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ABSTRACT

The common distinction between probabilities
that can be based on frequencies known to hold in
a sequence ofrepeatable events, and probabilities
that concern unique events, and that therefore
must be based on subjective opinion, is argued to
be misguided. All events are in some relevant
sense "unique", and, more importantly, all events
can in a relevant sense be placed in classes of
similar events. A formal calculus is described for
accomplishing this in relatively simple but useful
cases. *

A. Statistics and Unique Events

Almost everyone will agree that when our
background in statistical knowledge is extensive
enough, and when the case with which we are
concerned is a "repeatable" event, then objective
probabilities are appropriate, and these are the
probabilities that should enter into the
computation ofexpectation and into our decision
theory. A great many people will also agree that
there is another whole class ofcases, in which we
are concerned with unique events, in which we
lack statistical knowledge, and for which we must
turn to subjective probability or one of its
surrogates. | propose here to argue against this
distinction. Of course it is easy enough to argue
this way in a purely philosophical vein: every
event must be unique --it has its own spatio-
temporal locus; and every event must belong to
some class ofevents about which, in principle, we
could have statistical knowledge. Butthis is not
my point. My pointis thatfrom a down-to-earth
practical point ofview, from the point of view that
seeks to compute probabilities and expectations
for making decisions, the distinction between
'repeatable’ and 'unique* events is notonly
untenable, but seriously misleading.

B. Kinds of Cases

Let us consider some examples ofthese alleged
distinctions. Consider the toss ofa coin. Thereis a
classical 'repeatable’ event: notonly can we toss a
coin over and over again; coins have been tossed
over and over again, and in the experience ofeach

* This work has been supported in part by the
Signals Warfare Center.
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of us there is a large data-base of results of coin
tosses (or an impressionistic resume ofsuch a
data-base). And we have physical grounds (i.e.,
grounds stemming from the laws of physics for
thinking that coins land heads about halfthe time.
And so we can regard that toss ofthat coin as a
member of a class of tosses, of which we have
reason to believe that halfyield heads.
(Alternatively, we might regard that toss as a kind
oftrial that has a propensity ofa halfto yield
heads.

Now of course a particular toss, at a particular
time and place, cannot be repeated. We all know
that. Butthe event can be repeated'in all relevant
respects*. We don't have to make the toss at the
same time or the same place; we don't have to use
the same coin; we don't have to use the same kind
ofcoin; we don't have to flip itin any particular
way.

Consider another kind of case. | want the
probability that my friend Sam will be at home
tonight after supper. | know that on some week
nights he goes to the movies. This is unlike the
coin in that | can specify some ofthe factors that
lead him to go out or to stay home. Thus | might
know that he likes westerns ~ so ifthere is a good
western in town, he will be more likely to be at the
movies. On the other hand, | might know that he
is very conscientious about studying for his
chemistry examinations - so ifthere were to be a
chemistry examination tomorrow, Sam would be
most likely to be at home. Itis hard to specify a
"repeatable” event. In short this seems like a
perfect case for subjective probability. But ifl
know Sam well, | will have some basis for knowing
how often, in general, he goes out on week-nights.
My knowledge is neither so precise nor secure as
my knowledge ofthe coin, but surely it is not non-
existent.

But we must beware ofallowing the variety of
bur knowledge about Sam to serve as an excuse for
guessing wildly. Analogously, ifwe were to have
detailed and microscopic data concerning the coin
toss, we could perhaps predict with a better than
50% success rate. This possibility should notbe
allowed to undermine our sensible tendency to
assign a probability ofa halfto the occurrence of
heads on the specified toss when we lack that
microscopic data.



Finally, there are some circumstances under which
my probability concerning Sam's being at home isjust
as exact as my probability concerning the flip of a coin.
For example, | may know that he decided whether or
not to go to the movies by flipping an ordinary coin.
Suppose in addition that | know that he went out if
and only ifthe coin landed heads. Then the
probability that Sam went to the movies is 0.5. This
brings out an important point that | shall enshrine as
an axiom:

Al IfS and Tare known to have the same truth-
value, then they have the same probability.

This axiom does not require that S and T be
equivalent in any strong sense; all that is required is
that we know that they have the same truth value.

This axiom already undermines the argument for
subjectivity based on uniqueness. Itis asked, "How
can you find an objective probability for the event ofa
New York nuclear power plant suffering a meltdown,
when there is no class ofinstances to generalize from:
there is only one New York nuclear power plant, its
design is unique, etc." The answer is that we need not
be concerned about the frequency offailure in plants of
such and such design, but rather can transform that
sentence into one having the same truth value, to
which our statistical knowledge is applicable. (The
plant will fail ifand only if gate valve #1 fails or gate
valve #2 fails...)

Here is another example. | hold in my hand a
newly minted coin. | will toss it once, and then melt it
down. Whatis the probability that this coin will yield
heads when tossed? The relative frequency among
tosses ofthis coin is 0 or 1 - we have no statistical
knowledge of the behavior of this coin. But we know
that the toss ofthis coin | am about to perform will
yield heads iffthe next toss ofa coin yields heads -- and
for tosses of coins in general we have lots of statistical
evidence.

C. ASimple System

Here is a very simple example ofhow objective
probability can be applied to "unique" events. ltis
essentially due to Reichenbach (1949).

LetR = {r},...,r2} be a finite set of potential
reference classes; let P={Py,....P2)\ be a finite set of
properties (including such properties as being a
member of a particular class), and letI={ij....,iz} be a
set ofdistinct individuals. We can define a language
on this basis in the usual way.

Add to this language enough mathematics to do
statistics, and define an jtem ofpossible statistical
knowledge to be a sentence ofthe syntactical form
“%(r; Py} , which we read: the proportion ofobjects in
the reference class r, that have the property P is x.
Proportions satisfy the classical probability calculus.

Let a bodyofknowledge K be a set of sentences. We
impose few restrictions on K. We wantit to be
consistentin the sense that there should be no
sentence S in Kfor which _ Sisalsoin K. We want

some logical truths in K. We want the items of
possible statistical knowledge to be consistent
statements concerning the relations of the possible
reference classes and properties. Finallx, we want the
(finite number of) sentences of the form "Pg{1y}"
together with "0=0"and "0 =1" to generate a
partition ofall the sentences ofthe language under the
relation of being known to have the same truth value.

These constraints are embodied in the following

axioms:

A2.1 R is closed under intersection

A2.2 Ifiandjare distinet, riand ryarein R, then r; =
rj is not provable.

A23 Ifr,C r then "1 C 1" € K,

All Pis cfoseé under conjunction and atomic
negation.

Ad.2 Ifiand j are distinct, Py and Py are in P, then
Vx(P{x) & Pix})is not prouaiule.

A3.3 If - Yx{Pi(x) = Pi{x)) then
xPi(x) = P(z))" € K.

Ad If”l‘x € ry”E K and "l‘x € rw”e K, the
"Iy € ryNry" €K,

AB.Y If°St 3 Sp" € K, then "S2 & 81" ¢ K.

AB2 If"S; &.8S" € K, and "Sy & 83" € K then
"S; ¢ 83" ¢ K.

AS3 "Sye8;"¢ K.

A8 For every non-mathematical*® sentence Sin L.,
there exists a Py and exactly one i; such that
"S e Pfiy)" € K.

AT There exists a model of the sentences in K, with
"%(¥ ,Y)" construed as “the proportion of X's that
areY's".

We can now define the probability of a sentence S
relative to a body of knowledge K to be x just in case 8
is known in X to be equivalent to a sentence of the
form “P,{1,)" -- this is just to say that the biconditional
“S &P1,)"is in K -- and for some reference class r,, to
which iy is known to belong, "%(r,,,P;) = x"isin K,
and, finally if ryis another reference class to which i,
is known to belong, and "%(r, P;) <>x"isin K, then
it is known that ry is included in r,. Formally,

D1 Prob(S K) = x iff thereareP,, iy, and ry such

that
(1) "S & Pi,)"isinK.
(2) ", € ra” LK.

(3) “WolryP) =x"€K
(4 Ifiye ry” € K, and "Bo(ry Py) <>x" €
K, then"ryCry” €K

Thus r, is the smallest reference class about which we
have statistical information to which iy is known to
belong. This is essentially Reichenbacns idea, except
for the addition ofaxiom Al.

We can generate the probability more clearly by

tting the fourth condition as a constraint on a table,

tthe first column ofthe table contain a list ofall the
reference classes r, to which i, is known to belong.
Let the second column contain the value of X{ry} from
the corresponding item of statistical knowledge:

**A non-mathematical statement is one whose truth
value depends only on empirical facts.
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“%(ry Py} = 2r,).” Work down the table, deieting
every row that fails condition (4) (Rule; if x(r,) <>

x{ry), delete both rows unless “r, C r,"isin K,

There may be several rows left, but they will atl

ingtnt.ion e same value of x. There may be norows
eIt.

D. Limitations

This approach deals perfectly reasonably with
tosses of coins and the like. It also does what we want
for Sam, in the case in which he decides whether or not
to go to the movies by tossing a coin. But it has serious
drawbacks. It fails to provide for the case in which we
get the probability of Sam going to the movies from a
limited statistical basis. It gives us no probability at
all when we know of iy that it belongs to two reference
classes, and our knowledge about those reference
classes doesn't agree, and we don't know that either
reference class is included in the other.

The remedy is simple and obvious, but it entails
considerable complication. We allow items of possible
statistical knowledge to embody approximate
knowledge. Letus write:

*%{ru L) € [x1 52"
to mean that the proportion of objects in the reference
class r, having the property P; is in the closed
interval (x;.xz(i.

Suddenly we have statistical knokwledge about
every property and every reference class: at the very
least we will know that the proportion lies in [O,lJ.
And now what do we mean by <>? These changes
work: Say that two intervals "differ" if neither is
included in the other, and rewrite (4) to say thatifr,
and r,'differ, then r, is known to be included in r,\

(4') If*i, € ro* isin K and "%(ry,P,) € [x{' x2']"
isin if, and [x1’ xg'] differs from {x;,x3] then
“ro Crwisin K.
And. finally, we mustinclude another clause to single
out for us the most informative interval that is not
ruled out by conflict with another interval:
(5) ifr., has not been eliminated as a possible
reference class by the earlier conditions, then
the interval corresponding to r,, is a
subinterval of the interval corresponding to

Fu'

This new definition of probability is still limited - it
turns out that we would like two other relations, in
addition to the subset relation, to excuse "difference".
(One is a gubsample relation dual to the subreference
class relation. The otheris a cross-product relation
that accounts for Conditionalization in the presence
of background knowledge.) And we would like to be
able to consider equivalence to statements concerning
several differentindividuals (Kyburg, 1985). Butitis
already quite powerful, and it has some rattier
interesting properties:

(1) All probabilities are objective, in the sense that
each proEability is based on empirical knowledge
about frequencies or chances in the world.

(2) Every statement in the language has a
probability; there is no distinction Detween statements
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concerning "re pea table" events and statements
concerning "unique" events.

(3) No a priori probabilities are required; all
probabilities can be based on experience. (But how
they can be so based is another story.)

E. Conclusion

Probabilistic knowledge may be regarded as all of a

piece. There is no need to distinguish between

statistical" probabilities that have objective warrant
in the world and "subjective" probabilities that merely
reflect our subjective feelings. When we apply our
knowledge of statistical facts to individual cases, it is
the probability of a unique event that is at issue.
When we offer a "subjective" probability for a unique
event, it is, if it has any epistemological justification
atall, based on some (possible approximate) statistical
knowledge. The difference between the two cases lies
in the fact that in the former case it is easy to specify
the reference class -- it may even be builtinto tne
problem through the use of the indefinite articles "a"
and "an"-- and in the latter case, it may be quite
difficult to put your finger on the reference class. But
this is a difference of degree, and not of kind. The
procedures suggested here (and in Kyburg 1985) can
render both kinds computable within quite rich
languages.
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