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Abst rac t b 

n 
We propose an algorithm to recover three-dimensional shape i.e. a 
surface orientation and relative depth from a single segmented ° 
image of scenes containing opaque curved objects bounded by i: 
piecewise smooth surfaces. It is assumed that the surfaces have s 
no markings or texture and that the reflectance map E = R ( n ) is L 
known. Solutions for simpler versions of this problem have been t 
presented by Sugihara for polyhedra, and by Horn et al for smooth c 
surface patches. d 

We first analyze the constraints f rom the line drawing and e 
the image brightness values on the faces, edges and vertices in the 
scene. For a face this is done by Horn's image irradiance equation. w 
To set up the other constraints we need to know line labels-which b 
can be found using the algorithm developed in [Malik '85]. At a c 
l imb, the direction of the surface normal is known directly. We c 
develop a variational formulation of the constraints at an edge- j 
both from the known direction of the image curve correspond- ( 
ing to the edge and the shading. The associated Euler-Lagrange e 
equation completely captures the local information. At a vertex, ( 
the constraints are modelled by a set of non-linear equations. An 
algorithm has been developed to solve this system of constraints, i 

£ 

1 In t roduc t i on c 

In this paper, we study the problem of recovering the three-
dimensional shape of the visible surfaces in a scene from a single 
two-dimensional image. We restrict our attention to scenes com­
posed of opaque solid objects bounded by piecewise smooth sur­
faces wi th no markings or texture on them. By three-dimensional 
shape we mean a map of surface normal vectors—or equivalently 
relative depth—along the lines of Marr 's 2 1/2D sketch, Horn's nee­
dle diagram, or Barrow and Tennenbaum's intrinsic images. 

The two sources of information about 3-D shape in a seg­
mented image of the class of scenes permitted by us are (a) the line 
drawing, and (b) the pixel brightness values. Both have been the 
subject of considerable research in computational vision. Work 
on line drawing interpretation of scenes containing curved objects 
has been most successful in qualitative characterization, e.g., in 
terms of line labels [8] or sign of gaussian curvature [6]. At tempts 
[1] have also been made to obtain numerical surface orientation 
information by making additional assumptions. 

Use of pixel brightness values in a single smooth surface patch 
has been the theme of the shape-from-shading work of Horn and 
his colleagues [5], [2]. Here the goal has been to solve the im­
age irradiance equation-an equation relating surface orientation 
to brightness-by supplying the surface normal direction along the 

boundary of the patch. It is usually assumed that the reflectance 
map R(n) , which specifies the radiance of a surface patch as 
a function of its orientation, is known. For the canonical case 
of lambertian surfaces i l luminated by a point l ight source, this 
implies knowing the l ight source direction. Three-dimensional 
shape recovery is possible if the patch happens to be bounded by 
limbs (called occluding contours by some authors) which makes 
the boundary surface normal calculation easy. No use is made 
of other kinds of lines e.g. projections of edges(tangent plane 
discontinuities). Consequently the approach cannot be directly 
employed on images of general piecewise smooth curved objects. 

The question which can then be posed is—are there any schemes 
which t ry to exploit all the information in a segmented image, i.e., 
both line drawing and shading constraints, in order to recover 
quantitative 3-D shape. This has been done for the special case 
of polyhedra by Sugihara [12]. For scenes containing curved ob­
jects, the problem is significantly harder and Sugihara's approach 
does not have a natural generalization. To the best of our knowl­
edge there was no method for 3-D shape recovery for the class of 
curved objects bounded by piecewise smooth surfaces. 

In this paper, we develop such a method. The scheme builds 
upon, and exploits, past work on line drawing interpretation— 
specifically the line labelling work of Mal ik [8], [9],—and the work 
of Horn and his colleagues on shape-from-shading. A more de­
tailed account of this scheme can be found in [10]. 

2 Constraints f rom a l ine drawing 

In order to study the constraints imposed by a line drawing on 
the shape of the scene, it is convenient first to obtain a qualitative 
characterization of each line. This is done by associating wi th it 
a label f rom the set { + , - , « - , - ► , ♦ - « - , - * - > } . The first four of 
these labels denote edges which correspond in the scene to the in ­
tersections of surfaces w i th distinct tangent planes. These labels 
have the usual significance as in the Huffman-Clowes label set 
for polyhedra. The { ♦ - « - , - * - ► } labels denote limbs which corre-
spond to curves along which the surface curves smoothly around 
to occlude itself. As one walks in the direction of the twin arrows 
the surface lies to the right. See Figure 1 for an example. 

For curved objects the label can change along a line as can be 
seen on edge AB in Figure 2 (section 3.2). We therefore need to 
distinguish between two different senses of line labelling. A dense 
labelling is a function which maps the set of all points on curves in 
the drawing into the set of labels. The dense labelling problem is 
to find all the dense labellings of a drawing which can correspond 
to a projection of some scene. Currently no algorithm is known for 
finding the dense labelling of a line drawing of curved objects using 
only the information available in a line drawing. In the context of 

734 PERCEPTION 



Figure 2, it means that there is no algorithm for exactly locating 
X, the point of transit ion from convex to occluding. 

Alternatively, we could restrict our attention to sufficiently 
small neighborhoods of the junctions of the line drawing. For 
each line segment (between junctions) we now have to specify only 
two labels-one at each end. Of the 62 n combinatorially possible 
label assignments to the n lines in a drawing only a small subset 
correspond to physically possible scenes. We refer to these as legal 
sparse labelltngs. The determination of all legal sparse labellings 
of a particular line drawing is the sparse labelling problem. Noto 
that the 6et of legal sparse labellings is always a finite set (usually 
small). 

The sparse labelling problem has been tackled successfully- by 
Hurfman[4] and Clowes [3] for tr ihedral objects, by Mackworth [7] 
and Sugihara [12] for arbitrary polyhedra, and by Mal ik [8], [9] 
for curved objects. 

Line labelling is important precisely because lines wi th differ­
ent labels correspond to different types of constraints. At l imbs 
one can determine the surface orientation uniquely. It can be 
shown [ l ] , [5] that n, the unit surface normal, lies in the image 
plane and is in the direction of the outward point ing unit 
vector in the image plane drawn perpendicular to the projection 
of the l imb. See Figure 1. 

At an edge, the constraint is weaker. Let e be the unit tangent 
vector to the edge at a point, and let n1 and n2 be the unit surface 
normals to the tangent planes to the two faces and at the 
point. Let e be oriented such that when one walks on the edge 
in the direction of , the face is to the left (see Figure 1). 
Now e is perpendicular to n1 because e lies in the tangent plane 
to the f a c e S i m i l a r l y e is perpendicular to n2. Therefore e 
is parallel to Similarly. We do not know the vector e, but from a 
line drawing we can determine its orthographic projection into the 
image plane. We thus have the constraint 
Here the notation vproj is used for the orthographic projection of 
v into the image plane, is a positive scalar if the edge is convex, 
negative if the edge is concave. Note that this constraint is equally 
valid for occluding convex edges, where one of the surface normals 
corresponds to a hidden face. 

For later use, it is convenient to develop an alternative version 
of the orientation constraint. Let Nc be a unit vector in the image 
plane perpendicular to e p r o j . As 
that As Nc has no component in the z 
direction, this is equivalent to saying that 
using the vector tr iple product notation 

Figure 1: Orientation constraints at l imbs and edges 

3 Image constraints on 3-D shape 

If the dense labell ing of a line drawing is known, the problem 
of three-dimensional shape recovery can be formulated as that of 
f inding a piecewise smooth function n (x , y ) which minimizes the 
following functional 

Here I is the entire image, E the edges, L the l imbs, and B 
the set of all curves (edges and l imbs). In the two line integrals s 
is the arc length parameter along the curve. n1(5) and n2(5) are 
the two l imits of the discontinuous function n ( x , y ) when a point 
on an edge is approached on its two faces. 

The first term measures the error in satisfying the image ir-
radiance equation, and the second and th i rd terms measure the 
errors in t ry ing to satisfy the line drawing constraints. The last 
term is a 'regularization te rm' intended to select a par­
t icularly smooth solution. 

Note that we have not ensured that the position constraints 
corresponding to the line labelling are satisfied nor that the re­
sulting n(x,y) is integrable. How this can be done is discussed in 
[10]. 

One could find the Euler equation and develop a numerical 
scheme for minimizing this functional-however that would be a 
futi le exercise as there is no available algorithm for determining 
the dense labelling in advance. Of course, we could seek to recover 
the dense labelling as part of the process of f inding the shape 
n(x,y). This leads to a difficult global minimization problem, 
which is discussed in [10]. 

In this paper we develop an alternative approach. While we do 
not know how to precompute the dense labell ing, the set of legal 
sparse labellings of the drawing can in fact be precomputed using 
the line labell ing algorithm developed in Mal ik [8]. To exploit 
this knowledge, we need to formulate the image constraints in a 
slightly different way. 

It is convenient to part i t ion the constraints into the follow­
ing three classes: (a) constraints in the interior of an im?ge area, 
(b) constraints in the neighborhood of an image curve, (c) con­
straints in the neighborhood of a junct ion. Surface continuity 
requirements provide the cross-coupling among the solutions of 
these constraint sets. In the next three subsections we analyze 
each of these and develop schemes for local shape recovery. 

3.1 Shape const ra in ts inside an area 

The only source of constraint is the shading and we wish to f ind 
the 'smoothest' surface consistent w i th the pixel brightness values. 
This is exactly the shape f rom shading problem which has been 
studied by Horn and his colleagues and we can adopt their analy­
ses and algorithms unchanged. Specifically, we use the relaxation 
scheme suggested by Drooks and Horn [2], section 4.2. 

The Horn-Brooks relaxation scheme, just like the other algo­
r i thms for this problem, requires knowledge of the direction of the 
surface normal along the boundary of the patch. Empirical evi­
dence suggests that knowing the surface normal along a significant 
fraction of the boundary is adequate in practice. 
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3.2 Shape const ra in ts a long an image curve 

At a l imb , the surface normal is uniquely determined by the direc­
t ion of the projected curve. So the interesting case is that of an 
edge, where there are both shading and line drawing constraints. 
We want to use these to determine the surface normals and 
) on the two faces and as a function of the arc length 
parameter $ along the edge. To do this, we have to measure the 
brightness values on the two sides of the edge in the 
line drawing. 

To determine n1 and n2 one has to solve for 4 independent 
parameters. (Whi le there are 3 components of n, the uni t length 
constraint means that only two are independent.) If the edge is 
connect (convex or concave), there are two equations due to shad­
ing: and E2- The direction of the edge gives 
us one more equation [n1 n2 st i l l leaving us one equa­
tion short. It is not possible to solve for n1 n2 by just looking 
at the neighborhood of a point on an edge, just as in the stan­
dard shape-from-shading problem it is not possible to compute n 
locally. We need to make use of boundary conditions, and max­
imize smoothness-points which are physically close should have 
similar surface normals . To do this, we incorporate a ' regular-
ization term' where I are the 
derivatives of n1(s) and n2(s) w i th respect to arc length. We thus 
have the following composite functional 

(1) 

u1 are Lagrange multipl iers intended to ensure that the 
normals n1 (s) and have unit length. 

Min imiz ing this functional is an exercise in the calculus of 
variations. We have to f ind the Euler equations, eliminate the 
Lagrange mult ipl iers and come up wi th a suitable finite difference 
scheme. These calculations [10] result in the following scheme for 
computing given knowledge of , and 

Here a are known, 
these schemes tell us how to 'grow' the solution. The i terat ion 
can in fact be started just given the values of n1, n2 at the in i t ia l 
point . As and n3 are both equal to 0 at the in i t ia l point 
(natural boundary conditions), we assume 

It should be pointed out that the analysis in this section has 
been for connect edges—if the edge is occluding, we do not know 
the brightness values for the occluded face and thus have one 
less constraint. For curved objects, an edge can change its label 
f rom convex to occluding between junctions e.g. at point X in 
Figure 2. However we know [8] that such points correspond to 

Figure 2: Dealing w i th edge label transitions 

invisible l imbs, and therefore can be detected by checking if n, is 
sufficiently small. In Figure 2, . The iterations in (2) 
and (3) should be stopped at this point. 

When n2 (s)is known along the edge, it is possible to recover 
n\(s) even when n1 unknown at in i t ia l point. Use Newton's 
method to compute n1 at in i t ia l point. This can be done be­
cause we now have two constraints on n1 viz. and 

As these constraints are non-linear, there is no 
guarantee of a unique solution. However it can be proved that for 
a reflectance map arising from a lambertian surface i l luminated 
wi th a point l ight source, there can only be one or two solutions. 
We use the iterative scheme in (2) above to propagate each of the 

Figure 3: Shape recovery at a vertex 

solutions, and pick the one which corresponds to the smaller error 
as measured by the functional in (1). 

3.3 Shape const ra in ts at a ve r tex 

At a vertex we have (a) shading constraints from the brightness 
values on the faces which meet at the vertex, and (b) line drawing 
constraints from the projections of the edges incident at a vertex. 
Under certain conditions, there are enough constraints to uniquely 
determine the surface normals on each of the faces purely from 
the local information. 

Consider vertex A in Figure 3 and enumerate the constraints 
on n1, n2 , and n3. There are 6 independent parameters (2 for each 
surface normal) and 6 independent equations (3 from brightness 
values on the faces, 3 from the directions of the projections of the 
edges). There are as many independent equations as unknowns. 
As the equations are nonlinear, we are not guaranteed a unique 
solution. However, pruning using our additional knowledge about 
the three edges being convex or concave typically leaves us with 
only one solution. 
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It can be seen that the method described above works for 
any vertex with n 3 faces if and only if they are all visible. 
If any of the faces at the vertex is hidden, the constraint due 

Figure 4: Sequence of steps in global shape recovery 

to the brightness value on that face is missing, and there are 
fewer equations than unknowns. However if there is exactly one 
hidden face, and the surface normal on one of the faces at the 
vertex is known (perhaps by propagation of information on one of 
the faces/edges that it lies on), then the number of independent 
equations again becomes equal to the number of unknowns and 
one can solve for the rest of the surface normals. In Figure 3, once 
n4 is known, n5 and n6 can be determined. 

4 Global Shape Recovery 

In sections 3.1-3.3 we studied the constraint sets for image ar­
eas, curves and junctions, and developed numerical schemes for 
local shape recovery. In [10], we show how these combine to form 
a global shape recovery algori thm. Here we wi l l i l lustrate this 
algorithm on two examples. 

The hatched parts of the figures denote what has been freshly 
computed in a particular i teration. In figure 4, the computation 
starts wi th determination of the surface normals to the three faces 
at A, using the vertex shape recovery procedure, followed by the 
computation of the surface normals along A B , AC and AD using 
the edge shape recovery procedure described by the equations 
(2) and (3). This generates the boundary conditions needed for 

Figure 5: Sequence of steps in global shape recovery 

applying the Horn-Brooks shape from shading algorithm to each 
face. In figure 5, the first two stages are self-evident, and the 
third stage makes use of the procedure for computing n1(s) given 

along the edge described in the last paragraph of section 
3.2. Finally the Horn-Brooks shape from shading algorithm is 
applied to the top face. 

' I n the sense that it corresponds to the particular scene being imaged. 
They are all consistent wi th the line drawing information. 

In the examples just considered, we started from the correct 
labell ing. What is actually available to us are a set of sparse la-
bellings among which only one is correct1. When we start f rom 
an incorrect sparse labell ing, the 3-D shape computed wi l l be in-
correct and hence wi l l not satisfy the line drawing and shading 
constraints w i th in the margin of error permitted by the inaccu­
racies in the data ( i.e. noise in pixel brightness values, errors in 
estimates of edge direction etc. ). This gives us a way to prune 
away the shapes resulting from incorrect labellings. We refer the 
reader to [10] for the complete algorithm and a study of the effects 
of noise. 
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