
A PARSING SYSTEM BASED ON LOGIC PROGRAMMING

Yuj i Matsumoto and Ryoichi Sugimura
Institute for New Generation Computer Technology

1-4-28 Mita, Minato-ku,Tokyo, 108, Japan

AKSTKACT
The paper presents a practical parsing system based

on logic programming. A restricted Def in i te Clause
Grammar is assumed as grammar description and the
grammar is translated into a parsing program wr i t ten
in Prolog. The system employs a bottom-up pars ing
s t r a t e g y w i t h top-down p r e d i c t i o n . The m a j o r
advantages of our system are that the system works in a
bottom-up manner so that the left-recursive rules do not
cause di f f icul t ies, the parsing process does not involve
backtracking, and there is no duplicated construction of
same syntactic structures. Experiments are shown to
estimate the efficiency of the system.

I I N T R O D U C T I O N

This paper presents a practical parsing system based
on logic programming. A l though the key a lgor i thm of
the system originates from the authors' idea on paral lel
parsing [Matsumoto 86], it provides a quite ef f ic ient
p a r s i n g e n v i r o n m e n t e v e n i n a s e q u e n t i a l
i m p l e m e n t a t i o n . We also p resen t a g r a m m a r
descr ip t ion method wh ich is ac tua l l y a subset of
Def in i te Clause Grammar (DCG) formal ism [Pereira
80]. The restr ict ion given to DCG guarantees that the
parsing system operates eff iciently. We do not th ink
this restr ict ion is too severe for grammar writers.

The current parsing system is called SAX, whi le the
paral le l implementat ion is called PAX. In both of them,
al l the grammatical symbols such as noun phrases and
verb phrases as wel l as lexical symbols are defined as
p r e d i c a t e s o f P r o l o g o r o f t h e p a r a l l e l l og ic
programming language the system is implemented in .
In this sense it resembles DCGs translated into Prolog
programs. The major advantages of our system are that
i t works in a bot tom-up manner so tha t the left-
recursive rules do not cause di f f icul t ies, the pars ing
process does not involve backtracking, and there is no
duplicated construction of syntactic structures. Our
previous bottom-up parsing system, BUP [Matsumoto
83], has s imi lar charasterist ics and we have almost
equal performance from both of them when they are
executed by the Prolog interpreter. However, SAX is
near ly one order of magnitude more efficient when they
are both compiled. This is because BUP keeps part ia l
p a r s i n g r e s u l t s by s ide-ef fect whereas they are
represented as processes in SAX.

As described above, the basic a lgor i thm is based on
our paral le l parsing method. The current system is
specialized for sequential implementat ion. The next
section describes the basic a lgo r i thm of our pars ing

system and shows how grammar rules are translated
in to a Pro log p r o g r a m . Sect ion 3 e x p l a i n s how
g r a m m a r r u l e s are w r i t t e n and e x a m i n e s the
performance of the sys tem by a sample E n g l i s h
grammar and shows that we have achieved suff icient
efficiency in parse t ime.

I I O V E R A L L D E S C R I P T I O N O F T H E S Y S T E M

This section br ief ly describes the organizat ion of
SAX. I t is conven ien t to describe f i r s t the basic-
a lgor i thm for context free grammars. Suppose we have
a context free grammar shown in (1). In the r ight -hand
side of the grammar rules, the symbol 'id' followed by a
number stands for an i den t i f i e r t ha t i nd i ca tes a
part icular position in a part icular grammar rule and is
not a grammatical symbol. When these rules are seen
as grammar rules (or more precisely as DCG rules) they
should be neglected. As a matter of fact, users need not
specify these iden t i f i e rs . They are au toma t i ca l l y
assigned by the SAX t rans lator , wh ich generates a
parser from the grammar. We ommi t the lexical part in
the fo l lowing grammar rules.

(1)

The parsing process operates from left to r igh t and
from bottom to top, ie, from surface words to more wel l -
formed tree structures. Suppose a noun phrase has jus t
been found, there are two kinds of processes tha t must
be performed according to the grammar rules. The first
is to start parsing by using new grammar rules. The
other is to augment already constructed incomplete tree
structures to more complete ones. As mentioned in the
introduct ion, a l l grammat ical symbols are defined as
predicates of the Pro log p rog ram. There fore , the
discovery of a noun phrase corresponds to a cal l of the
def in i t ion of np. Since the parsing process proceeds from
left to r igh t and bottom to top, a cal l of np produces
ident i f iers i d l and id3 which indicate that the parsing
process has successfully proceeded up to these points of
the grammar rules. It is defined as a Prolog clause (2).

(2)

Matsumoto and Sugimura 671

The second and t h i r d a rgumen ts of the clause
represent a set of these two ident i f iers by a difference
l is t . The first a rgument of th is clause is a l i s t of
ident i f ie rs produced by the words or g r a m m a t i c a l
symbols jus t preceding the noun phrase in the given
inpu t sentence. The clause produces these identi f iers
w i thou t regard to i ts contents. I t w i l l be, however,
modif ied when top-down prediction is made use of. This
clause corresponds to the first job for a noun phrase
mentioned above and the meaning is that by finding a
noun phrase these two rules are possibly used to bu i ld
up new parsing tree structures. For example, if 1 d 1 is
received by a verb phrase this means that a sentence is
found. S imi la r l y , the second job for the noun phrase is
to bu i l d up more complete tree s t r u c t u r e s us i ng
par t ia l ly constructed trees and is defined by the Prolog
clauses shown in (3).

(3)

The second clause of (3) says that it can construct a
noun phrase if i t receives id4 , which is only produced
by a coconj (coord inat ing conjunction) tha t has already
received a noun phrase. The th i rd and fourth clause
correspond to the o ther occurrences of np in the
g rammar ru les. The f i r s t clause specif ies t h a t i t
produces an empty difference l ist when it receives an
empty l ist. The last clause is necessary to discard the
ident i f iers i r re levant to a noun phrase.

The def in i t ion (2) is for the occurrences of noun
phrases as the left-most element in r ight -hand side of
grammar rules, and the def in i t ion (3) is for the other
occurrences of noun phrases in r i g h t - h a n d side of
grammar rules. We call them type-one occurrence and
type- two occurrence, respec t i ve ly . The comple te
def in i t ion of a noun phrase is j u s t a un ion of these
def ini t ions as shown in (4).

(4)
If a grammat ical symbol appears in grammar rules

only as either of type-one and type-two occurrence, a
clause l ike (4) is not necessary for that grammat ica l
symbol, cocon j is an example and is defined l ike (5). It
has merely type-two occurrences.

(5) ■

Lex icon is de f ined in a qu i te s t r a i g h t f o r w a r d
manner. A l l words can also be defined conceptually as
Prolog predicates, though it is not practical when we
have thousands of lexical elements. For the present,
words are def ined as (6), wh ich says tha t ' the' is a
determiner.

(6)

Pars ing of a sentence is done by c a l l i n g the
def ini t ions of the words tha t comprises the sentence.
For instance, (7) is the i n i t i a l call for parsing 'The man
walks. '

(7)

In order to specify that the grammat ical symbol the
parser is l ook ing for is a sentence, the f o l l o w i n g
def in i t ion must be added to the type-two def in i t ion of
sentence.

(8) sentence2

beg i n is a special ident i f ier to indicate the beginning
of a sentence, and end is produced only when a sentence
is found from the head of the input sentence. It is now
very clear that the parsing of a sentence succeeds when
the ident i f ier end is produced by the last word of the
input sentence, f i n is the predicate to recognize end.

This summerizes br ief ly the basic a lgor i thm of the
system. One more th ing we have to ment ion is top-
down predict ion to reduce the search space of the
pars ing process. Type-one clauses l i ke (2) produce
ident i f iers w i thout regard to the contents of the l ist they
receive. Since the received l ist consists of the contexts
jus t before the word or grammatical symbol tha t calls
the type-one clause, the parsing space can be reduced by
referr ing to the contents. The l is t it receives is a l is t of
ident i f iers and each ident i f ier has i ts own expect ing
grammat ical symbol. For instance, i d l is expecting a
verb phrase, id2 is expecting a noun, and so on. The
production of an ident i f ier by a type-one clause means
the use of the g r a m m a r ru le w h i c h the i d e n t i f i e r
belongs to. As for the clause (2), i d l corresponds to the
use of the first grammar rule in (1). I f -sentence is not
expected or if any grammat ical symbol tha t can be a
root of a tree w i th a sentence as its left-most leaf is not
expected by any of the elements in the l is t i t receives, i t
is useless to produce i d l . Top-down prediction can be
realized as a filtering process in our parsing system. A
f i l te r ing process is assigned to each ident i f ier produced
by a type-one c lause, and i t f i l t e r s o u t a l l t he
unnecessary elements from the l ist (the context t h a t
preceeds i t) . I f a l l the elements in the received l is t are
filtered out, the current ident i f ier need not be produced.
(9) is the new def in i t ion of (2) that incorporates such a
f i l te r . (10) and (11) give the a u x i l i a r y predicates.
tp f i 1 te r filters out a l l the unnecessary elements f rom
X and produces NewX consisting of ident i f iers tha t are
at least necessary, i d p a i r returns the grammat ica l
symbol tha t the ident i f ier is expecting, l i n k checks
whether the g iven two g rammat i ca l symbol can be
related as parent and the le f t -most son of a t ree .
Def in i t ions of these clauses are generated by the
translator automat ica l ly . t p o u t re tu rns a n empty
difference l is t i f NewX is empty and produces the
ident i f ier i f NewX contains at least one element. id3
does not have a filter because the head of the or ig ina l
grammar rule it belongs to is np, the same grammat ica l
symbol as itself.

672 NATURAL LANGUAGE

(9)

(10)

(11)

111 SYSTEM AND PERFORMANCE
Careful readers may have noticed that there are

some difficulties in implementing full DCGs in our
parsing algorithm. Actually, ambiguities in grammar
rules that are handled by backtrncking in DCGs are
expanded into processes, and they are solved in a single
environment (this means there is no restoration of
environments required by backtracking). DCG
formalism is a context free grammar augmented by
arguments in grammatical symbols and extra-
conditions (expressed by Prolog programs). Since
arguments in grammatical symbols of DCGs are
represented as arguments of predicates also in SAX,
they are treated in the same way. The simplest way to
t reat ext ra-condi t ions is to put them in the
corresponding place in the transformed Prolog clauses.
Unfortunately, they may then have different meanings
for two reasons. Firstly, extra-conditions are evaluated
only once in our system. In other words, only the first
successful substitution to variables is computed.
Secondly, since ambiguities spawn as many processes,
the same variables that should be in di f ferent
environments are inevitably treated in a single
environment. This requires copying or renaming the
variables, and that would cost much in both time and
space.

To cope w i t h these problems, we put some
restrictions on the extra-conditions. That is, the extra
conditions evaluated dynamically in the parsing
process must be deterministic and substitution to
variables in the body of the grammar rules is
prohibited. The second condition insists that only the
variables in the heads of grammar rules are allowed to
be instantiated. Thus, the flow of data must be from
bottom to top. The form of a grammar rule of our
system is defined like (12).

(12)

In this rule, 'ai' is a grammatical symbols possibly
with arguments, and e x t r a i is an extra-condition (a
sequence of Prolog goals) evaluated dynamically.
de layed_ext ra is also an extra-condition. It is,
however, not evaluated dynamically. & is the special
symbol to separate such an extra-condition from the
syntactic description. As in DCGs, extra-conditions are
written between braces ({ and }) in grammar rules. In
the actual implementation, extra-conditions separated

by & are pushed into a stack-like data structure and
they are evaluated after the successful termination of
the parsing process. Such a parsing program is, of
course, generated by the SAX translator. The user can
also specify the strategy to evaluate these delayed
extra-conditions, either in a top-down manner or a
bottom-up and left to right manner. To give the flavour
of the translation of such a grammar description into
Prolog programs, (13) and (14) show the transformed
clauses corresponding to al and an of (12), in which a l l
is the type-one clause for a l , and an2 is the type-two
clause for an. Of course, these definitions are more
complicated if there are other occurrences of these
nonterminal symbols in grammar rules. One extra
argument is added to both grammar symbols and
identifiers for carrying non-dynamic extra-conditions,
e x t r a i is used as the condition to decide whether to
produce the identifier. EX is (a set of) non-dynamic
extra-conditions included in the grammar rule that has
constructed a 1. It is passed to the next process through
the identifier. (14) succeeds only when e x t r a n is
evaluated successfully. delayed_extra is passed to the
head of the grammar rule forming a tree structure
consisting of extra-conditions. Although the leaves are
aligned in reverse order, they are evaluated according
to the user's instruction.

(13)

(14)

The restriction to DCG formalism may seem a strong
limitation in describing natural language grammars.
The authors, however, do not think that this causes
difficulties in writing grammars. In one view, it is a
separation of the test procedures for checking
grammaticality and the procedures for generation of
meaning structures for the input sentence. The extra-
condition extra's work as a test procedure to determine
whether to produce an identifier or a new process. For
example, e x t r a i suppresses the production of the
identifier put at the place between al and a2 if its
evaluation fails. We recommend that users write test
programs for reducing the parsing space as dynamic
extra-conditions and write programs for constructing
meaning structures that do not affect the syntactic well-
formedness as non-dynamic extra-conditions.

The system has been tested by an English grammar
with about 200 grammar rules and about 500 lexical
entries. The grammar is based on that of Diagram
[Robinson 82] with some modification. Most of the
sample sentences are collected from the abstract of
Robinson's paper and are listed in the Appendix. The
time required to obtain all the parse trees are listed in
Table 1. This experiment does not involve the
morphological analysis, and inflections are treated by
grammar rules. Comma is also defined as a lexical
entry. The morphological analysis part of the system is

Matsumoto and Sugimura 673

now under development. It wi l l be implemented as a
preprocess of the parser. It also employs a similar
model to the parsing algorithm, which wi l l be reported
elsewhere. For the expreriment, we used Quintus
Prolog on VAX 11/785 and ESP on PSI Machine, the
Prolog Machine developed at ICOT. The speed of PSI is
about 30 kiloLIPS (Logical Inferences per Second). The
system is currently used as the syntactic analysis part
of our Japanese discourse understanding system
DUALS.

IV CONCLUSIONS
This paper briefly introduced our parsing system

based on logic programming. Let us summarize the
main charasteristies of the system. The system employs
a bottom-up parsing strategy so that left-recursive rules
do not cause problems. The group of efficient parsing
algorithms called tableau methods, such as Earley's
algorithm [Earley 70] or Chart Parsing [Kay 80] use
side-effects to keep intermediate parse trees. Our
system creates processes (predicate calls) when
intermediate parse trees are constructed. It gives the
same effect to the parser without using any side-effects.
The translated Prolog program is deterministic and it
never backtracks. In particular, the definition of type-
two clauses is a tail recursive program. These are the
reasons of the efficiency of our system when it is
compiled.

The translator from a grammar of the restricted
DCG introduced in the preceeding section to a Prolog
program has been developed. The parser automatically
produces parse trees consisting of non-dynamic extra-
conditions. If there is more than one parse tree, they
are evaluated after renaming the variables since some
parse trees may share logical variables.

Several projects are underway at ICOT concerning
the system. A large Japanese grammar is under
development, which wi l l eventually run on the system.
A morphological analysis part, together with automatic
segmentation part for Japanese language are also
under development. Efforts to extend the range of
grammar formalism are also being made. As for
syntactic description, we have already proved that even
Gapping Grammars [Dahl 84a] [Dahl 84b] can be
implemented in our framework [Matsumoto 87]. Some
of our members are comparing our system with other
general parsing systems.

APPENDIX : Sample Sentences
1. He explain s the example with rule s. (8 words)
2. It is not tie ed to a particular domain of application 8.
(12 words)
3. Diagram analyze s all of the basic kind s of phrase s
and sentence s and many quite complex one s. (21
words)
4. The annotation s provide important information for
other part s of the system that interpret the expression
in the context of a dialogue. (23 words)
5. Procedure s can also assign score s to an analysis,
rate ing some application s of a rule as probable or as
unlikely. (24 words)

6. This paper present 8 an explanatory overview of a
large and complex grammar, Diagram, that is use ed in
a computer for interpret ing English dialogue. (28
words)
7. Its procedure s allow phrase s to inherit attribute s
from their constituent s and to acquire attribute s from
the large er phrase s in which they themselves are
constituents. (32 words)
8. Consequently, when these attribute s are use ed to
set context sensitive constraint s on the acceptance of
an analysis, the contextual constraint s can be impose
ed by condition s on constituency. (34 words)

Table 1 : Parse Time for Sample Sentences

REFERENCES
[Dahl 84a| V Dahl and I I . Abramson, "On Gapping Grammars,"
Proc, 2nd Internat ional Conference on jLogjc P rog ramming ,
Uppsala, Sweden, pp 77-88,1984
IDahl 84bj V. Dahl, "More on Gapping Grammars," Proc. the
International Conference on Fi f th Generation Computer Systems.
Tokyo, Japan, pp.669-677,1984.
Earley 701 J Ear ley, " A n Ef f ic ient Context-Free Pars ing
Algor i thm,"CLAEM, Vol.13, No.2, pp.94-102, 1970.
I Kay 801 M. Kay, "Algor i thm Schemata and Data Structures in
Syntactic Processing," Technical Report CSL-80-12, Xerox PARC,
Oct. 1980.
[Matsumoto 83] Y. Matsumoto, et al. , "BUP. A Bottom-Up Parser
Embedded in Prolog," New Generation Computing. Vo l .1 , No.2,
pp. 145-158,1983.
IMatsumoto 86| Y. Matsumoto, "A Parallel Parsing System for
Natural Language Analysis," Proc. 3rd International Conference
on Logic Programmaing. pp.396-409, London, 1986.
IMatsumoto 87] Y. Matsumoto, "Parsing Gapping Grammars in
Paral lel," to be published as ICOT Technical Report, 1987.
(Pereira 80] F. Pereira and D. W a r r e n , "De f in i te Clause
Grammars for Language Analysis - A Survey of the Formalism
and a Comparison w i t h Augmented T rans i t i on Ne tworks , "
Ar t i f ic ia l intelligence. Vol.13, pp.231-278,1980.
(Robinson 82| .J J Robinson, "D iag ram: A Grammar for
Dialogues," C A C M . Vol.26, No . l , pp.27-47,1982

674 NATURAL LANOUAQE

