tion rule to modal contexts in which it is sound. In semantic terms
this means utilising resolution within each possible world. Inference
across possible worlds is performed by another mechanism. Abadi
and Manna's systems [AM86a,AM66'bj, based on non-clausal resolu-
tion [MW80,Mur82|, form perhaps the most comprehensive extension
of resolution techniques to modal logics along these lines. The mech-
anism they employ to manage modalities are Hilbert-style deduction
rules which are used to conjoin new formulae. For example, the modal
deduction rules for 85 are:

Mi: D4, OB O(DAAB) M3:
M2: OA, 0B O(OAAB) Mé:

OA— A
A OA,

While hand proofs using these systems can be short, the search
spaces they generate are quite redundant due to the connective-based
rules for manipulating modalities. Combinations of MS and M4 must
be aplied to facilitate the application of Ml and M2. Only when com-
plementary subformulae are moved into the same modal context in this
manner can the resolution rule be applied. Moreover, since the systems
are generative, rules remain applicable to old formulae throughout the
proof. This should be compared with our connection based approach
and the calculations used to establish validity illustrated in the previ-
ous section. In the example there, the propositional structure of the
formula defined the space to be searched (four possible connections).
The modal operators were dealt with using a unification algorithm.

Konolige's systems |Kon86j are based on tableau systems (one
tableau for each possible world). Ordinary resolution is utilised within
each tableau and a version of Stickel's Theory-resolution [Sti85a] used

'to manipulate modalities by creating new tableaux. Search is compli-

cated by the need to choose suitable sets of formulae to form these new
tableaux. The use of theory resolution is not effective, in the sense that
an arbitrary amount of search must be performed to determine that
the generation of a given resolrent is indeed sound. Konolige proposes
the use of multiple refutation procedures to overcome these problems.
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