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A b s t r a c t : 
Many problems in early vision are i l l posed1. Edge 

detection is a typical example. This paper applies regular-
ization techniques to the problem of edge detection. We 
derive an optimal filter for edge detection with a size con­
trolled by the regularization parameter and compare it to 
the Gaussian filter. A formula relating the signal-to-noise 
ratio to the parameter is derived from regularization 
analysis, showing that the scale of the filter is a function 
of the signal-to-noise ratio. We also discuss the method 
of Generalized Cross Validation for obtaining the optimal 
filter scale. Finally, we use our framework to explain two 
perceptual phenomena: coarsely quantized images becom­
ing recognizable by either blurring or adding noise. 

1. In t roduct ion 
If edge detection is considered as a problem of numerical 
differentiation, the first step is to regularize it. Standard 
regularization techniques suggest the use of Gaussian-like 
filters before differentiation2,4. In this paper, we address 
the important issue of how to estimate the optimal scale 
of the filter, that is, the amount of smoothing required by 
the given image data. 

2. Framework for Edge Detect ion 

Regularization Techniques for Ill-Posed Problems 
A problem 

(2.1) 

for which the class 5 of solutions z, given A and u, is not 
compact (changes on the right-hand side of the equation 
can take u outside the set AS) is called ill-posed. The 
approach suggested by Tikhonov1 to deal with ill-posed 
problems is to construct approximate solutions of equation 
(2.1) that are stable under small changes in the data u. 
If the right-hand side of equation (2.1) is known only ap­
proximately, we have where 

is noise. Then, 

since However, this function 
may not exist since the last integral may diverge. Fur­
thermore, even if this ratio does have an inverse Fourier 
transform, the deviation from zero ( in the 
can be arbitrarily large, and, thus we cannot think of the 
exact solution of equation (2.1) as an approximate solution 
of the equation with approximate right-hand side. 

Finding edges in an image is in general an ill-posed 
problem4, since it involves taking an appropriate deriva­
tive of noisy data (notice that we do not specify which 
derivative operator should be used: it may be a direc­
tional derivative4 or any other desirable differential oper­
ator). The differentiation of is ill-posed, since it can 
be viewed as a solution of equation 2.1 for the operator A 
of the form 

where h(x) is the step function. As described by Rheinsch' 
and by Poggio and Torre3, this problem can be regularized 
by smoothing the data before taking derivatives. The idea 
is to consider the regularized solution to equation (2.1), 
wi th A being the imaging operator, such that z is suffi­
ciently well-behaved for numerical differentiation. 
To approximate a solution of equation (2.1) one takes the 
solution of a different problem, that of minimizing the 
functional g i ven bv. 

(2.3) 

that is close to the solution of the original problem for 
small values of the error in the data. Tikhonov1 proved 
that for the case of one dimensional image data. Here 
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5. 

To estimate the noise we use a technique .developed by 
Voorhees10. First, the gradient of the image is computed. 
A Rayleigh distribution is then fitted to the histogram of 
the norm of the gradient and the noise parameters are es­
timated. The signal power is obtained from the standard 
deviation of the histogram of the image. Wi th this method 
the program estimates the signal-to-noise ratio from the 
image data. This ratio gives the parameter from rela­
tions such as equation 4.1. The results are shown in figures 
3 and 4. 

Figure S. Zero-crossings using Gaussian filter and 
optimal-filter with the same width for the second-derivative 
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6. Two Perceptual Phenomena 

6 . 1 . Coarse quant ized images can be be t te r 
recognized when noise is added 

We first discuss the perceptual phenomena of improved 
recognizability of coarse quantized images when noise is 
added5. Consider the image of figure 4a with 320 by 384 
pixels. A coarsely quantized version of it is shown in figure 
4c. The optimal filter for figure 4c, estimated as explained 
above, turns out to have a small scale of pixels cor­
responding to very low noise The sign of 
the zero-crossings (figure 4d) do not easily reveal a face. 
Gaussian white noise with standard deviation 70 is the 
added to figure 4c (see figure 4e), making recognition eas­
ier. Estimation of the optimal scale gives now a width 
of pixels. The corresponding zero-crossing contours 
reveal the face in a much better way. These results may 
shed some light on what the visual system may be do­
ing. Harmon and Julesz6 claim that for the quantized 
image "high frequencies introduced by quantized blocking 
mask the lower spatial frequencies which convey informa­
tion about the face, preventing recognition". 

In our framework two process determine recognizability of 
the face. The first process consists of the estimation of the 
signal-to-noise ratio The second step is to use 

to set the optimal for then computing an appro­
priate derivative and corresponding "edges". In the case 
of the quantized image the ratio is large. is then 
small, which implies that a large bandwidth channel ( in 
the spatial-frequency domain) is selected. The zero cross­
ings for this channels do not easily allow face recognition 
because they mostly capture the box outlines. For noisy 
quantized images the ratio is small and correspond­
ingly is large. This imply a filter wi th small bandwidth. 
In this case the small bandwidth filter suppresses the noise 
and, as a side effect, also the high frequency outlines of the 
boxes. 
This explanation is not in contrast with the one given by 
Canny7 or by Morrone, Burr and Ross when they claim 
"that added noise (more high frequencies) destroys the 
propensity to organize the image according to its spurious 
high-frequency structure, . . . " , but is more precise. 
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6.2. I m p r o v e d recogn izab i l i t y of coarse 
quan t i zed images by b l u r r i n g 

Blurring coarsely quantized images also improve recognition6. 
The explanation for this second perceptual phenomena is 
natural in our model. Blurring is equivalent to using an 
effectively larger filter for edge detection. This has the 
effect of suppressing the spurious high frequency edges in­
troduced by coarse quantization.* 

7. The Me thod of Generalized Cross 
Val idat ion and Regularizat ion 

When So/N0 cannot be directly estimated, it is natural 
to consider the method of Generalized Cross Validation 

The GCV method states that the optimal value 
of A, can be obtained by minimizing the functional (here 
in one dimension) 

(7.3) 

where 

Assuming the filter to be Gaussian-like, using the optimal-
filter would be computationally more expensive, equation 
7.3 reduces to 

The method is computationally expensive but intrinsically 
parallel. We have implemented it on Connection Machine. 
We tested this method on different images including the 
ones in figure 4 wi th various amounts of noise. The im-
portant result was the consistence of the GCV with the 
results obtained by a method described earlier. Slices of 
the image 80 pixels require 20 miliseconds for computing 

Using Newton's method to find the minimun, the 
algorithm converges after 10 intensions of There­
fore the GCV method takes in this case 0.2 seconds to find 
the optimal a. 

8. Conclusion 

We have derived rigorously the optimal way of filtering im­
ages prior to numerical differentiation. We also obtained 
the precise relation between the scale of the filter and 
the signal-to-noise ratio of the image. Some biological im­
plications were also considered. In particular we suggested 
that humans can estimate the signal-to-noise ratio in the 
image from which the scale is computed. Only channels 
channels wi th the appropriate spatial-frequency band 

are then used, the others being inhibited. In this frame-
work it is possible to understand the perceptual phenom­
ena of improved recognizability of coarsely quantized im­
age when noise is added. When the signal-to-noise ratio 
is large, the estimated is small and the associated zero-
crossings do not provide good information for recognition. 
When is smaller, the estimated A is larger: the zero-
crossings provide then a better information for recognizing 
the face in the image. When the signal-to-noise ratio can­
not be estimated,it is possible to use the method of Cross 
Validation for estimating the optimal 
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Notice that blurring the quantized noisy image has the effect 
of increasing the estimate of signal-to-noise ratio, thereby re­
ducing 02 to a value close to the one obtained for the quan­
tized image. 

4. 
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