
DISCOURSE CONSISTENCY AND MANY-SORTED LOGIC 

Jean VERONIS 
Groupe Representation et Traitement des Connaissances 

Centre National de la Recherche Scientifique 
30, Chemin Joseph Aiguier 

13402 MARSEILLE CEDEX 9 - FRANCE 

ABSTRACT 
We propose the use of a many-sorted logic based on a 

boolean lattice of sorts, with polymorphic functions and 
predicates, for natural language understanding. This type of 
logic provides a unified framework for various problems such 
as discourse consistency verification, polysemy and "abuses" 
of terms, syntactic ambiguity solving and anaphora resolution. 
In addition, this logic enables intelligent diagnosis of 
categorial constraint violations between predicates and 
arguments. 

I. INTRODUCTION 
In most fields for which natural language interfacing is 

relevant (expert systems, data bases, etc.), the universe is 
divided into categories, and inter-object relations are defined 
only between given categories. Thus, speaking about the 
hypotenuse of a circle or about the radius of a triangle does 
not make any sense*. Natural language interfaces must by all 
means prevent such inconsistencies. 

Herein, we propose the use of a many-sorted logic for 
inconsistency checking. In this approach, ill-sorted formulae 
do not belong to the logic language, and the problem of their 
truth value does not even arise, no more so than if they were 
syntactically ill-formed. The many-sorted logic used is based 
on a boolean lattice of sorts which reflects the categorial 
organisation of the universe. It includes polymorphic functions 
and predicates which enable us to handle polysemy 
problems (metonymy, "abuses" of terms, etc.). The sort 
computation mechanisms of this logic allow for consistency 
checking even if the sort of an objet is not expressed, thus 
allowing a rather elliptic style in the dialog, and enable us to 
provide intelligent diagnosis of the various possible situations 
of inconsistency. In addition, this logic automatically solves 
many cases of syntactic ambiguity and makes anaphora 
resolution easier. These various features provide for greater 
flexibility in natural language man-machine dialogue. 

While it is obvious that the above-mentioned natural 
language understanding (N.L.U.) problems can be solved by 
other means, we show here that many-sorted logics provide a 
unified framework and efficient algorithms. 

We use a particular many-sorted logic which has some 
similarities to that proposed by Cohn (1983), but also some 
differences, particularly in the way we define quantifiers and 
sorting functions (unfortunately, we have no room here to go 
into technical matters : see Veronis, 1987). In this logic, the 
set of sorts constitutes a boolean lattice for the partial order 
relation < ("a-sort-of") between sorts. This hypothesis is not at 
all a restrictive one, since the set of subsets 2U of the universe 
U of interpretation is really a boolean lattice for set inclusion, 
and since there exists a rather natural boolean morphism <p 
which maps the sort lattice into 2U (Figure 1). Given a sort s, 
(p(s) is the subset of individuals "which are" of sort s. 
Therefore, the relation x "is-an" s can be translated by x 
e <p(s). Hence, the boolean sort lattice is a perfect mirror of the 
organization of the universe. 

Figure 1 : boolean lattice of sorts 

II. SORT SYSTEM 
The interest of many-sorted logics in computer science 

in general has been stressed time and again, since they often 
make theorem proving easier by cutting down the search 
space (Walther, 1984, Cohn, 1985). In addition, they also 
constitute an efficient knowledge representation tool (Hayes, 
1971), hence our choice to use this feature in N.L.U. 

"Examples throughout tnis paper are taken from a natural 
language interface for a C.A.I, system for plane geometry 
under development at G.R.T.C. 

There is no need, of course, to describe in extenso the 
sort lattice, by giving a name to each sort. We will have 
eponymous and anonymous sorts, as in Cohn (1983). 
Eponymous sorts are those which are actually named, and 
correspond to sort predicates (e.g. triangle, iso-tri, right-tri, 
equi-trf). They are related to a family of subsets of the 
universe which constitute pertinent categories from a 
cognitive point of view. Anonymous sorts correspond to all the 
other subsets obtained by boolean closure from this family. 
They are useful in computation, but do not correspond to 
cognitively pertinent categories. They can be automatically 
expressed (only when the inference engine uses them) in 

Veronis 633 



terms of the eponymous sorts by means of the lattice 
operators R Li and \ (e.g. iso-tri n righMri will be associated 
with triangles which are both isosceles and right-angled, iso-
tri \equi-tri with those which are isosceles but not equilateral, 
etc.). 

Most many-sorted logics do not impose a boolean 
lattice structure on the sort system, and the relation < is seen 
simply as a common partial order. This can be debated on 
resolution efficiency and completeness grounds (Schmidt-
Schauss, 1985). Nevertheless, as we previously said, in 
N.L.U. we are concerned mainly with knowledge 
representation, and it is easy to see that if the sort system is 
not a boolean lattice, some sorts will be "lacking". For 
example, we need complements since if a triangle Is known 
as not being right-angled, we have no right to speak about its 
hypotenuse. Similar arguments can be advanced concerning 
meets and joins. Moreover, given the mechanism of 
eponymous/anonymous sorts described above, it is just as 
easy for a user to give a boolean system as to give a common 
partial order. One has simply to describe overlapping or 
disjointness of sorts, for example in terms of atomic sorts. 

III. POLYMORPHISM 

Polymorphism (Stratchey, 1967) is a very interesting 
feature as regards N.L.U., since it provides a good framework 
for polysemy. We will first distinguish between two types of 
polymorphism : true (or universal) and apparent (or ad 
hoc) polymorphism (Cardelli and Wegner, 1985). 

In universal polymorphism, the same function or 
predicate works uniformly on a range of sorts. It can be 
subdivided into Inclusion polymorphism, which is due to the 
inclusion of categories (for example, isoceles triangles inherit 
all functions and predicates that are allowed for triangles), 
and parametric polymorphism, in which an explicit or implicit 
parameter determines the coherence of functions or 
predicates relative to their arguments. In our system, set 
membership can be seen as a case of parametric 
polymorphism : points belong to segments, lines and circles; 
lines belong to line directions, but segments do not belong to 
lines, etc. 

In ad hoc polymorphism, while the same function or 
predicate (and the same word in natural language, assuming 
that we try to maintain, inasmuch as possible, a one-to-one 
correspondance between words and functions or predicates) 
works on different sorts, it corresponds in the interpretation to 
different, and even unrelated, functions or relations. It also 
subdivides into two major types, corresponding to different 
forms of polysemy in natural language. 

We have first a certain number of "abuses" of terms. 
Thus, sides and heights of a triangle are seen sometimes as 
lines, sometimes as segments; one can speak of 
perpendicular lines as well as perpendicular segments, and 
even about lines perpendicular to segments. This 
phenomenon can be seen as a form of metonymy: when we 
say that two segments are perpendicular, we want to say that 
the lines which contain them are perpendicular. Purist may 
consider that one should use distincts words, and distinct 
predicates, since one actually has different mathematical 
relations. Nevertheless, this is an unnecessary imposition on 
the user and generally leads to larger axiomatisations due to 
the duplication of information (e.g. in many cases, the same 
theorem can apply to the "perpendicularity" of both lines and 
segments). Through the use of polymorphic predicates and 
functions one can considerably simplify the system, and 
maintain one-to-one correspondences between words and 
predicates. Appropriate treatment precludes contradictions, 
and hence provides for a better modelling both from cognitive 

and linguistic view points. This first type of polysemy can be 
related to coercion polymorphism : the relations (e.g. 
perpendicularity) are actually defined for a given category 
(lines) in the universe, and their application to other 
categories (segments) through "abuse" of term can be 
understood only through a coercion schema (the lines 
containing those segments are perpendicular). 

The second type of polysemy is quite different. 
Although we can speak of the base of an Isosceles triangle, 
as well as the bases of a trapezoid, the sub-jacent 
mathematical phenomena are completely unrelated. The 
base of an isosceles triangle is defined as a side adjacent to 
two equal sides, whereas the bases of a trapezoid are two 
parallel opposite sides. This is no longer an "abuse" of a term 
based on a metonymic relationship (and, in fact, experts do 
not speak of "abuse" of term in such a case). Instead, the 
same word is accidentally "overloaded" by two unrelated 
meanings. Here again, there is no need to impose a rigid 
terminology, and this kind of polysemy can be handled In the 
logic system as overloading polymorphism. 

IV. CONSISTENCY VERIFICATION 
The natural language interface must verify the 

consistency of the dialog. This task is somewhat complicated 
by the fact that sorts may be expressed or left implicit. 
Phrases such as "circle C" or "A Is a point " explicitly assign 
sorts to objects, since the words "circle" or "point" 
correspond to sort predicates. In this case, the rest of the 
statement must be checked in order to verify consistency with 
these sorts. Quite often however, the sort of objects is not 
expressed. For example : "A and A' belong to D and D' 
respectively, and are distinct from O. ". Entire statements can 
be given in this fashion. In this case, the analysis system (and 
the human reader) must be able to reconstruct the sort of 
each object. 

Due to polymorphism, this sort computation is not 
purely trivial. From a sentence such as "S is the base of T", 
we cannot directly infer unique sorts for objects S and 7". 
Following the analysis of each sentence (or phrase) 
corresponding to an atomic formula, we create a sort array in 
which we keep track of the well-sorted domain of this formula, 
that is to say the greatest sorts which can be given to each 
variable while maintaining coherence. Roughly speaking, 
sentence or phrase combination corresponds to logical 
operations on formulae : conjunction, disjunction, negation, 
implication. We assume that a compound formula makes 
sense only if each of its constituents does, and this leads us 
to define a meet operation between sort arrays. Basically, 
well-sorted domains corresponding to constituent formulae 
are intersected to give the well-sorted domain of the 
compound formula, as shown in Figure 2. 

634 NATURAL LANGUAGE 



If the resulting array is empty, no sort can be attributed 
to variables in order to render the formula coherent. The 
formula is therefore ill-sorted, and discourse inconsistency is 
detected (Figure 3). We will describe below the diagnostic 
process corresponding to this case. When the analysis of the 
entire statement (in theorem and problem acquisition), or of a 
single sentence (in demonstration dialogs), is complete, and 
inconstancy is not detected, two cases can occur. 

1) If the final array enables us to express the sort of 
each variable as an eponymous sort, or as a meet of 
eponymous sorts, the discourse is quite satisfactory. 

2) If not, that is to say if the domain of some variable 
can only be expressed by means of joins or complements 
(e.g. x is a segment or a line), the discourse is ambiguous, 
and this situation must be reported to the user. 

Various cases of inconsistency can be distinguished, 
hence intelligent diagnoses can be provided instead of some 
standard laconic message such as "sentence rejected", which 
hardly helps the user to repair the mistake. Figure 4 shows 
various occurring situations. 

The sort computation also enables us to remove most 
syntactic ambiguities. Let us take for example the ambiguous 
sentence : [AB] is a chord of circle C of which D is the 
perpendicular bisector" . Two syntactic parsings can be 
performed depending on whether the relative clause is 
attached to chord or to circle. The sort computation 
automatically gives the second analysis as inconsistent. 
Finally, this technique can also facilitate the resolution of 
anaphora, by cutting down the space of candidate objects. 

V. CONCLUSION 
A many-sorted logic based on a boolean lattice of 

sorts, with polymorphic functions and predicates seems well-
suited to natural language understanding, it provides a 
unified framework for various problems such as discourse 
consistency verification, polysemy and "abuses" of terms, and 
facilitates syntactic ambiguity solving and anaphora 
resolution. In addition, this logic enables intelligent diagnosis 
of categorial constraint violations. We believe that our 
approach is not specific to the particular domain of geometry, 
from which we drew our examples, but, to the contrary, can be 
extended to many fields in which the universe of 
interpretation is divided into various categories of objects. 

REFERENCES 

1. CARDELLI, L, WEQNER, P., On understanding types, data 
abstraction and polymorphism, A.CM. Computing 
Surveys, 1985, 17,4, 471-522 

2. COHN, A.G., Mechanising a particularly expressive many-
sorted logic, Ph. D. Thesis, University of Essex, 1983 

3. COHN, A.G., On the solution of Schubert's Steamroller in 
many-sorted logic, UCAl, 1985, 1169-1174 

4. HAYES, P. J., A logic of actions, in Machine Intelligence 6, 
Metamathematics Unit, University of Edinburgh, 1971, 
495-520 

5. SCHMIDT-SCHAUSS, M., A many-sorted calculus with 
polymorphic functions based on resolution and 
paramodulation, UCAl, 1985, 1162-1168 

6. STRACHEY, Fundamental concepts in programming 
languages, Lecture Notes for International Summer 
School in Computer Programming, Copenhagen, 1967 

7. VERONIS, J., Verifications de coherence dans le dialogue 
homme-machine en langage natural, Note Interne GRTC 
N°186f 1987 

8. WALTHER, C, A mechanical solution of Schubert's 
Steamroller by many-sorted resolution, in Proc. NCAI 4, 
Austin, 1984,330-334 

Veronls 635 


