A PARSING SYSTEM BASED ON LOGIC PROGRAMMING

Yuji Matsumoto and Ryoichi Sugimura

Institute for New Generation Computer Technology
1-4-28 Mita, Minato-ku,Tokyo, 108, Japan

AKSTKACT

The paper presents a practical parsing system based
on logic programming. A restricted Definite Clause
Grammar is assumed as grammar description and the
grammar is translated into a parsing program written
in Prolog. The system employs a bottom-up parsing
strategy with top-down prediction. The major
advantages of our system are that the system works in a
bottom-up manner so that the left-recursive rules do not
cause difficulties, the parsing process does not involve
backtracking, and there is no duplicated construction of
same syntactic structures. Experiments are shown to
estimate the efficiency of the system.

| INTRODUCTION

This paper presents a practical parsing system based
on logic programming. Although the key algorithm of
the system originates from the authors' idea on parallel
parsing [Matsumoto 86], it provides a quite efficient
parsing environment even in a sequential
implementation. We also present a grammar
description method which is actually a subset of
Definite Clause Grammar (DCG) formalism [Pereira
80]. The restriction given to DCG guarantees that the
parsing system operates efficiently. We do not think
this restriction is too severe for grammar writers.

The current parsing system is called SAX, while the
parallel implementation is called PAX. In both ofthem,
all the grammatical symbols such as noun phrases and
verb phrases as well as lexical symbols are defined as
predicates of Prolog or of the parallel logic
programming language the system is implemented in.
In this sense it resembles DCGs translated into Prolog
programs. The major advantages of our system are that
it works in a bottom-up manner so that the left-
recursive rules do not cause difficulties, the parsing
process does not involve backtracking, and there is no
duplicated construction of syntactic structures. Our
previous bottom-up parsing system, BUP [Matsumoto
83], has similar charasteristics and we have almost
equal performance from both of them when they are
executed by the Prolog interpreter. However, SAX is
nearly one order of magnitude more efficient when they
are both compiled. This is because BUP keeps partial
parsing results by side-effect whereas they are
represented as processes in SAX.

As described above, the basic algorithm is based on
our parallel parsing method. The current system is
specialized for sequential implementation. The next
section describes the basic algorithm of our parsing

system and shows how grammar rules are translated
into a Prolog program. Section 3 explains how
grammar rules are written and examines the
performance of the system by a sample English
grammar and shows that we have achieved sufficient
efficiency in parse time.

Il OVERALL DESCRIPTION OF THE SYSTEM

This section briefly describes the organization of
SAX. It is convenient to describe first the basic-
algorithm for context free grammars. Suppose we have
a context free grammar shown in (1). In the right-hand
side of the grammar rules, the symbol 'id' followed by a
number stands for an identifier that indicates a
particular position in a particular grammar rule and is
not a grammatical symbol. When these rules are seen
as grammar rules (or more precisely as DCG rules) they
should be neglected. As a matter of fact, users need not
specify these identifiers. They are automatically
assigned by the SAX translator, which generates a
parser from the grammar. We ommit the lexical partin
the following grammar rules.

(1) sentence --> np, wdl wp.
np --> det, d2 noun.
np --> np, d3 coconj, 144 np.
noun -~> noun, d5 rel_clause.
noun --> noun, 1d6 .
rel_clavse --> [that]., wd7 wvp.
pp --> prep, d8 np.
vp --> verb.

ThYP parintBPRcess®herMs from left to right and
from BBttoi? tdRop, it ifom SOFRRE wordd fo m¥P well-
formed tree structures. Suppose a noun phrase hasjust
been found, there are two kinds of processes that must
be performed according to the grammar rules. The first
is to start parsing by using new grammar rules. The
other is to augment already constructed incomplete tree
structures to more complete ones. As mentioned in the
introduction, all grammatical symbols are defined as
predicates of the Prolog program. Therefore, the
discovery of a noun phrase corresponds to a call of the
definition of np. Since the parsing process proceeds from
left to right and bottom to top, a call of np produces
identifiers idl and id3 which indicate that the parsing
process has successfully proceeded up to these points of
the grammar rules. Itis defined as a Prolog clause (2).

) npl(X.[1d1{X).1d3(X}[Yt].¥t).

Matsumoto and Sugimura 671



The second and third arguments of the clause
represent a set of these two identifiers by a difference
list. The first argument of this clause is a list of
identifiers produced by the words or grammatical
symbols just preceding the noun phrase in the given
input sentence. The clause produces these identifiers
without regard to its contents. It will be, however,
modified when top-down prediction is made use of. This
clause corresponds to the first job for a noun phrase
mentioned above and the meaning is that by finding a
noun phrase these two rules are possibly used to build
up new parsing tree structures. For example, if 1d1 is
received by a verb phrase this means that a sentence is
found. Similarly, the second job for the noun phrase is
to build up more complete tree structures using
partially constructed trees and is defined by the Prolog
clauses shown in (3).

(3) "p2([].X.X).
np2{[1d4(X)]Xt].Y.¥t) :-
pp(X. Y. Y1), ! . np2{Xt,¥1,¥YtL}.
np2([id8(X)|XL}.Y. Y1) :-
p(X,Y,Y1}. ! np2(Xt.¥1,¥t).
np2{[d9(X)|Xt].¥Y Y1) :-
vp(X.Y, Y1}, ! npZ(Xt.Y1,¥Yt).
Thﬁ’pii‘[o”fglE'f}’P?YQf}(:“.)-Sﬁﬁ?(thﬁt. ft_ \Z 1| construct a
noun phrasé if it'receives id4, which is only produced
by a coconj(coordinating conjunction) that has already
received a noun phrase. The third and fourth clause
correspond to the other occurrences of np in the
grammar rules. The first clause specifies that it
produces an empty difference list when it receives an
empty list. The last clause is necessary to discard the
identifiers irrelevant to a noun phrase.

The definition (2) is for the occurrences of noun
phrases as the left-most element in right-hand side of
grammar rules, and the definition (3) is for the other
occurrences of noun phrases in right-hand side of
grammar rules. We call them type-one occurrence and
type-two occurrence, respectively. The complete
definition of a noun phrase is just a union of these
definitions as shown in (4).

@) np{X.Y.Yt) :- apl(X.Y.Y1)}.np2(X.Y1,Yt).

If a grammatical symbol appears in grammar rules
only as either of type-one and type-two occurrence, a
clause like (4) is not necessary for that grammatical
symbol, coconj is an example and is defined like (5). It
has merely type-two occurrences.

(5) -coconj(%].x,x).
coconi{[id3(X)jxt].[ida(Xx)[Y¥].¥t} :- 1,
coconj({Xt,¥,Yt).
coconj{[Id10{X)|Xt],[1d11(X)}¥].¥t) :- L,
coconj{Xt,Y,Yt).

Le&?ggﬂj Q—Jéﬂég' Y|r'§' ) a q%?{:eongt(rgtfgpt?g'l)vva rd
manner. All words can also be defined conceptually as
Prolog predicates, though it is not practical when we
have thousands of lexical elements. For the present,
words are defined as (6), which says that 'the' is a
determiner.

672 NATURAL LANGUAGE

(6) tha(X,Y,Yt) :~ det{X.Y Yt).

Parsing of a sentence is done by calling the
definitions of the words that comprises the sentence.
For instance, (7) is the initial call for parsing 'The man
walks.'

(7) the{[begin}, X0,[]).man{X0.X1.(]).
walks(X1,X2,[1).ftn{X2).

In order to specify that the grammatical symbol the
parser is looking for is a sentence, the following
definition must be added to the type-two definition of
sentence.

(8) sentence2{[bagin|Xt] . fend|Y],Yt) :- I,
sentence2 (Xt,Y,Yt).

begin is a special identifier to indicate the beginning
of a sentence, and end is produced only when a sentence
is found from the head of the input sentence. It is now
very clear that the parsing of a sentence succeeds when
the identifier end is produced by the last word of the
input sentence, fin is the predicate to recognize end.

This summerizes briefly the basic algorithm of the
system. One more thing we have to mention is top-
down prediction to reduce the search space of the
parsing process. Type-one clauses like (2) produce
identifiers without regard to the contents of the list they
receive. Since the received list consists of the contexts
just before the word or grammatical symbol that calls
the type-one clause, the parsing space can be reduced by
referring to the contents. The list it receives is a list of
identifiers and each identifier has its own expecting
grammatical symbol. For instance, idl is expecting a
verb phrase, id2 is expecting a noun, and so on. The
production of an identifier by a type-one clause means
the use of the grammar rule which the identifier
belongs to. As for the clause (2), id| corresponds to the
use of the first grammar rule in (1). If-sentence is not
expected or if any grammatical symbol that can be a
root of a tree with a sentence as its left-most leafis not
expected by any of the elements in the list it receives, it
is useless to produce idl. Top-down prediction can be
realized as a filtering process in our parsing system. A
filtering process is assigned to each identifier produced
by a type-one clause, and it filters out all the
unnecessary elements from the list (the context that
preceeds it). Ifall the elements in the received list are
filtered out, the current identifier need not be produced.
(9) is the new definition of (2) that incorporates such a
filter. (10) and (11) give the auxiliary predicates.
tp fi1ter filters outall the unnecessary elements from
X and produces NewX consisting of identifiers that are
at least necessary, idpair returns the grammatical
symbol that the identifier is expecting, link checks
whether the given two grammatical symbol can be
related as parent and the left-most son of a tree.
Definitions of these clauses are generated by the
translator automatically. tpout returns an empty
difference list if NewX is empty and produces the
identifier if NewX contains at least one element. id3
does not have a filter because the head of the original
grammar rule it belongs to is np, the same grammatical
symbol as itself.



(9) mpl(X,[id3(X}[¥Y].YL) :-
tp_filter(X.sentence New_X},
tp_out{New_X,[idi(New X}|Xt], Xt Y ,vYt).

(10) tp_filter([]._.[]1).
tp_fitter([1d|1ds],Term,[Id|New_ids]) :-
functor(ld,Idntf,_ ),
id_pair(Idntf, Top_cat}),
link{Term,Top_cat),!,
tp_filter(Ids,Term,New ids).
tp_filter([_|lds].Term New ids) :- !
tp_filter(Ids,Term,New ids).

(1) tp_out({], ,_.Y.Y).
tp_out([_|_J.Y.Yt.Y,¥Yt).

111 SYSTEM AND PERFORMANCE

Careful readers may have noticed that there are
some difficulties in implementing full DCGs in our
parsing algorithm. Actually, ambiguities in grammar
rules that are handled by backtrncking in DCGs are
expanded into processes, and they are solved in a single
environment (this means there is no restoration of
environments required by backtracking). DCG
formalism is a context free grammar augmented by
arguments in grammatical symbols and extra-
conditions (expressed by Prolog programs). Since
arguments in grammatical symbols of DCGs are
represented as arguments of predicates also in SAX,
they are treated in the same way. The simplest way to
treat extra-conditions is to put them in the
corresponding place in the transformed Prolog clauses.
Unfortunately, they may then have different meanings
for two reasons. Firstly, extra-conditions are evaluated
only once in our system. In other words, only the first
successful substitution to variables is computed.
Secondly, since ambiguities spawn as many processes,
the same variables that should be in different
environments are inevitably treated in a single
environment. This requires copying or renaming the
variables, and that would cost much in both time and
space.

To cope with these problems, we put some
restrictions on the extra-conditions. That is, the extra
conditions evaluated dynamically in the parsing
process must be deterministic and substitution to
variables in the body of the grammar rules is
prohibited. The second condition insists that only the
variables in the heads of grammar rules are allowed to
be instantiated. Thus, the flow of data must be from
bottom to top. The form of a grammar rule of our
system is defined like (12).

(12) ad =-> al,{ extra_1},... .an,{ extra_n }
& { delayed_extra }.

In this rule, 'ai' is a grammatical symbols possibly
with arguments, and extrai is an extra-condition (a
sequence of Prolog goals) evaluated dynamically.
delayed_extra is also an extra-condition. It is,
however, not evaluated dynamically. & is the special
symbol to separate such an extra-condition from the
syntactic description. As in DCGs, extra-conditions are
written between braces ( { and } ) in grammar rules. In
the actual implementation, extra-conditions separated

by & are pushed into a stack-like data structure and
they are evaluated after the successful termination of
the parsing process. Such a parsing program is, of
course, generated by the SAX translator. The user can
also specify the strategy to evaluate these delayed
extra-conditions, either in a top-down manner or a
bottom-up and left to right manner. To give the flavour
of the translation of such a grammar description into
Prolog programs, (13) and (14) show the transformed
clauses corresponding to al and an of (12), in which all
is the type-one clause for al, and an2 is the type-two
clause for an. Of course, these definitions are more
complicated if there are other occurrences of these
nonterminal symbols in grammar rules. One extra
argument is added to both grammar symbols and
identifiers for carrying non-dynamic extra-conditions,
extrai is used as the condition to decide whether to
produce the identifier. EX is (a set of) non-dynamic
extra-conditions included in the grammar rule that has
constructed a1. It is passed to the next process through
the identifier. (14) succeeds only when extran is
evaluated successfully. delayed_extra is passed to the
head of the grammar rule forming a tree structure
consisting of extra-conditions. Although the leaves are
aligned in reverse order, they are evaluated according
to the user's instruction.

(13) al1{X.EX . ¥.Yt) :-
tp_filter(X,a0,New_X).
{ extra_1,
tp_ovt(New X,[id1(New X . EX)|Xt],
Xt y. vty : Yy =Yt ), !.

(14) an2([4dn(X,EX1)|Fail ) Exn Y Yt} :-
extra_n, !,
al(X,[delayed_extra EXn]EX1].Y,Y1),
an2{Tail,LC,Y1,Yt).

The restriction to DCG formalism may seem a strong
limitation in describing natural language grammars.
The authors, however, do not think that this causes
difficulties in writing grammars. In one view, it is a
separation of the test procedures for checking
grammaticality and the procedures for generation of
meaning structures for the input sentence. The extra-
condition extra's work as a test procedure to determine
whether to produce an identifier or a new process. For
example, extrai suppresses the production of the
identifier put at the place between al and a2 if its
evaluation fails. We recommend that users write test
programs for reducing the parsing space as dynamic
extra-conditions and write programs for constructing
meaning structures that do not affect the syntactic well-
formedness as non-dynamic extra-conditions.

The system has been tested by an English grammar
with about 200 grammar rules and about 500 lexical
entries. The grammar is based on that of Diagram
[Robinson 82] with some modification. Most of the
sample sentences are collected from the abstract of
Robinson's paper and are listed in the Appendix. The
time required to obtain all the parse trees are listed in
Table 1. This experiment does not involve the
morphological analysis, and inflections are treated by
grammar rules. Comma is also defined as a lexical
entry. The morphological analysis part of the system is

Matsumoto and Sugimura 673



now under development. It will be implemented as a
preprocess of the parser. It also employs a similar
model to the parsing algorithm, which will be reported
elsewhere. For the expreriment, we used Quintus
Prolog on VAX 11/785 and ESP on PSI Machine, the
Prolog Machine developed at ICOT. The speed of PSl is
about 30 kiloLIPS (Logical Inferences per Second). The
system is currently used as the syntactic analysis part
of our Japanese discourse understanding system
DUALS.

IV CONCLUSIONS

This paper briefly introduced our parsing system
based on logic programming. Let us summarize the
main charasteristies of the system. The system employs
a bottom-up parsing strategy so that left-recursive rules
do not cause problems. The group of efficient parsing
algorithms called tableau methods, such as Earley's
algorithm [Earley 70] or Chart Parsing [Kay 80] use
side-effects to keep intermediate parse trees. Our
system creates processes (predicate calls) when
intermediate parse trees are constructed. It gives the
same effect to the parser without using any side-effects.
The translated Prolog program is deterministic and it
never backtracks. In particular, the definition of type-
two clauses is a tail recursive program. These are the
reasons of the efficiency of our system when it is
compiled.

The translator from a grammar of the restricted
DCG introduced in the preceeding section to a Prolog
program has been developed. The parser automatically
produces parse trees consisting of non-dynamic extra-
conditions. If there is more than one parse tree, they
are evaluated after renaming the variables since some
parse trees may share logical variables.

Several projects are underway at ICOT concerning
the system. A large Japanese grammar is under
development, which will eventually run on the system.
A morphological analysis part, together with automatic
segmentation part for Japanese language are also
under development. Efforts to extend the range of
grammar formalism are also being made. As for
syntactic description, we have already proved that even
Gapping Grammars [Dahl 84a] [Dahl 84b] can be
implemented in our framework [Matsumoto 87]. Some
of our members are comparing our system with other
general parsing systems.

APPENDIX: Sample Sentences
1. He explain s the example with rule s. (8 words)
2. Itis not tie ed to a particular domain of application 8.
(12 words)
3. Diagram analyze s all of the basic kind s of phrase s
and sentence s and many quite complex one s. (21
words)
4. The annotation s provide important information for
other part s of the system that interpret the expression
in the context ofa dialogue. (23 words)
5. Procedure s can also assign score s to an analysis,
rate ing some application s of a rule as probable or as
unlikely. (24 words)

674 NATURAL LANOUAQE

6. This paper present 8 an explanatory overview of a
large and complex grammar, Diagram, thatis use ed in
a computer for interpret ing English dialogue. (28
words)

7. Its procedure s allow phrase s to inherit attribute s
from their constituent s and to acquire attribute s from
the large er phrase s in which they themselves are
constituents. (32 words)

8. Consequently, when these attribute s are use ed to
set context sensitive constraint s on the acceptance of
an analysis, the contextual constraint s can be impose
ed by condition s on constituency. (34 words)

Table 1 : Parse Time for Sample Sentences

Sentence | Number !:r‘i,“;?:: %l:nrse& Tli’;res‘ew
Number |of Words | "Trees (msec) (msec)
1 8 2 160 80
z 12 1 290 126
3 21 3 540 239
4 23 7 1100 508
5 24 4 690 332
8 28 1 870 394
7 82 12 1630 741
8 34 4 820 375

* Time measured by compiled Quintus-Prolog on VAX 11/786
** Time measured by compiled ESP on PSI

REFERENCES

[Dahl 84a| V Dahl and Il. Abramson, "On Gapping Grammars,"
Proc, 2nd International Conference on jLogjc Programming,
Uppsala, Sweden, pp 77-88,1984

IDahl 84bj V. Dahl, "More on Gapping Grammars," Proc. the
International Conference on Fifth Generation Computer Systems.
Tokyo, Japan, pp.669-677,1984.

Earley 701 J Earley, "An Efficient Context-Free Parsing
Algorithm,"CLAEM, Vol.13, No.2, pp.94-102, 1970.

| Kay 801 M. Kay, "Algorithm Schemata and Data Structures in
Syntactic Processing," Technical Report CSL-80-12, Xerox PARC,
Oct. 1980.

[Matsumoto 83] Y. Matsumoto, et al., "BUP. A Bottom-Up Parser
Embedded in Prolog," New Generation Computing. Vol.1, No.2,
pp. 145-158,1983.

IMatsumoto 86| Y. Matsumoto, "A Parallel Parsing System for
Natural Language Analysis," Proc. 3rd International Conference
on Logic Programmaing. pp.396-409, London, 1986.

IMatsumoto 87] Y. Matsumoto, "Parsing Gapping Grammars in
Parallel," to be published as ICOT Technical Report, 1987.

(Pereira 80] F. Pereira and D. Warren, "Definite Clause
Grammars for Language Analysis - A Survey of the Formalism
and a Comparison with Augmented Transition Networks,"
Artificial intelligence. Vol.13, pp.231-278,1980.
(Robinson 82| .J J Robinson, "Diagram:
Dialogues," CACM. Vol.26, No.l, pp.27-47,1982

A Grammar for



