
RUM: A Layered Architecture for Reasoning with Uncertainty

Piero P. Bonissone and Steven S. Gans and Keith S. Decker
GE Corporate Research and Development Center

P.O. Box 8
Schenectady, New York 12301*

Abstract
New reasoning techniques for dealing with uncertainty in
expert systems have been embedded in RUM, a Reasoning
with Uncertainty Module. RUM is an integrated software
tool based on a frame system (KEE) that is implemented
in an object oriented language. RUM's capabilities are
subdivided into three layers: representation, inference, and
control.

The representation layer is based on frame-like data struc­
tures that capture the uncertainty information used in the
inference layer and the uncertainty mete-information used
in the control layer. Linguistic probabilities are used to
describe the lower and upper bounds of the certainty mea­
sure attached to a well formed formula. The source and
the conditions under which the information was obtained
represent the non-numerical meta-information.
The inference layer provides the uncertainty calculi with
which to perform the intersection, detachment, union, and
pooling of information. Five uncertainty calculi, based on
their underlying Triangular norms, are used in this layer.
The control layer uses the meta-information to select the
appropriate calculus for each context and to resolve even­
tual ignorance or conflict in the information. This layer
enables the programmer to declaratively express the local
(context dependent) meta-knowledge that wil l substitute
for the global assumptions traditionally used in uncertain
reasoning.

R U M has been tested in a sequence of experiments in both
naval and aerial situation assessment, consisting of cor­
relating reports and tracks, locating and classifying plat­
forms, and identifying intents and threats.

I. Introduction
In most realistic situations, the information available to the
decision maker is incomplete and uncertain. In automated rea­
soning systems, these two facets of the information have usu­
ally been treated independently. Theories and techniques for
deal ing w i t h incomplete (but precise) information have evolved
into the development of non-monotonic logics, truth mainte­
nance systems (T M S) and reason maintenance systems (RMS) .

•This work wis partially supported by the Defense Advanced Research
Projects Agency (DARPA) under USAF/Rome Air Development Center con­
tract F30602-85-C-0033. Views and conclusions contained in this paper are
those of the authors and should not be interpreted as representing the official
opinion or policy of DARPA or the U.S. Government

Theories and techniques for dealing w i th uncertain (but com­
plete) informat ion have either been adapted f rom other fields
such as probabi l i ty theory, based on unrealistic global assump­
tions, or proposed as ad hoc solution wi thout formal just i f ica­
tions [Bonissone, 1987].

The trend fo l lowed by most approaches for reasoning
w i t h uncertainty has shown an almost complete disregard for
the fundamental issues of automated reasoning, such as the
proper representation of the informat ion, the allowable infer­
ence paradigms suitable for the representation, and the control
of such inferences. The major i ty of the approaches to rea­
soning w i th uncertainty do not properly cover these issues.
Some approaches lack expressiveness in their representation
paradigm. Other approaches require unrealistic assumptions
to provide un i fo rm combining rules def ining the plausible i n ­
ferences.

Specif ically, the non-numerical approaches [Cohen and
Grinberg, 1983b, Cohen and Grinberg, 1983a, Doy le , 1983]
are inadequate to represent and summarize measures of uncer­
tainty. The numerical approaches, on the other hand, generally
tend to impose some restrictions upon the type and structure
of the informat ion (e.g., mutual exclusiveness of hypotheses,
condit ional independence of evidence). Most numerical ap­
proaches represent uncertainty as a precise quantity (scalar or
interval) on a given scale. They require the user or expert
to provide a precise yet consistent numerical assessment of
the uncertainty of the atomic data and of their relations. The
output produced by these systems is the result of laborious
computations, guided by well-defined calcul i , and appears to
be equally precise. However, given the di f f icul ty in consis­
tently el ic i t ing such numerical values f rom the user, it is clear
that these models of uncertainty require an unrealistic level of
precision that does not actually represent a real assessment of
the uncertainty.

W i th few exceptions, such as M R S [Genesereth, 1982],
the control of the inference process in most expert systems
has been procedurally embedded in the inference engine, thus
preventing any opportunistic and dynamic change in order­
ing inferences and in aggregating uncertainty. Usual ly , the
same set of aggregation operators (i.e., the same uncertainty
calculus) is selected a priori and is used un i fo rmly for any
inference made by the expert system. In the few numerical
approaches where conf l ict ing informat ion is detected [Shafer,
1976], confl ict handling is done in the inference layer, where
the conf l ict resolution procedure is embedded in the same com*

Bonissone, Gans, and Oscksr 891

bining rules. This procedure consists of simply removing the
conflicting part of the information. The non-conflicting por­
tion is then normalized and propagated as if the conflict never
existed.

It is our claim that the formalism for reasoning with un­
certainty must exhibit the same structural (layered) decompo­
sition typical of other automated reasoning methodologies, i.e.,
it must address each of the three layers of representation, infer­
ence, and control. The formalism must also be based on sound
theoretical foundations to guarantee its general applicability to
a variety of reasoning tasks. The proposed layered approach
wil l be suitable to integration with reason maintenance sys­
tems that provide a distinction between the object logic theory
(inference layer) and the meta logic theory (control layer).

This paper describes the theory, design, implementation,
and testing of RUM, a Reasoning with Uncertainty Module,
whose layered architecture reflects the above concerns. The
next two sections (2 and 3) summarize RUM's underlying the­
ory and design. The remaining two sections (4 and 5) describe
an experiment in situation assessment used to test RUM and
present the conclusions of this work.

I I . RUM's Underlying Theory
Preliminary theoretical results were presented in two previous
publications [Bonissone and Decker, 1986, Bonissone, 1986].
This section summarizes some of those results and provides a
unified framework for their interpretation and use in RUM's
architecture. A philosophical motivation for the RUM's three
layer organization can also be found in [Bonissone, 19871.

A. Term Sets of Linguistic Probabilities
In expert system applications, users and experts must fre­
quently provide subjective assessments of probability. Due
to the difficulty of eliciting precise and consistent numerical
certainty values, we have suggested the use of term sets of lin­
guistic probability. Each term set determines the granularity
(the finest level of specificity) of the measure of certainty that
the user/expert can consistently provide.

A term set of linguistic probabilities is the set of symbols
The meaning of each term L, L is

represented by a fuzzy number on the [0,1] interval. A com­
putationally efficient way to characterize a fuzzy number is
to use a parametric representation ot its membership function.
This parametric representation [Bonissone, 1982, Bonissone
and Decker, 1986] is achieved by the 4-tuple
The first two parameters indicate the interval in which the
membership value is 1.0; the third and fourth parameters indi­
cate the left and right width of the distribution. Linear func­
tions are used to define the slopes. Therefore, the membership
function uLt(x) is defined as

For compactness of notation, we wil l denote the meaning
of the term set element Lt parametrically. Table 1 illustrates
one of four default RUM term sets, the nine element L-nine.*

Table 1: The Nine Element Term Set L-nine

RUM's representation layer allows the user to character­
ize the lower and upper bounds of the certainty of a fact, or
the sufficiency and necessity of a rule, by using elements of a
selected term set.

B. Triangular Norms
Triangular norms (T-norms) and Triangular conorms (T-
conorms) are the most general families of binary functions
that satisfy the requirements of the conjunction and disjunc­
tion operators, respectively [Bonissone and Decker, 19861. A
T-norm is defined as a mapping which is
monotonic, commutative, and associative. The boundary con­
ditions of a T-norm satisfy the truth tables of the logical AND
operator. The T-conorms are defined in terms of the T-norms
and a negation operator, by using a generalization of DeMor-
gan's duality. Thus, for a suitable negation operator, such as

We have seen that the use of term sets determines the
granularity with which the input certainty is described. This
granularity limits the ability to differentiate between two sim­
ilar calculi; only a finite, small subset of the infinite number
of calculi that can be generated from a parametrized T-norm
family produces notably different results.

This result has been confirmed by an experiment [Bonis­
sone and Decker, 1986] where eleven different calculi of un­
certainty, represented by their corresponding T-norms, were
analyzed. The experiment showed that five equivalence classes
were needed to represent (or reasonably approximate) any T-
norm. The corresponding five uncertainty calculi were defined
by the common negation operator and the De-
Morgan pair for the following values

•The meanings associated with each element of the term set were derived
from the results of psychological experiments on the use of linguistic proba­
bilities [Beyth-Marom, 1982].

892 REASONING

Table 2: Five Uncertainty Calculi

of p i n Table 2:**
RUM's inference layer provides the user with a selection

of the five T-norm based calculi described above.

I I I . RUM's Layered Architecture
RUM's architecture is based on three layers: representation,
inference, and control. The first layer (the representation layer)
includes the structure required to capture information used in
the inference layer and meta-information used in the control
layer. In this structure, linguistic probabilities are used to de­
scribe the lower and upper bounds of the certainty measure
associated with a well-formed formula (wff). Non-numerical
meta-information, describing the source and the conditions un­
der which information was obtained, is represented in this layer
along with numerical meta-information describing the amount
of ignorance and consistency.

The second layer (the inference layer) includes five un­
certainty calculi based on their underlying Triangular norms
(T-norms). Any operation required by an uncertainty calcu­
lus can be expressed in terms of its T-norm and a negation
operator. Note that T-norm-based calculi have various com­
putational advantages: they are truth-functional, commutative,
and associative. Therefore, if numerical computations to eval­
uate T-norm-based expressions are carried out at run-time, the
above properties ensure that any result can be directly com­
puted front the individual value of each argument; that the
result is independent from the order of the arguments; and
that for more than two arguments, the evaluation of T-norm
expressions can be done recursively.

The third layer (the control layer) includes the functions
required to select the calculus appropriate for each context and
to resolve ignorance or conflict in the information. These func­
tions rely on local (i.e., context-dependent) knowledge about
the information (meta-knowledge). The scope of the calculus
selection and ignorance/conflict resolution is limited to the con­
text (knowledge base subset) for which the meta-knowledge is
available. Figure 1 illustrates RUM's architecture. The fol­
lowing sections describe RUM's functions attached to each of
the three layers.

is one of six parametrized families of T-norms discussed in
[Bonissone and Decker, 1986]. It was originally defined by Schweizer and
Sklar [Schweizer and Sklar, 1963] and exhibits both complete coverage of the
T-norm space and numerical stability.

A. The Representation Layer
1. RUM's Wff System

RUM is an integrated software tool based on a frame sys­
tem (KEE™) [1986] that is implemented in an object-oriented
language. RUM's Wff System modifies KEE's representation
of a wff. RUM's wff is the pair which is the
description of a variable in the problem domain. For each wff,
a corresponding certainty unit is created. The unit contains a
list of the considered values that the variable may take, and for
each of these values it maintains the lower and upper bounds
of its certainty, an ignorance measure, a consistency measure,
and the evidence source. The ignorance measure is computed
as the area of the fuzzy interval formed by the lower and up-
per bounds, while the consistency measure checks to see if the
lower and upper bounds have crossed.

RUM's Wff System allows the user to express arbitrary
uncertainty granularity by providing the flexibility to mix pre­
cise and imprecise measures of certainty (crisp numbers or in­
tervals, fuzzy numbers or intervals, linguistic values) in defin­
ing both the input certainties and the rule strengths.

2. RUM's Rule System

RUM's Rule System replaces KEE Rule System-3 capa­
bilities by incorporating uncertainty information in the infer­
ence scheme. The uncertain information is described in the
certainty units of the wffs, represented in RUM's Wff System,
and in the degrees of necessity and sufficiency attached to
each rule. A rule is represented by a frame with several slots.
These slots include the name of the rule; the lists of contexts,
premises, and conclusions; the rule's sufficiency and neces­
sity; and the T-norm to be used for aggregation. Al l slots
(except the name, premises, and consequences) have default
values. The contexts, premises, and conclusions can comprise
values, variables, RUM predicates and arbitrary LISP func­
tions. Rules with unbound variables art instantiated with the
necessary environment to produce rule instances.

The T-norm specified with the rule is used to aggregate
the certainties of the rule premises and to perform detachment
(which computes the certainty of the conclusion given the suf­
ficiency and necessity of the rule). It defaults to which is
the M I N function. The associated T-conorm is used to aggre­
gate the certainties of identical conclusions inferred by multi­
ple rule instances derived from the same rule. These are often
subsumptive, and the value defaults to the MAX function.
Finally, each seperate consequence of a rule has a specified
T-conorm that wi l l be used to aggregate the consequence with

BoniMorw, Gans, and Decktr 893

Figure 1: RUM's Three Layer Architecture

identical consequences derived from different rules.

B. The Inference Layer
1. Calculi Operations

For each calculus, four operations are defined in RUM's
Rule System: premise evaluation, conclusion detachment, con­
clusion aggregation, and source consensus. Each operation in
a calculus can be completely defined by a Triangular norm
and a negation operator (in logic any boolean expression can
be rewritten in terms of an intersection and complementation
operator). The four operations are defined as follows:

Premise evaluation: The premise evaluation operation de­
termines the degree to which all the clauses in the rule premise
have been satisfied by the matching wffs. Let bt and Bt indi­
cate the lower and upper bounds of the certainty of condition
i in the premise of a given rule. Then the aggregated premise
certainty range [b, B] is defined as

Conclusion Detachment: The conclusion detachment op-
eration indicates the certainty with which the conclusion can
be asserted, given the strength and appropriateness of the rule.
Let s and n be the lower bounds of the degree of sufficiency
and necessity, respectively, of the given rule, and let [b, B] be
the computed premise certainty range. Then the range
indicating the lower and upper bound for the certainty of the
conclusion inferred by such a rule, is defined as

The degrees of sufficiency and necessity, respectively,
indicate the amount of certainty with which the rule premise
implies its conclusion and vice versa. The sufficiency degree
is used with modus ponens to provide the lower bound of the
conclusion. The necessity degree is used with modus tollens
to obtain a lower bound for the complement of the conclu­
sion (which can be transformed into an upper bound for the
conclusion itself).

Conclusion aggregation: The conclusion aggregation op­
eration determines the consolidated degree to which the con­
clusion is believed if supported by more than one path in the
rule deduction graph, i.e., by more than one rule instance. It
is also possible to have various groups of deductive paths, i.e.,
various sets of rule instances, all supporting the same con­
clusion. Each group of deductive paths can have a distinct
conclusion aggregation operator associated with it. Let the
ranges indicate the certainty lower and upper bounds
of the same conclusion inferred by various rule instances be­
longing to the same group. Then, for each group of deductive
paths, the range [d, D] of the aggregated conclusion is defined
as

RUM distinguishes between rule instances generated from
the same rule and rule instances derived from different rules.
Rule instances generated from the same rule are aggregated
first, to take into account the normally large amount of re­
dundancy that such instances entail. Rule instances derived

894 REASONING

from different rules are subsequently aggregated taking into
account the knowledge about the presence or lack of positive
or negative correlation that characterizes the various rules.

Source Consensus: The source consensus operation re­
flects the fusion of the certainty measures of the same evi­
dence A provided by different sources. The evidence can be
an observed fact, or a deduced fact. In the former case, the
fusion occurs before the evidence is used as an input in the
deduction process. In the latter case, the fusion occurs after
the evidence has been aggregated by each group of deductive
paths. The source consensus operation reduces the ignorance
about the certainty of A, by producing an interval that is al­
ways smaller or equal to the smallest interval provided by any
of the information sources. If there is an inconsistency among
some of the sources, the resulting certainty intervals wil l be
disjoint, thus introducing a conflict into the aggregated re­
sult.
the certainty lower and upper bounds of the same conclu­
sion provided by different sources of information. The re­
sult obtained from fusing all the assertions
about A, is calculated by taking the intersection of the certainty
intervals:

C. The Control Layer
1. Calculi Selection

RUM's Rule System uses a set of T-norm-based calculi to
handle uncertain information. The calculus used by each rule
instance is inherited from the rule subclass. The calculus can
be modified through KEE's user interface or programmatically
(e.g., by an active value or a task, see Section 4.). Class
inheritance can also be used to modify the degree of sufficiency
and necessity of all the rule members of the same class.

The calculi selection process consists of two assignments.
The first assignment indicates the T-norm with which the
premise evaluation and the conclusion detachment wil l be com­
puted. Such an assignment is made for each rule and is passed
(through inheritance) to all rule instances derived from a rule.

The second assignment indicates the T-conorm (repre­
sented by its dual T-norm) with which the conclusion aggre­
gation will be computed. This assignment is made for each
subset of rule instances generated from different rules that as­
sert the same conclusion.

The characteristics of a T-norm will determine how it is
used. The T-norm assigned to each rule for premise eval­
uation and conclusion detachment wil l be a function of the
decision maker's attitude toward risk. The ordering of the
T-norms, which is identical to the ordering of parameter p
in the Schweizer and Sklar family of T-norms, reflects the
ordering from a conservative attitude to a non-
conservative one From the definition of the
calculi operations, we can see that T\ wil l generate the small­
est premise evaluation and the weakest conclusion detachment
(i.e., the widest uncertainty interval attached to the rule's con­
clusion.) T-norms generated by larger values of p wil l ex­
hibit less drastic behaviors and wil l produce nested intervals

with their detachment operations. wil l generate the largest
premise evaluation and the strongest conclusion detachment
(the smallest certainty interval).

For the second assignment, the T-norm that aggregates
the subsets of rule instances (derived from different rules and
asserting the same conclusion) will be a function of the lack
or presence of positive/negative correlation among the rules in
each subset. The ordering of the T-norms reflects the transi­
tion from the case of extreme negative correlation or mutual
exclusiveness through independence i t o the case of
extreme positive correlation or subsumption

In all the assignments, a set of selection rules wil l express
the meta-knowledge about the context (i.e, the task's relevance
to the decision maker and the subsets of deduction rules used to
solve that task, see Section 3.). The selection rules wil l select
the T-norms that better reflect the desired attitude toward risk
and the perceived amount of correlation to be used in such a
context.

2. Belief Revision
An initial implementation of the belief revision of uncer­

tain information is available in the control layer of RUM's
Rule System. For any conclusion made by a rule, the be­
lief revision mechanism monitors the changes in the certainty
measures of the wffs that constitute the conclusion's support
and the changes in the calculus used to compute the cached
conclusion certainty measure. Validity flags are inexpensively
propagated through the rule deduction graph, which includes
both wffs and rules. Five flag values are used: Good, guar­
anteeing validity; Bad (level i), indicating unreliability prop­
agated to the ith level; Inconsistent, indicating conflict; Not
Applicable, indicating that the rule context is not active; and
Ignorant, indicating that the information is too vague to be
useful.

The belief revision system offers both backward and for­
ward processing. A lazy evaluation, running in backward
mode, recomputes the certainty measures of the modified wffs
that are required to answer a given query. This mode (called
reasoning under pressure) is used when the system or the user
decide that they are dealing with time-critical tasks. Breadth-
first, forward mode processing recomputes the certainty mea­
sures of the modified wffs, attempting to restore the integrity
of the rule deduction graph. This mode is used by the system
when time is not critical.

3. Rule Firing Control via Context Activation
A rule context is defined as a set of conditions that must

be satisfied before the rule can be considered for premise eval­
uation. A user-definable threshold can be attached to each rule
context, either by local definition or by inheritance from a rule
class. The semantics of a context C attached to an inference
rule (establishing the weak logical equivalence between A and
B) is given by the following expression:

It is important to note that the inference symbol in
the production rule is interpreted as a (weak) material

Bonlssone, Gans, and Decker 895

implication operator in multiple-valued logics. The value s
is the lower bound of the degree of sufficiency of the impli­
cation. This is different from the idea of conditioning, i.e.,

The symbol in the production rule is in­
terpreted as a (weak) logical equivalence operator in multiple-
valued logics, where s and n are the lower bounds of suffi­
ciency and necessity, respectively. This (weak) logical equiv­
alence is an if-and-only-if rule that could be decomposed in
the following two rules: (equivalent to

RUM's rules are of the type
where C indicates the context of the rule and -> represents a
strong material implication.

The context mechanism provides the following features:
1. By activating/deactivating subsets of the KB, it limits the

number of rules that will be considered relevant at any
given time, thus increasing the overall system efficiency.

2. By only considering the rules relevant to a given situa­
tion, it allows the knowledge engineer to effectively use
the necessary conditions in the rule's premise. It is now
possible to distinguish between the failure of a necessary
test (described in the premise) and the failure of the rule's
applicability (traditionally described by other clauses in
the same premise and now explicitly represented in the
context).

3. By using predicates on the control-level wffs, it provides
the required programmability for defining flexible con­
trol strategies, such as causing sequences of rules to be
executed, firing default rules, ordering and handling time-
dependent information, etc.

4. By using hierarchical contexts, an organizing principle is
created for easing knowledge acquisition.

4. Rule Tracing
A user-definable threshold pair can be attached to each

rule, either by local definition or by inheritance from a rule
class. The threshold pair defines a lower and upper bound
of certainty to be compared with the the certainty interval of
the detached conclusion. If either threshold is exceeded, the
firing mechanism will execute any user-defined LISP function
attached to the rule, before the conclusion is detached. This
property will enable the user to build any desired tracing fa­
cilities, or to create markers for use by the contexts of other
rules.

IV. Testing RUM
RUM's capabilities were first tested in October 1986, as part
of an experiment in simulated naval situation assessment. Fig­
ure 2 illustrates the configuration of the components used in
such experiment.

A. An Object-based Simulation Environment
The simulation of the scenario was implemented in LOTTA,
an object-oriented symbolic battle management simulator that

maintains time-varying situations in a multi-player antagonis­
tic game [Bonissone et al.t 1987]. A development environment
centered around LOTTA was the testbed used to test the new
techniques in reasoning with uncertainty. The development
environment is composed of four basic modules: the Window
Manager, a map-like window-oriented user interface; the An­
notation System, an intelligent database for LOTTA; LOTTA,
the simulator that executes commands and maintains internal
states; and KEELA, (KEE to LottA interface) the link between
LOTTA and RUM.

B. Information Fusion and Situation Assess­
ment

The situation assessment problem is composed of several tasks
in which uncertainty pervades both the input data and the
knowledge bases. Given a platform (aircraft, ship, tank) in
a potentially hostile environment, the process of situation as­
sessment consists of the following tasks:

• Sensor data must be collected from various sources and
described as reports

• Time-stamped sensor reports must be consolidated into
tracks (each track is the trace of an object followed by a
given sensor)

• Tracks associated to the same object must be fused into
a platform

• The detected platform must be classified and identified
(by class and type)

• Node organization (formation of the identified platforms),
use of special equipment, and maneuvering must be rec­
ognized

• Using the knowledge of the opponent's doctrines and
rules of engagement, the recognized formation and ob­
served use of special equipment must be explained by
a probable intent, which is then translated into a threat
assessment.

The first four tasks constitute what is generally known as
information fusion, and they define the scope of the simplified
example described in the next section.

C. A Simplified Example in Information Fusion
In one experiment, a modified version of the naval situation
assessment scenario used by NOSC to test STAMMER and
STAMMER2 [McCall et al., 1979, J.P. Ferranti, 1981] was
created. In it, a single missile cruiser faced three platforms that
were either patrol hydrofoils or merchant ships. The cruiser's
task was to track, correlate, and classify each detected object.
Both passive and active sensors on the cruiser were run twice,
generating sensor reports which were grouped into tracks for
each sensor. Plausible correlations were then made between
tracks to group them into detected platforms. Using the RUM
knowledge base (see the example in the next section) on this
information, the platforms were correctly identified.

896 REASONING

Figure 2: Architecture for Simulated Naval Situation Assessment

1. Example of a RUM rule

The RUM knowledge base (KB) used in this example is
composed of approximately forty rules, each of which can be
instantiated by new sensor reports, new tracks, or new plat­
forms. A representative sample of such a KB is provided by
the following rule.

English Version of Rule-550 (identifying submarines):
Assuming that sonar was used to generate a sensor report
(which together with other reports generated by the same sen­
sor has been attached to a track associated with a platform),
if the detected platform has a low noise emission, and is lo­
cated at a depth of at least twenty meters, then it is extremely
likely that the detected platform is a submarine. Otherwise, the
detected platform may not be a submarine.

RUM's Version of the same rule:

V. Remarks and Conclusions
We have implemented a layered architecture for reasoning with
uncertainty. In the representation layer we have used frame-
like data structures attached to each variable. Each frame con­
tains a list of the values that were considered for the variable.

For each of these values, RUM maintains uncertainty infor­
mation, such as the lower and upper bounds, and uncertainty
meta-information, such as a measure of ignorance, a measure
of consistency, and the evidence source.

In the inference layer, we have used T-norm based calculi
that are truth functional and associative. The truth function­
ality of the calculi entails low computational complexity and
relatively inexpensive belief revision. The associativity of the
calculi entails recursive problem decomposition. The formu­
lae for detachment have been derived from multiple-valued
logics, by interpreting the inference symbol of the production
rules as material implication, rather than conditioning. Instead
of adopting a unique calculus (based on global assumptions)
and uniformly using it in the knowledge base, we can select
any of the five T-norm based calculi and locally apply them
to any given rule subset.

In the control layer, we have implemented the capabil­
ities of selecting the appropriate calculus based on the cal­
culi characteristics (context independent information) and on
the available meta-information describing the context and the
user's attitude toward risk (context dependent information).
We have also implemented a belief revision mechanism that
can be frugal for time-critical situations (operating in a depth-
first backward mode) or exhaustive (operating in a breadth-first
forward mode). Rule firing is controlled via a context activa­
tion mechanism that reduces the number of rules that wi l l be
considered relevant at any given time.

Future work on RUM wil l focus on extensions of the
control layer capabilities. Specifically, we will define a meta­
language for describing the policies (i.e., meta-rules) for cal-

Bonissone, Gans, and Dtcker 897

cuius selection, ignorance reduction, and conflict removal; we
wil l also extend the meta-language to enable the use of the
context mechanism from the meta-rules. Finally, we wil l start
addressing real-time requirements by incorporating the time­
liness of information as another constraint in the control of
reasoning represented in the control layer.

References

[1986] KEE Software Development System User's Manual. In-
tellicorp, Mountain View, CA. 94040-2216, KEE Version
3.0 edition, July 1986. Document Number 3.0-U- l .

[Beyth-Marom, 1982] R. Beyth-Marom. How probable is
probable? a numerical taxonomy translation of verbal
probability expressions. Journal of Forecasting, 1:257-
269, 1982.

[Bonissone, 1982] P.P. Bonissone. A fuzzy sets based linguis­
tic approach: theory and applications. In M.M. Gupta
and E. Sanchez, editors, Approximate Reasoning in Deci­
sion Analysis, pages 329-339, North Holland, New York,
1982.

[Bonissone, 1986] PP. Bonissone. Summarizing and propa­
gating uncertain information with triangular norms. In
L. S. Baumann, editor, Proceedings of the Expert Sys­
tems Workshop, pages 62-71, Defense Advanced Re­
search Projects Agency, April 1986. To appear in the
International Journal of Approximate Reasoning, North-
Holland, 1987.

[Bonissone and Decker, 1986] P.P. Bonissone and K.S.
Decker. Selecting uncertainty calculi and granularity: an
experiment in trading-off precision and complexity. In
L. N. Karnak and J. F. Lemmer, editors, Uncertainty in
Artificial Intelligence, North Holland, 1986. Also GE
Technical Report 85-CRD-171.

[Bonissone et al., 1987] PP. Bonissone, J.K. Aragones, and
K.S. Decker. Lotta: an object based simulator for rea­
soning in antagonistic situations. 1987. GE Corporate
Research & Development Working Paper.

[Bonissone, 1987] P. P. Bonissone. Plausible reasoning: cop­
ing with uncertainty in expert systems. In S. C. Shapiro,
editor, Encyclopedia of Artificial Intelligence, John Wiley
and Sons, 1987. Also GE Technical Report 86-CRD-53.

[Cohen and Grinberg, 1983a] P.R. Cohen and M R . Grinberg.
A framework for heuristics reasoning about uncertainty.
In Proceedings of the Eighth International Joint Confer­
ence on Artificial Intelligence (IJCAI-83), pages 355-357,
Karlsruhe, West Germany, 1983.

[Cohen and Grinberg, 1983b] PR. Cohen and M R . Grinberg.
A theory of heuristics reasoning about uncertainty. AI
Magazine, 4(2): 17-23, 1983.

[Doyle, 1983] J. Doyle. Methodological simplicity in expert
system construction: the case of judgements and reasoned
assumptions. AI Magazine, 4(2):39-43, Summer 1983.

[Genesereth, 1982] M.R. Genesereth. An Overview of MRS
for AI Experts, memo HPP-82-27, Stanford Heuristic
Programming Project, Stanford University, 1982.

[JP. Ferranti, 1981] Jr. J.P. Ferranti. Evaluation of the ar­
tificial intelligence program STAMMER2 in the tactical
situation assessment problem. Technical Report #AD-
A101101, National Technical Information Service, March
1981.

[McCall et aL, 1979] D.C. McCall, P.H. Morris, D.F. Kibler,
and R.J. Bechtel. STAMMER2 production system for
tactical situation assessment. Technical Report #AD-
A084038, National Technical Information Service, Oc­
tober 1979.

[Schweizer and Sklar, 1963] B. Schweizer and A. Sklar. As­
sociative functions and abstract semi-groups. Publica-
tiones Mathematicae Debrecen, 10:69-81, 1963.

[Shafer, 1976] G. Shafer. A Mathematical Theory of Evi­
dence. Princeton University Press, Princeton, New Jer­
sey, 1976.

098 REASONING

