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ABSTRACT 

In many disciplines, the scientist uses the shape of an 
entity to infer processes that have acted upon the entity. We 
develop inference rules by which the curvature extrema of a 
shape can be used to infer the precise trajectories of processes 
that have created the shape. A formal grammar is also ela­
borated by which, given two views of the same entity at two 
developmental stages, the scientist can infer the processes that 
acted in between the two stages. 

I . INTRODUCTION. 

In many disciplines, such as astrophysics, developmental 
biology, medicine, geography, meteorology, etc., the shape of 
some enti ty, such as an embryo, tumor, or cloud, is used by the 
scientist to infer processes that have acted upon the entity. In 
this paper, we present a set of inference rules by which the cur­
vature extrema of a shape can be used to infer the significant 
processes that have determined the shape. We also develop a for­
mal grammar by which a scientist, who has two views of an 
entity at two developmental stages, can infer the processes that 
produced the second stage from the first. 

0 . T W O BASIC RULES 

We begin by presenting two simple rules by which the 
curvature extrema of an individual shape can be used to infer 
significant processes that have acted upon that shape. 
Throughout the paper, we w i l l assume that the input to the 
rules are shapes represented in the form of smooth planar out­
lines. However, an equivalent analysis applies to three-
dimensional input, as shown in Leyton (1987c). 

The inference, f rom curvature extrema to processes, w i l l be 
seen as requiring two stages: 

cu rva tu re ex t rema -»symmet ry axes -»processes 

Section ELI deals w i t h the first stage, and section II.2 deals w i t h 
the second stage. 

IL1. C u r v a t u r e Ex t rema -»Symmet ry Axes 

As just stated, central to the development of our process 
inference rules w i l l be the use of a symmetry analysis. 

Observe first, however, that, given two segments of a 
curve, it is rarely the case that a straight axis reflects one seg­
ment on to the other. Nevertheless, it may be possible to define 
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symmetry in a differential sense. Consider the two bold curves 
c, and c2, in Fig la . Although there is no mirror that reflects 
one curve onto the other, a mirror along line QO reflects the 
tangent line, at A, onto the tangent line, at B. It turns out that 
the existence of such a symmetry is equivalent to the existence 
of a circle that is tangential at both A and B. (The mirror w i l l 
contain the circle center O.) 

Now drag the circle along the two curves, whi le always 
maintaining the double-touching property. As in Leyton 
(1987b), one can define a differential symmetry axis to be the 
trajectory of some midpoint associated w i t h the circle. For 
example, the Symmetric Axis Transform (SAT) of Blum (1973) 
defines the symmetry axis to be the locus of circle-centers O. 
This w i l l give some curved axis running between the two 
curves c 1 and c 2. Again, the Smooth Local Symmetry (SLS) of 
Brady (1983) defines the symmetry axis to be the locus of chord 
midpoints P. (In the present case, this w i l l produce a sl ightly 
different axis from the SAT.) Alternatively, we shall propose 
here a new symmetry analysis in which the symmetry axis is 
the trajectory of the midpoint Q of the arc AB, as the circle 
moves. As shown in Leyton (1987c), this analysis has remark­
ably different properties f rom the other two analyses and these 
properties make the analysis particularly appropriate for the 
inference of processes. Because of its appropriateness to process-
inference, the new analysis w i l l be called Process Inferring 
Symmetry Analysis (P1SA) We shall see several examples of 
applying PISA, later. 

It is now possible to state a result that is crucial to the 
entire paper. It is a theorem that was proposed and proved in 
Leyton (1987b), and it relates the curvature extrema of a smooth 
planar curve to the curve's symmetry structure: 

Fig 1. (a) The definition of differential symmetry, lb) 
An i l lustration of the Symmetry-Curvature Duality 
Theorem. 
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SYMMETRY-CURVATURE DUALITY THEOREM (Ley-
ton, 1987b): Any segment of a smooth planar curve, bounded by 
two consecutive curvature extrema of the same type (either both 
maxima or both minima) has a unique differential symmetry 
axis (under SAT, SLS, or PISA) and this axis terminates at the 
curvature extremum of the opposite type (minimum or max­
imum, respectively). 

Fig lb illustrates the theorem. The two points labeled m" 
are t w o consecutive extrema of the same type ( ie . they bend in 
the same direction relative to the curve). The theorem states 
that, under any of the alternative differential symmetry ana­
lyses, there is one and only one symmetry axis. Furthermore, 
this axis terminates at the extremum M : of the opposite type 
(this extremum bends in the opposite direction). 

The theorem w i l l be our first inference rule: It assigns, to 
each extremum, a unique symmetry axis that terminates at that 
extremum. 

ll2. S y m m e t r y Axes -»Processes 

The value, to our argument, of identifying symmetry axes, 
is given by the fo l lowing crucial principle which was proposed 
and extensively corroborated in Ley ton (1984, 1985, 1986a, 
1986b, 1986c, 1987a) 

INTERACTION PRINCIPLE (Leyton, 1984): The symmetry 
axes of a perceptual organization are interpreted as the princi­
pal directions along which processes are most likely to act or 
have acted. 

The basis for this proposal is as fol lows: It was argued in Leyton 
(1986b) that if a transformation, acting on an organization is 
one in which symmetry axes become invariant lines (eigen-
spaces) under the transformation, then the transformation w i l l 
tend to preserve the symmetries; i.e. be structure-preserving on 
the organization. Two further stages of argument are then 
needed to obtain the above principle: ( l ) invariant lines are 
interpreted as principal directions of action, and (2) transforma 
tions that are most structure-preserving tend to be understood as 
most l ike ly . The above principle has been psychologically vali 
dated on simple and complex shape, as wel l as motion perception 
(Leyton, 1985, 1986b, 1986c, 1987a). 

The Interaction Principle can be regarded as an inference 
rule. It claims that a symmetry axis is interpreted as the princi­
pal direction of a hypothesized process. In fact, since we are con­
cerned, in the present paper, w i t h the inference of processes that 
have already taken place, the principle implies that a symmetry 
axis is interpreted as a record of a process. 

n.3. Cu rva tu re Ex t rema -» Processes 

Putting together the two inference rules given thus far, we 
obtain this conclusion: 

Each cu rva tu re ex t r emum impl ies a process 
whose t race is the unique s y m m e t r y axis 

associated w i t h , and t e r m i n a t i n g at , t h a t ex t r emum 

To see that our two inference rules yield highly appropri­
ate process-analyses, let us consider al l possible shapes that have 
eight extrema or less. Drawings of a l l such shapes have been 
provided by Richards, Koenderink & Hoffman (1985). In Fig 2. 
we have taken al l these drawings and applied our two inference 

rules. The lines w i t h arrows represent the process-records 
inferred by our rules. That is, the lines are the directions of 
growth, indentation, squashing, etc, along which the deforma­
tions are supposed to have happened. As can readily be seen, 
these process-records correspond strongly w i t h one's intuit ion as 
to how the shapes were formed. 

Three comments are in order 

(1) The letters on each shape denote the curvature 
extrema. as fol lows: Let M and m denote a local maximum and 
local min imum respectively, and + and - denote positive and 
negative curvature repectively. Thus there are four types of 
extrema: M : m , m : and M . 

(2) The symmetry analysis, used in Fig 2, was PISA, the 
new analysis introduced in section I I . l . This is because, as 
shown in Leyton (1987c), the SAT and SLS cannot correctly 
infer squashing and indentation, whereas PISA can. 

(3) Fig 2 is stratified into levels according to number of 
extrema. The only three levels that can exist, w i t h up to eight 
extrema, are: Level 1, shapes w i t h 4 extrema; Level I I , shapes 
w i t h 6 extrema; Level I I I , shapes w i t h 8 extrema. 

l l l . T H E PROCESS G R A M M A R 

The above analysis presented inference rules by which a 
single shape can be given a process-description. However, in 
many observational situations, the scientist has two views of an 
object at t w o developmental stages. The scientist attempts to 
infer the processes that produced the second stage from the first. 
It is this problem that we now attempt to formalize and solve. 
We shall develop a process-grammar such that, given two 
shapes, one shape is expressed as the extrapolation of processes 
inferred in the other by the above inference rules. 

The operations of the grammar are specified purely in 
terms of modifications at extrema, but such that these 
modifications correspond to process-extrapolations. Physically 
natural extrapolations have two forms, continuations and bifur 
cations, which we now consider in turn. 

Con t inua t ions . 

The continuation of a process at a M or m extremum 
does not change the extremum type, as can be seen by looking at 
any of the M and m extrema in Fig 2. However, continuation 
at a m or M does change the type, as we shall now see: 

(1) C o n t i n u a t i o n at m (labeled C m ) yields m, as is 
il lustrated by continuing the upward m+ process at the bottom 
of shape PI (Fig 2) and thus obtaining shape P2. This form of 
extrapolation is f u l l y specified by the fo l lowing rewr i t e rule 
expressed purely in terms of the curvature extrema along the 
bottoms of the respective shapes: 

Cm':m - O m O 

(where each 0 represents a curvature zero, indicated by a dot on 
the curve in P2). 

(2) C o n t i n u a t i o n at M (labeled CM ) yields M \ as is 
il lustrated by continuing the upward M process in shape T3 
(Fig 2) and thus obtaining the top protruding M4 process in T4. 
The rule is specified as: 

CM :M~ *OM*0 
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Bifurcations: 
A bifurcation has the effect of taking an extremum (max­

imum or minimum) and pulling it apart into two copies of 
itself. Between the copies, an extremum of the opposite type 
(minimum or maximum, respectively) is unavoidably intro­
duced. In the smallest such non-trivial change, the introduced 
extremum has the same sign as the splitting extremum. Logi­
cally, there are four such primitive bifurcations, as follows. Al l 
other bifurcations are derivable from these together with the 
above two continuation operations. 

(3) Bifurcation at M' (labeled BM*) must be given by 
the re-write rule 

(4) Bifurcation at m (labeled Bm~) must be given by 
the re-write rule 

Bm " : m " -»m ~M ~m" 

An illustration is the following. Consider the indenting process 
at the top of T2 (in Fig 2). If the process bifurcates, one branch 
goes to the left and the other to the right. The resulting shape is 
02 (in Fig 2). 

(5) Bifurcation at m* (labeled Bm*) must be given by 
the re-write rule 

An illustration is the following. Consider the protruding pro­
cess at the top of T4 (in Fig 2). If the process bifurcates, one 
branch goes to the left and the other to the right The resulting 
shape has been drawn on its side as Q6 in Fig 2. 

and is simply the introduction of a protrusion. An illustration 
is the transition from PI to Tl (in Fig 2), i.e. a protrusion has 
been introduced at the top of T l . 

LEVEL I 
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(6) B i f u r c a t i o n at M (labeled BM ) must be given by 
the re-write rule 

(1) One particular process turns out to be crucial to the 
entire development. It is the internal process represented 
by the bold upward arrow in the first shape of Fig 4 (the 
arrow terminating at M ). 

(2) This continues upward and creates the protrusion in 
the second shape of Fig 4. 

(3) This same process then bifurcates, creating the lobe in 
the th i rd shape of Fig 4, where a downward squashing 
process has also been introduced from above. 

(4) The new squashing process continues, creating the top 
indentation shown in the fourth shape of Fig 4. 

As the reader can see, the grammar, although derived formal ly, 
provides an intui t ively powerful process explanation. 

and is simply the introduction of an indentation. An 
il lustration is the transition from T3 to Q3 (in Fig 2>, i * . an 
extra indentation has been introduced in the bottom of the 
lagoon in Q3. 

I V . T H E POWER OF T H E G R A M M A R 

The first remarkable thing to emerge from the above 
analysis is that a grammar of only six operations generates all 
process extrapolations; and, furthermore, that the grammar suc­
cessfully encodes extrapolations purely in terms of re-write 
rules on extrema. 

Let us illustrate also the intui t ive power of the grammar 
to yield process-explanations. Let us choose two arbitrary 
shapes, for example, the pair shown in Fig 3. The assumption is 
that the two shapes are two stages in the development of the 
same object; e.g. a tumor, cloud, island, embryo, etc. We now 
show that the process-grammar gives a compelling account of 
the intervening development. 

Using a blurr ing heuristic, described in Ley ton (1987c), one 
can identi fy the intervening succession of shape-outlines. Let us 
suppose that the succession is T6 -» T5 -»Q7 -» Q5, as shown in 
Fig 4. However, a succession of outlines is not a process-
explanation. One requires the grammar to provide the interven­
ing process-history. The grammar does this by the successive 
transformation of process-diagrams. In particular, for Fig 4, the 
grammar generates the successive process-structures by the 
sequence of operations, CM • BM + • Cm \ The operation-
sequence is the process explanation for the intervening develop­
ment The explanation can be expressed as fol lows: 
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4. The history intervening between the two shapes in Fig 3. 

774 PERCEPTION 


