
A Formalism and Environment for
the Development of a Large Grammar of English

Ted Briscoe, Claire Grover

Department of Linguistics, University of Lancaster,
Bailrigg, Lancaster LAI 4YT, England

ABSTRACT

Natural language grammars with large coverage are typically
the result of many person-years of effort, working with clumsy
formalisms and sub-optimal software support for grammar
development. This paper describes our approach to the task of
writing a substantial grammar, as part of a collaboration to
produce a general purpose morphological and syntactic analyser
for English. The grammatical formalism we have developed for
the task is a metagrammatical notation which is a more
expressive and computationally tractable variant of Generalized
Phrase Structure Grammar. We have also implemented a software
system which provides a highly integrated and very powerful set
of tools for developing and managing a large grammar based on
this notation. The system provides a grammarian with an
environment which we have found to be essential for rapid but
successful production of a substantial grammar.

I INTRODUCTION

As part of the Alvey Programme, the UK research initiative in
Information Technology, three collaborating projects (at
Cambridge, Lancaster and Edinburgh Universities) have been set
up to produce a general purpose morphological and syntactic
analyser for English. One project is developing an integrated
morphological analyser and lexicon package (Russell et al. 1986).
The grammar project, which is the focus of this paper, has
developed a metagrammatical notation and implemented an
associated software system to facilitate the writing of a
substantial grammar of English. The third project has
implemented a chart parser augmented with unification (Phillips
and Thompson 1987), which analyses sentences of English
morphosyntactically using the rule systems and lexicon developed
by the other projects.

In this paper, we first discuss the metagrammatical notation in
which the grammar (Grover ct al. forthcoming) is being written
and then describe the associated grammar development
environment (Carroll et al. 1987) which provides the grammarian
with software tools to facilitate the rapid development of a large
but consistent and tractable grammar. The metagrammatical
notation is a development of Generalized Phrase Structure
Grammar (GPSG) (Gazdar et al. 1985) but is designed to be both
more expressively powerful and more computationally tractable.
The grammar development environment is modelled on similar
systems (e.g. Evans 1985, Karttunen 1986), but goes beyond
them in terms of speed, efficiency, and the provision of a
genuinely integrated lexical, morphological and syntactic
development environment.

[N - , V +, BAR 2, SUBJ +, —> [N +, V
WH 6 1 , INV 6 2 , NEG 6 3 , AGR 64 WH 0 1 ,
VFORM 6 5 , AUX 6 6 , F I N @7, COMP NORM] AGR 64]

Figure 1. An

Bran Boguraev, John Carroll

Computer Laboratory, University of Cambridge,
Com Exchange Street, Cambridge CB2 3QG, England

II THE METAGRAMMATICAL NOTATION

The metagrammatical notation we have designed is based on
GPSG, but has been modified and extended to be more flexible
and expressive and is interpreted somewhat differently. The first
motivation for these changes is to define a notation which
provides a specialised programming language for specifying
grammatical theories and grammars for particular languages,
rather than defining a specific theory directly. This approach both
ensures that developments in syntactic theory will be less likely
to render the grammar development environment obsolete and
also provides the grammarian with an expressively flexible and
powerful notation for grammar writing, rather than a formalism
embodying a restrictive theory.

The second motivation for reinterpreting and modifying the
rule types of GPSG is to provide a procedural and strictly
ordered interpretation of the various rule types. In GPSG, rules
are defined declaratively as applying simultaneously in the
projection from Immediate Dominance (ID) rules to local trees.
As Shieber (1986), Ristad (1986) and others have pointed out this
leads to a computationally complex and conceptually difficult
system. The approach taken here is broadly that used by
Popowich (1985) for Definite Clause Grammars (Pereira and
Warren 1983), and that outlined (although not implemented) by
Shieber (1986) for GPSG, Metagrammatical rules are expanded
into an 'object' grammar which is a unification grammar. The
interpretation of the metagrammatical rules is provided by the
procedure for their expansion and the much simpler semantics of
the resulting object grammar. Furthermore, because no attempt is
made to expand out into a pure context-free formalism, the object
grammar remains manageable.

The object grammar consists of a set of phrase structure rules
whose categories are feature complexes, and which form the
input to the parser. An example of an expanded rule of the object
grammar for forming a variety of English clauses is given in
Figure 1. Features consist of feature name / feature value pairs.
Feature values can be variables (the values beginning with 6 in
the figure), which can be bound within the rule. Parsing with the
object grammar involves matching categories by unifying their
feature sets. Unlike GPSG, our metagrammar defines a set of
partially instantiated phrase-structure rules and not a set of local
trees sufficiently instantiated to define a portion of syntactic
structure. However like GPSG, the metagrammar is designed to
capture linguistic generalisations; for this reason, and also to
simplify and abbreviate the statement of 'object' rules, such as
the one in the figure, it contains statements of the following
eleven kinds:

- , BAR 2, POSS - , [N - , V +, BAR 2, SUBJ - ,
CASE NOM, PRO 6 8 , H +, INV @2, NEG @3, AGR @4,

VFORM 6 5 , AUX 6 6 , F I N @7]

Object Grammar Rule.

Briscoe, Grover, Boguraev, and Carroll 703

A. Feature Declarations G. Linear Precedence Rules

Feature Declarations define the feature system used by the
grammar. They encode the possible values of a given feature.
The feature system is very similar to that used in GPSG, but a
feature can additionally take a variable value which ranges over
the set of actual values as declared.

VFORM SLASH CAT

B. Feature Set Declarations

Feature Set Declarations define sets of features which
propagate in the same manner and which will appear together on
particular categories. For example, relevant features to propagate
between NPs and head noun daughters (PLU, PER, etc.) may be
grouped together in a set called NOMINALHEAD, and the name of
this set used later in the rules which perform this type of
propagation to refer to the whole collection of features.

NOMINALHEAD

C. Alias Declarations

Aliases are a convenient abbreviatory device for naming
categories and feature complexes in rules. They do not affect the
expressive power of the formalism.

Nom

D. Category Declarations

Category Declarations define a particular category as
consisting of a given set of features. These declarations are used
to expand out the partially specified categories which typically
appear in ID rules. They also make the system more explicit by
obliging the grammarian to state which categories a feature will
appear oa Category Declarations replace part of the function of
Feature Cooccurrence Restrictions in GPSG.

Nomina l :

E. Extension Declaration

Some features, such as SLASH, are not part of the 'basic'
make up of a category and in this system tend to be added to
categories in ID rules by the application of metarules. Features
which appear in categories only by virtue of metarule application
must be defined as extension features; doing this again makes the
system more explicit.

Ex tens ion

F. Immediate Dominance Rules

ID rules encode permissible dominance relations in phrase
structure trees. The immediate dominance properties of the
'object' rule in Figure 1 can be expressed by the Clauses rule
below; however other properties of the object rule (e.g. the
ordering of the categories in it) are determined by other types of
rules in the grammar. T r a n s i t i v e s below is another example
of an ID rule. It states that a transitive VP will contain a lexical
head, which must be subcategorised as transitive, and a NP
sister.

C lauses :

T r a n s i t i v e s :

Linear Precedence (LP) rules encode permissible precedence
relations in ID rules. The first rule below states that NPs always
precede VPs in English PS rules which contain both categories on
the right-hand side. The second states that categories bearing the
SUBCAT feature (i.e. lexical categories) precede those having no
such specification.

[SUBCAT]

H. Phrase-Structure Rules

PS rules encode both permissable dominance and precedence
relations in phrase markers. They are included in the formalism
so that the expressive power of the system is not restricted by the
ECPO property* (Gazdar et al. 1985). Our current grammar
makes no direct use of this rule type but the grammarian can at
any point choose to abandon the ID/LP format and use a mixed
system, entering directly a few 'marked' PS rules (distinguished
from ID rules by their lack of commas) which do not conform to
the general LP rules for English.

I. Feature Propagation Rules

Feature Propagation rules define how features propagate
between mother and daughter categories in ID or PS rules (if
either mother or daughter has a variable value for one of these
features). The effect of propagation rules is to bind variables or
instantiate values of features in rules of the 'object' grammar.
Propagation rules can be used to encode particular feature
propagation principles, such as the various versions of the Head
Feature Convention proposed for GPSG. However, such
principles are not 'hard-wired' into the formalism, so that
maximum flexibility and expressiveness is maintained.
Propagation rules are stated in terms of ID or PS rule patterns
which may contain variables over categories (W); for example, the
following rule states that NPs inherit features from the head
(noun) daughter in any ID rule which is nominal, contains a head
and which may optionally contain other daughters of any type.

Nomina l :

J. Feature Default Rules

Feature Default rules default specified values onto features
with no value in categories in a particular environment in an ID
or PS rule. These default rules replace Feature Specification
Defaults in GPSG; because the rules assign values to features in
the context of an ID or PS rule, their application can be
accurately controlled, and thus the need for Feature Cooccurrence
Restrictions to prevent the construction of 'illegal' categories is
diminished. Both Feature Default rules and Feature Propagation
rules have a similar syntax to Kilbury's (1986) independently
motivated Category Cooccurrence Restrictions, although their
function is somewhat different The Accusa t i ve default
below states that an NP which is a sister to a verbal or
prepositional lexical head will be accusative (if unspecified for
any other CASE value).

A c c u s a t i v e : [-N] —> H, NP. CASE(2) - ACC.

* A grammar has the Exhaustive Constant Partial Ordering
property if the set of expansions (defined by ID rules) of any one
category observes a partial ordering that is also observed by the
expansions of all the other categories.

704 NATURAL LANGUAGE

K. Metarules

Metarules encode systematic relationships between sets of ID
or PS rules and automatically add further rules to the basic set
produced by the grammar writer and the application of other
metarules. Metarules can be written to apply to ID rules or PS
rules (including those which result from linearisation of ID rules).
Metarules can also be restricted to apply to ID or PS rules
containing a lexical head through use of the w category variable
(as opposed to the U 'unrestricted' category variable) in the input
pattern. For example, Passive adds a new vp rule without the
NP direct object (and with an optional 'by' phrase) for every
basic VP rule with a lexical head and a non-predicative NP
daughter. S lash creates new ID rules with a slash feature
appearing on one of the non-head daughters with a variable value
which is bound to the slash feature of the mother.

P a s s i v e :

I I I METAGRAMMAR INTERPRETATION

In GPSG, the set of legal local trees is defined declaratively
by simultaneous application of the various rule types during the
'projection' from ID rules to fully instantiated local trees. In this
system, although the metagrammatical notation shares many
similarities with GPSG, there are crucial differences in the
interpretation of the notation. The rules of the metagrammar
jointly specify a set of partially instantiated phrase structure rules,
rather than fully instantiated local trees. That is, rules are allowed
to contain variable values for features and these variables arc
instantiated at parse time by unification. Propagation rules specify
restrictions on the instantiation of these variables; for example,
the rule

will force agreement between the determiner and nominal phrase
in the ID rule for NPs which introduces determiners and nominal
phrases, by binding the PLU variables on all the categories. If we
assume that whereas *a' is specified as 'the' is
unspecified for a value of PLU, then the result of matching 'the'
to the Det category in the expanded ID rule will not instantiate

However, matching 'boys' to Nl will instantiate all the
instances of @1 to Therefore, 'a boys' will not be accepted by
the expanded ID rule because @1 cannot both be instantiated as

and

The object grammar is produced by applying category,
propagation and default rules to ID (and PS) rules in that order
and then applying the non-linear metarules one-by-one in order to
the set of fleshed out ID rules*. After each metarule has applied,

* This approach to metarule expansion is more restrictive than
Thompson s (1982) principle of finite closure.

propagation and default rules are applied to any new ID rules and
these are added to the original set before the application of the
next metarule. Next, the resulting expanded set of rules is
linearised according to the LP rules and any linear metarules are
applied to the complete pool of PS rules. This procedure is
summarised in Figure 2.

In essence, this grammatical formalism combines Prolog-style
unification, as used in Definite Clause Grammars (Pereira and
Warren 1983) and PATR-II (Shieber 1984), with a
metagrammatical notation designed to capture linguistic
generalisations and so simplify the statement of the grammar. The
formalism defines a 'space' of potential grammatical thcones
which can be explored by the theoretical linguist. It also allows
full use of any mixture of these theories for the flexible
specification of a wide coverage grammar of a particular natural
language.

IV THE GRAMMAR DEVELOPMENT ENVIRONMENT

The grammar development environment (GDE) is a software
system which has been developed to facilitate the writing of a
grammar for a significant fragment of English in our grammatical
formalism. By analogy with present-day programming
environments (Barstow et al. 1984) where software development
is supported by powerful interactive programming tools, the GDE
provides grammar writers with a set of tools for grammar
development, allowing them to input, edit and generally manage
the necessarily large number of metagrammatical rules and
monitor the interactions between them. The GDE is also able
automatically to expand out such a set of rules into an object
grammar, and from the collaborating projects incorporates
versions of the parser and of the morphological analyser with a
lexicon of approximately 5000 entries.

The GDE is a 'second generation' system, drawing on several
ideas first implemented in systems such as ProGram (Evans
1985), GPSGP (Phillips and Thompson 1985), and D-PATR
(Karttunen 1986), but differs from them in that it was designed to
satisfy all three of the following criteria:

- to be easy to use
- to enable a grammarian to achieve high productivity
- to be portable and machine independent.

A. Ease of Use

The first objective, simplicity of use and robustness, is
particularly important to a linguist with little or no experience of
the system. Thus, since the metagrammatical notation is based on
GPSG, the syntax accepted for its rules follows that of Gazdar et
al. (1985) as closely as possible. The user of the system is
therefore likely to be familiar with the GDE's rule notation and
would not have to learn a new notation, as would be necessary
when starting to use the (also GPSG-based) ProGram system
(Evans, 1985). For example, Figure 3 gives an example of a
metarule as it has to be presented, firstly to ProGram, and
secondly to the GDE.

Figure 3. The Contrast Between ProGram and GDE Declarations.

ProGram requires the user to input the grammar both in a syntax
that w i l l be acceptable to the underlying PROLOG system lexical
analyser, and one which corresponds closely to the internal data-
structures used by ProGram. Apart from being idiosyncratic, this
notation is diff icult to use and a syntax error in a declaration is
l ikely to provoke a PROLOG error message. The GDE, on the
other hand, has its own grammar declaration parser and gives
informative diagnostics for invalid input, based on the type of
grammar item (e.g. feature name) it was expecting.

The GDE is an environment with many powerful capabilities;
however we disagree with Teitelman and Masinter (1984) (but in
the context of the development of grammars rather than
programs) that a powerful environment need necessarily be only
for the expert user. A l l interaction with the GDE is carried out
through a logically structured set of commands which are able to
prompt at any stage as to the type of input expected next There
is also automatic command completion. GDE commands perform
high level operations; for example in a single command the user
can instruct the GDE to display all the rules resulting from
applying a given subset of metarules to a specified set of ID
rules:

PASS a n d S A I m e t a r u l e s

Performing a similar task using ProGram involves the user in a
lengthy interaction to select the ID rules and metarules
concerned, followed by explicit commands to 'normalise* both
sets of rules and perform the metarule expansion. Thus in
general, the major difference between the two systems is that
wi th the GDE the user specifies a goal for the system to achieve,
whereas to achieve the same goal with ProGram the user has to
devise a sequence of low level operations and lead the system
through them by hand.

B. Encouraging High Productivi ty

The second design criterion was to help a more experienced
user of the system achieve as high a productivity as possible. The
GDE encourages an interactive and incremental style of grammar
development by providing metagrammatical rule editing facilities,
and by enabling the grammarian to quickly identify incorrect
rules and assess the consequences of changing them. Identifying
the incorrect rules is usually the harder task. With other grammar
development environments, D-PATR (Karttunen 1986) being a
good example, the grammarian has to study syntax trees produced
by the parser, and sometimes only from incorrect feature values
in them try to deduce which rules are incorrect In the GDE the
name of an incorrect PS rule in the object grammar can be read
directly from the portion of a parse tree that is faulty. PS rule
names are unique and each is generated from the name of the ID
rule in the metagrammar and the names of any metarules that
were involved in its formation; multiple linearisations of the same

rule are also distinguished. Thus, the faulty ID rule, metarule or
LP rule in the metagrammar is easily identified. As well as a
parser the GDE also contains a sentence and sentence fragment
generator which is particularly useful for detecting rules which
cause overgeneration and so degrade the performance of the
grammar.

When an incorrect rule is found, it may be edited within the
GDE. The high level rule display commands (mentioned above)
are often sufficient for assessing the consequences of the rule
change, and using them is usually a more reliable strategy than
just another attempt to parse several more sentences. The GDE
performs extensive 'bookkeeping* on behalf of the grammarian,
including keeping track of which files contain rules that have
been changed and so should eventually be saved, and
regenerating the object grammar when required after a change to
the metagrammar. As rules are added to the system, the
grammarian can constantly monitor the coverage and performance
of the grammar by parsing a corpus of sentences which are
maintained by the system and which are intended to represent the
coverage of the grammar at any one time. The grammarian is
freed by the bookkeeping from having to worry about details of
management and is thus able to concentrate attention on grammar
development.

Of course, the powerful facilities provided by the GDE would
be of limited use if the actual system were not quick enough in
execution to keep up with the grammarian; with metagrammars
of the size currently being developed it has proven necessary to
make the GDE cache several types of intermediate result, such as
the rules resulting from metarule application. Expanding a large
metagrammar (in order to be able to parse a sentence) from
scratch currently takes of the order of three minutes on a
Motorola 32016-based workstation, but after this has been done
once, re-expansion when the GDE detects a change to the
metagrammar rarely takes more than a few seconds. Parsing a
sentence seldom takes longer than five seconds (using the highly
optimised chart parser from the collaborating parsing project). In
contrast, since ProGram and D-PATR were not developed with
efficiency in mind, their processing times for single sentences
(even using smaller grammars) of a minute or more significantly
l imi t the productivity of the experienced user.

C. Portabi l i ty

Although the GDE was implemented as a software tool for a
specific project, the flexibility of our metagrammatical formalism
(section I I I) makes the GDE of potential use to the more general
community of linguists and grammarians. It is intended that the
software should be freely available, and so firstly it is portable,
being originally written in Cambridge Lisp (a derivative of
Portable Standard Lisp) and since translated into Common Lisp,
and secondly machine independent, since it does not count on
being able to use a mouse or any windowing capability. Indeed
the same version of the GDE runs on an I B M mainframe, a GEC
minicomputer and an Acorn single-user workstation. In contrast,
any serious work using ProGram requires the Poplog (Hardy
1982) editor running on a specific type of terminal, and D-PATR
needs to be able to call the Interlisp-D windowing functions and
the special system text editor (TEDIT).

706 NATURAL LANOUAOf

V AN E X A M P L E G R A M M A R D E V E L O P M E N T SESSION

The GDE interaction that follows demonstrates several of the
points made in the previous section. The major point is that the
output of a single GDE command is often sufficient to pinpoint a
bug in the grammar. Other features highlighted are the integrated
nature of the tools (e.g. parser, generator) provided, and the
bookkeeping that is performed to allow the grammarian to focus
ful ly on grammar development. The user first reads in a file
containing an existing (small) grammar, and tries to parse a
couple of sentences. (User input in bold).

Gde> reed gram. r u l e s
F i l e read

Gde> p a r t s e
Comp i l i ng grammar. . .
17 ID r u l e s , 1 me ta ru les ,

6 p ropaga t i on r u l e s , 3 d e f a u l t r u l e s
* * * Warn ing, m u l t i p l e

match between VP/TAKES_2NP and PASS
31 expanded ID r u l e s , 32 l i n e a r i s e d r u l e s

P a r s e » f i d o weighs a pound

80 msec CPU, 1000 msec e lapsed, 367 conses
15 edges genera ted
1 parse

((f i d o) (weighs (a pound)))

P a r s e » a pound is weighed by f i d o

140 msec CPU, 1000 msec e lapsed , 756 conses
32 edges genera ted
1 parse

((a pound) (i s (weighed ((by (f i d o))))))

Parse v iew r u l e s

S

f ido

The second sentence should not have received a parse, so there
must be a bug in the grammar. Viewing the parse tree
immediately suggests where the problem lies: the expansion of
the metagrammar has produced a rule VP/NOPASS (PASS/+) ,
which both appears at the place where the parse should have
failed, and which also from its name looks suspect. \The user

goes on to exit the parser, examine the ID rule and metarule
involved, and restrict the applicability of the latter.

P a r s e

Gde v i ew id *NOFASS

VP/NOPASS :

H[SUBCAT NOPASS],

Gde v iew m e t a r u l e PASS

PASS : VP W, N2.
VP

Gde i n p u t
Cons t ruc t type? meta
Me ta ru le d e c l a r a t i o n ? PASS :

VP N, N2[-PRD] .
VP[Pas] <P2[PFORM B Y]) .

Replace e x i s t i n g d e f i n i t i o n

Gde> name id * (PASS)

VP/TAKES_NP(PASS/-) VP/TAKES_NP(PASS/+)
VP/DITR(PASS/-) VP/DITR(PASS/+)
VP/TAKES_2NP(PASS/-) VP/TAKES_2NP(PASS/+)
VP/OR(PASS/-) VP/OR(PASS/+)

The V P / NOP ASS ID rule no longer appears in the list of rules
resulting from the updated PASS metarule; the rules that do
appear are the expected ones. Carrying on, an attempt to parse
the last sentence indeed fails as it should. The relevant parts of
the metagrammar are automatically reexpanded since the GDE
remembers that PASS has been changed.

Gde> p
Compi l ing grammar. . .
17 ID r u l e s , 1 me ta ru l es ,

6 p ropaga t i on r u l e s , 3 d e f a u l t r u l e s
25 expanded ID r u l e s , 26 l i n e a r i s e d r u l e s

P a r s e » p r e v i o u s
(a pound is weighed by f i d o)

80 msec CPU, 1000 msec e lapsed , 478 conses
21 edges genera ted
No parses

P a r s e » q

Gde> gene ra to r N2

G e n » a a 2
a dog
dog a
kirn

G e n » q

Gde> w r i t e g r a m . r u l e s
Back ing u p f i l e g r a m . r u l e s
W r i t i n g f i l e g r a m . r u l e s

An exhaustive generation of all noun phrase structures licensed
by the grammar indicates that the rule introducing determiners
may be overgenerating, but the user decides to ignore this for the
time being, and write the changed grammar back to disc. The
GDE first saves the existing version of the file in case the user
later wants to refer to it.

This example interaction is representative of real ones in the
process of developing a large grammar. Our experience is that a

Briscoe, Grovsr, Bogursev, and Carroll 707

system such as the GDE is essential for rapid but successful
production of a substantial grammar in a mctagrammatical
notation.

V I CONCLUSIONS

The usefulness of our formalism and associated grammar
development environment can only be assessed ultimately on the
basis of its success in allowing rapid development of grammars
(and associated theories and analyses); work on expanding the
coverage of the grammar is still in progress, but currently, on the
basis of only 10 person-months of development, the English
grammar contains detailed analyses of:

- most VP complements, including the various control
constructions

- the auxiliary system
- declaratives, imperatives and passives
- y/n and constituent questions, topicalisation
- NP complements, VP and PP modifiers
- ordinary, zero and free relatives
- the NP specifier system
- AP complements.

A recent metagrammar contained 127 ID rules, 34 Metarules,
41 Propagation rules, 11 Default rules, and 16 LP rules, which
produced an expanded object grammar of 478 PS rules. This
makes the current grammar roughly equivalent in size (though
not coverage) to Diagram* and the Critique project grammar**.
These latter grammars are widely recognised to be two of the
largest developed for machine; however, both involved
considerably greater human effort.

A C K N O W L E D G E M E N T S

The system described in this paper evolved as a team effort
and was greatly influenced by the comments of members of the
two collaborating projects—Alan Black, John Phillips, Steve
Pulman, Graeme Ritchie, Graham Russell and Henry
Thompson—as well as from discussion with Bob Moore and Stu
Shieber. We are grateful for comments on earlier versions of this
paper from Roger Evans and Graham Russell. The work was
supported by research grant GR/D/05554 from the UK Science
and Engineering Research Council under the Alvey Programme.

REFERENCES

Barstow, D., E. Shrobe and E. Sandewall, Interactive
Programming Environments. New York: McGraw Hi l l , 1984.

Carroll, J., B. Boguraev, C. Grover and E. Briscoe, "A
Development Environment for Large Natural Language
Grammars", Technical Report (to appear), Computer Laboratory,
University of Cambridge, 1987.

Evans, R., "ProGram - a Development Tool for GPSG
Grammars". Linguistics, 23:2 (1985) 213-243.

Gazdar, G., E. Klein, G. Pullum and I. Sag, Generalized Phrase
Structure Grammar. Oxford: Blackwell and Cambridge, Mass.:
Harvard University Press, 1985.

* Robinson (1982) suggests that Diagram's core then contained
about 100 constituent structure rules.
** Jensen et al. (1986) give a figure of 235 decoding rules
representing the "central ... grammatical structures of English".

Grover, C, E. Briscoe, J. Carroll and B. Boguraev, "The Alvey
Natural Language Tools Project Grammar - a Large
Computational Grammar of English", Lancaster Papers in
Linguistics, Department of Linguistics, University of Lancaster,
forthcoming.

Hardy, S., "The POPLOG Programming System", Cognitive
Studies Research Paper No. CSRP 003, University of Sussex,
1982.

Jensen, K., G. Heidom, S. Richardson and N. Haas, "PLNLP,
PEG and CRITIQUE: Three Contributions to Computing in the
Humanities", Research Report RC 11841, Computer Sciences
Department, I B M Thomas J. Watson Research Center, Yorktown
Heights, NY, 1986.

Karttunen, L., "D-PATR: A Development Environment for
Unification-Based Grammars". Proc. 11th International
Conference on Computational Linguistics, Bonn, Germany, 1986,
74-80.

Kilbury, J., "Category Cooccurrence Restrictions and the
Elimination of Metarules". Proc 11th International Conference
on Computational Linguistics, Bonn, Germany, 1986, 50-55.

Pereira, F. and D. Warren, "Parsing as Deduction". Proc. 21st
Meeting of the Association for Computational Linguistics, M IT ,
Cambridge, Mass., 1983, 137-144.

Phillips. J. and H. Thompson, "GPSGP - a Parser for
Generalized Phrase Structure Grammars". Linguistics, 23:2 (1985)
245-261.

Phillips, J. and H. Thompson, "A Parser and an Appropriate
Computational Representation for GPSG" in E. Klein and N.
Haddock (Eds.), Cognitive Science Working Papers 1, Centre for
Cognitive Science, University of Edinburgh, 1987.

Popowich, F., "SAUMER: Sentence Analysis using Metarules".
Proc. 2nd Conference of the European Chapter of the Association
for Computational Linguistics, Geneva, Switzerland, 1985, 48-56.

Robinson, J., "D IAGRAM: a Grammar for Dialogues".
Communications of the ACM, 25:1 (1982) 27-47.

Russell, G., S. Pulman, G. Ritchie and A. Black, "A Dictionary
and Morphological Analyser for English". Proc. 11th
International Conference on Computational Linguistics, Bonn,
Germany, 1986, 277-279.

Shieber, S., "The Design of a Computer Language for Linguistic
Information". Proc 22nd Annual Meeting of the Association of
Computational Linguistics, Stanford, California, r984, 362-366.

Shieber, S., "A Simple Reconstruction of GPSG". Proc. 11th
International Conference on Computational Linguistics, Bonn,
Germany, 1986, 211-215.

Teitelman, W. and L. Masinter, 'The Interlisp Programming
Environment" in D. Barstow, H. Shrobe and E. Sandewall (Eds.),
Interactive Programming Environments, New York: McGraw
Hi l l , 1984, 83-96.

Thompson, H„ "Handling Metarules in a Parser for GPSG" in M.
Barlow, D. Flickinger and I. Sag (Eds.), Developments in
Generalized Phrase Structure Grammar: Stanford Working
Papers in Grammatical Theory, Volume 2, Bloomington, Indiana:
Indiana University Linguistics Club, 1982.

708 NATURAL LANGUAGE

