
Feedback as a Coindexing Mechanism
in Connectionist Architectures

Mark A. Jones

A T & T Bel l Laborator ies
M u r r a y H i l l , New Jersey 07974

ABSTRACT

Co-occurrence constraints play an important role
in rule-based systems such as natural language pro­
cessing. The constraints appear in many forms
including agreement restrictions (e.g.. number agree­
ment between subjects and predicates), selectional
restrictions on complement types, and filler-gap
movement dependencies. A general account of such
constraints is given in a parallel execution model for
rule-based systems — Active Production Networks
(APNs). The APN model is similar to connectionist
(or spreading activation) models, but explicitly pro­
vides a functional interpretation of rule-based
phenomena such as variable binding, multiple instan­
tiations (including recursion), and contextual expecta­
tions. Co-occurrence constraints are represented by a
theory of coindexing and trace capture, based on a
feedback mechanism. Several examples of constraint
processing are presented which, surprisingly, also
include phenomena such as phonological nulls and
contraction.

1. Introduction

There has been an increasing interest by research­
ers in cognitive science and artificial intelligence in
parallel processing models. Examples include
Anderson's ACT* system (Anderson 1983), the work
on connectionism at Rochester (Feldman and Ballard
1982), the Boltzmann machine model (Fahlman 1979;
Fahlman, Hinton and Sejnowski 1983), and the models
of Hopfield (1982) and Kirkpatrick (Kirkpatrick,
Gelatt and Vecchi 1983). The common theme in this
research is that intelligent activity can be modeled by
large networks of simple processing elements that use
some restricted form of message passing on a mas­
sively parallel basis. The models are somewhat simi­
lar to earlier neural network or spreading activation
theories of human cognitive processes (Selfridge 1958;
Minsky and PapErt 1972; Quillian 1968; Collins and
Loftus 1975), but benefit from advances in knowledge
representation, production systems and learning algo­
rithms. For example, several learning algorithms for
multi-stage networks have recently been discovered,
including the back-propagation learning algorithm of
Rumelhart (Rumelhart and McClelland 1986). The
lack of such learning algorithms was one obstacle to

previous development of neural network models
(Minsky and Papert 1972).

Current connectionist approaches are particularly
attractive for computations which can be cast as func­
tion optimization. By using distributed energy minim­
ization principles analogous to those of physical sys­
tems (e.g. annealing), minima that represent the prob­
lem solutions can be computed. A standard technique
is to encode problem constraints in such a way that
the energy minimum represents a "best-fit" solution;
the energy minimization process is thus an iterative
relaxation toward a solution. Hopfield and Tank
(1985) have worked on schemes to model associative
memories and the traveling salesman problem. Simu­
lated annealing has been applied to problems in VLSI
design (Kirkpatrick. Gelatt and Vecchi 1983; Otten
and van Ginneken 1984). In AI much of the work has
concentrated on best-fit problems in machine vision
(Sabbah 1982; Hinton 1981) and natural language
problems such as word sense disambiguation (Cottrell
1984; Waltz and Pollack 1984). Although relaxation
techniques have promise as best-fit categorizers. it is
not clear how the current models will deal with the
rule-governed behavior of parsers or problem solvers.
Selman (1985) has looked at the problem of parsing
bounded length input strings. Touretzky and Hinton
(1985) have proposed a hybrid production system
architecture that attempts to capture some aspects of
rule-based behavior. The overall operation is remin­
iscent of an OPS-5 interpreter in which conflict reso­
lution is accomplished by a relaxation process.

The Active Production Network (APN) model is a
parallel, rule-based network framework which
accounts for properties such as priming, variable
binding, and coindexing that are important for tasks
such as natural language processing. The APN model
describes processing behavior in terms of a distri­
buted activation algorithm as in connectionist models,
but it is not centrally concerned with questions of
detailed neural modeling, distributed vs. local
representations, or fixed vs. dynamic connections.
The emphasis is on the functional characteristics of
context-driven, parallel, rule-based processing. The
translation of the APN model into low-level connec­
tionist architectures remains an interesting, open
problem.

602 NATURAL LANGUAGE

2. The APN Model

Each connector (node) in an Active Production
Network is defined by an expression that describes
the message patterns to which it responds and the
resulting messages that are propagated. For conveni­
ence, each non-leaf connector is viewed as being pri­
marily an input connector (multiple inputs, one out­
put) or an output connector (multiple outputs, one
input).* Figure I shows a simple APN and the
corresponding rule-based description. The connector
names in an APN are uninterpreted but are usually
chosen to reflect the concepts which they represent.
APNs bear some resemblance to rule connection
graphs for theorem provers and graphical representa­
tions for grammars such as Augmented Transition
Networks (ATNs) (Woods 1970). As in connectionist
models, however, the APN network simultaneously
represents the data (grammar, facts, rules) of the pro­
cess and the process itself.

A comparison of the rules in Figure 1(b) with the
network in Figure 1(a) reveals that the set of connec­
tors has been explicitly designed to correspond to
familiar concepts in rule-based systems, while retain­
ing a clear interpretation in the activation-based
model. The input connectors, for example, include
disjunction and conjunction. The conjunctive connec­
tors, furthermore, divide into synchronous and asyn­
chronous types, and the asynchronous conjunctions
may be ordered (sequence) or unordered. Terminal
symbols correspond to network leaves having no
inputs. Other common rule notations can be built out
of these basic building blocks. Optionality. as in the
VP rule, is expressed by a combination of disjunction
and sequence. Repetition can be represented as
recursive optionality. The unordered, asynchronous
input conjunction (not shown in Figure 1) is useful in
grammars for non-configurational (free word order)
languages, for specifying order-free, conjunctive,
semantic relationships and for representing
unbounded movement.

The association of lexical and non-lexical features
is often described in first-order rule languages by
elevating lexical categories to predicates having asso­
ciated terms to represent non-lexical features. The
synchronous input conjunction performs this feature
association or concept specialization. Specialization
primarily defines feature sets and enforces selectional
restrictions by intersecting features from orthogonal
feature dimensions. For example, the concepts

* In general, we wi l l relax this convention to allow multiple dis­
junctive outputs (for input connectors) or disjunctive inputs (for
output connectors). Prior definitions of the A P N framework
(Jones 1983; Jones and Driscoll 1985) were equivalently stated in
node-based rather than connector-based terms. Nodes were
defined with arbitrary amounts of nested input logic. The more
atomic, connector-based scheme has proved more flexible and
straightforward to implement.

• * O f course, V[-trans] can also be considered a specialization
of —trans.

Jon— 603

feature dimensions. It is often convenient, as in Fig­
ure 1(b). to organize a grammar into rules which con­
vey phrase structure (generally input connector logic)
and rules which express lexical properties (output
connector logic). Ordered and unordered output
feedback connectors (not shown in Figure I) are dis­
cussed in a later section on coindexing.

In the basic cycle of execution in an A P N parser,
each word (or morpheme) in a sentence initiates mes­
sage passing activity in the network through the
corresponding (usually leaf) connector of the net­
work ; thus, the words supply exogenous inputs to the
network. A uni form activation algorithm specifies
the message passing behavior of each type of connec­
tor in response to the messages that it receives. In
general, activation messages sweep "upward " in the
network to instantiate or further instantiate the rules
represented by the connectors in the network. Par­
t ial ly instantiated asynchronous rules init iate expecta­
tion messages "downward" through the network to
contextually prime i t . In parsing terms, the expecta­
t ion messages dynamically compute a left-branching
reachability set.

Messages are simple, having only an associated
t ime and value. They do not encode complex struc­
tures such as entire binding lists, parse trees, feature
lists or meaning representations. Similarly, the local
processing of messages by connectors consists of sim­
ple operations such as maximizing input values. Con­
sequently, the local computation time is bounded and
the " resu l t " of a computation consists entirely of the
activation trace and the new state of the network.
The informat ion present in the activation trace can be
interpreted to create a more tradit ional parse tree
representation. For similar connectionist views, see
Feidman and Ballard (1982) and Rumelhart and
McClel land (1986). A comparison of marker passing,
value passing and unrestricted message passing sys­
tems is given bv Fahlman, Hinton and Sejnowski
(1983).

Message values are subject to the fol lowing decay
funct ion:

where / (/) is the message value at t ime /, and / (t{))
is the value of the most recent message, f rom time r0-
For the sake of eff iciency in the current sequential
simulat ion, the implementat ion numbers the input
events and associates these integral " t imes" wi th the
values sent in messages. The value is dynamically
recomputed as necessary according to the decay func­
t ion.

3. An Example

Before we enter a more formal discussion, a sim­
ple example should help to convey a feel for the exe­

cution behavior of the A P N model. Figure 2 illus­
trate the operation of the A P N in Figure 1 on the
input string likes me. The subscripted connectors and
links which appear to the right of the defined net­
work represent the activation trace. The trace may
be thought of as either an embedded state in the
defined network or as a newly constructed copy or
instance of a subgraph of the defined network. For
expository purposes, the fo l lowing discussion adopts
the latter view. The widths of the links in Figure 2
crudely approximate activation levels which are actu­
ally represented as real numbers in the range [- M A X ,
+ M A X] . The width of the output l inks f rom a con­
nector indicates whether its pattern is ful ly (level =
+ M A X) or part ial ly (0 < level < + M A X) satisfied.
Expectations are shown by dashed lines in widths
which analogously il lustrate fu l l (level = - M A X) or
part ial (- M A X < level < 0) activation levels. Unac-
t ivated l inks are shown by a thin solid l ine.

Figure 2(a) shows the network after the message
passing activity spawned by the exogenous input likes.
The activation messages passed upward in the net­
work cause new connectors (or states) V0. +trans0.
V[+trans]0* etc. to be instantiated. Disjunctive input
connectors (e.g.. VPO) maximize their inputs. Input
sequences (e.g., V-NPO) respond weakly to the first
input, using it primarilv to gate the second input
value. Expectation messages are propagated down­
ward f rom V-NPO (opposite in sign, but equal in mag­
nitude to the value of the first input) to condition the
network for an NP. At the end of each cycle of mes­
sage passing, the most highly-expected leaves
represent the new, pr imed context.

In Figure 2(b). me is introduced and activation
proceeds upward in the presence of the expectations.
Expectation messages do not instantiate rules, but
they can dynamically alter the behavior of the net­
work. At NP, the expectations from V-NPO cause it
(rather than PP. for example) to receive the activa­
tion message. Thus the network exhibits nonmono­
tonic behavior dependent upon the processing con­
text. In dif ferent expectation environments, the same
input sequence can lead to dif ferent activation pat­
terns.

It may help to compare the A P N execution model
w i th that of Prolog. Prolog uses backward-chaining,
static rule ordering and backtracking for non-
determinism. Roughly, APNs use forward-chaining,
dynamic rule ordering (based on expectations which
are passed by backward-chaining) and parallel ism.
The message passing activity in the network has a for­
mal inference analog. From an activation-based per­
spective, the rules in Figure 1(b) may be understood
as universally quanti f ied by an input event. For
example, the rule V[+trans]:-likes is formal ly
represented as (VA) likes (. *) -VCO A +trans (x). An
input event at t ime *o will activate likes (XQ) and
effectively instantiate the rule by universal specializa-

604 NATURAL LANGUAGE

tion and modus ponens. Once an input has been
bound, its activation value can modulate in response
to further input events which it dominates. Jones
(1986) lists inference schemas that describe the
semantics of activation messages for APN connectors.

The value of VPO and hence the expectations from
any input sequences being driven above VPO are con­
tinuously modulated up and down as the constituents
below it are started and progress to completion. The
final value of VPO, in Figure 2(b). is +MAX. indicat­
ing that the phrase was successfully parsed. If a PP
attachment were to commence at this point, the value
of VPO would be lowered until the PP "popped" by
raising its value. It is this raising and lowering of
activation levels, a kind of distributed pushing and
popping of context, that promotes generally context-
free descriptions (augmented by coindexing con­
straints) of the syntactic base of natural languages. A
similar phenomenon may extend to other levels of
description (e.g.. see Litman (1985) for a discussion of
nested discourse contexts).

Another interesting property of the APN execu­
tion model is that an ungrammatical input may be
recognized, but the overall score computed for the
phrase will be penalized. Unlike rigid rule-based sys­

tems where rules discretely succeed or fail, APN
rules are "leaky" and may partially succeed. This
situation arises, for example, when obligatory
sequences or conjunctions are only partially satisfied.
Also, a small percentage of an expectation value
received by an input sequence connector is distri­
buted to the second input; consequently, the nearest
attachment can be found even when constituents are
missing.

4. Coindexing

The grammar writing style exemplified in Figure 1
introduced a number of important representational
paradigms including the widespread use of features
and specialization in an X style grammar. In X
theory, rules generally have the form
X ^ C 1) . . . (C ,) - X n - r - (C ; + i) • • • (Q) , where each C,
is either a full projection of a lexical category or a
grammatical formative (Jackendoff 1977). The
remainder of this paper addresses the problem of how
to represent the numerous co-occurrence constraints
that must be added to the context-free skeleton. We
will focus primarily on agreement restrictions and
selectional restrictions on complements, although a
related application of the techniques may apply to

filler-gap movement dependencies as well (Jones
1985).

A common type of constraint, technically dis­
tinguished here as feature agreement, occurs when the
values of features in two constituents may vary, but
must match. In logic programming, feature agree­
ment is implicitly specified by using the same variable
name and requiring that the variable assignments
unify. For example, determiner-noun number agree­
ment is written as:

NP :- Det [number]. N [number].

Another type of co-occurrence constraint, feature
selection, occurs in situations in which the presense of
a particular feature constrains the value of another
feature in a complement. For example, the rule for
transitive VPs in Figure 1 fails to capture the case
constraint on the object NP. A more accurate
description is:

VP :- V[+trans]. NP[+obj).

One account is that the +trans feature controls the
case of the NP. A similar (if not the same) feature of
prepositions controls case in PPs. The same method
can be used to define complement and adjunct condi­
tions in general (e.g., voice, mood, tense). Unfor­
tunately, the usual logic programming style does not
make the dependence of +obj upon +trans explicit as
in the feature agreement case. The rule language
being developed in an APN compiler project syntacti­
cally distinguishes several types of feature depen­
dency.

Feature agreement and feature selection both
specify coindexing relationships. The general method
for coindexing in the APN framework requires an
activation trace along a feedback path between the
coindexed feature, represented by an output feedback
connector, and an asynchronous input conjunction
which dominates it. As expectations feed back to the
coindexed point, the coindexed feature is released
into the new expectation environment creating a new
activation trace. The trace effectively pre-instantiates
the next input in the asynchronous input conjunction,
constraining it to possess the selected features. Note
that this trace capture occurs during the time frame
of the current input without advancing in the input
string. The feedback response threshold can be tuned
to disallow feedback through distant (weak, non­
head) paths; this effectively implements a version of
the head-feature convention prevalent in linguistic
theories.

The captured trace produces different effects
depending on the form of the grammar that contains
it. In the feature selection case, shown in Figure 3
and discussed below, the expectations are transferred
to the selected feature(s). For feature agreement, as
in Figure 4, the expectations feed back directly to the
coindexed feature. Feature control is thus a lexical

property; for example, the +obj feature must conjoin
to the NP head at the level of the lexicon, below any
phrase structure specifier sequences. The expectation
levels for the selected feature(s) will be modulated
together with those of the head (N) by any interven­
ing context.

Figures 3(b)-(d) illustrate the APN feature selec­
tion technique applied to object case control for tran­
sitive verbs with the phrase likes me. Figure 3(b)
shows the network state after activation from the
verb. Note that an object NP instance has already
been created and an input sequence is used to
transfer the expectations to +obj feature. In Figure
3(c). after me. the +obj feature was correctly bound.
Note that a lexical entry not possessing a feature of
type +obj (such as /) would fail to satisfy the expecta­
tions of caseO and would be penalized accordingly.

Figures 4(b)-(d) shows an example of feature
agreement with the phrase a deer. In Figures 4(b)-(c),
the activation from numberO is integrated with the sig­
nal from DetO and fed back to to the N side of the NP.
where it is captured. The expectations uhop o f f " the
trace at the disjunctive input connector numberO.
which posts expectations for the connector (-plur) that
spawned its currently active input. The expectation
feedback prevents the full binding of the numberO
connector to an instance, but results in a pattern spe­
cialization. Effectively, this causes the rule
(Vx) -plur (x)-+number (x{)) to become active. In Fig­
ure 4(d), numberO is rebound to the new feature value
-plurJ.

The unordered output feedback connector, xand>.
captures more general feature agreement relation­
ships than seq>\ multiple, matching input sequences
can specify different input orders. In English
subject-verb agreement, for example, the tensed verb
element precedes the subject in questions and follows
the subject in declaratives. As in the case of the input
connectors seq< and xand<. seq> is really just a spe­
cial case of xand> in which the ordering is strict.

The reader should note that the feature dimen­
sions of number and lexical category in the NP gram­
mar of Figure 4(a). for example, are orthogonal. The
syntactic number agreement can be layered onto an
initial, over-generalized grammar that permitted any
determiner and noun combination on the basis of lexi­
cal category alone. The number feature can also be
coindexed to verbs for subject-verb agreement. This
kind of error correction is non-destructive, i.e.. previ­
ous network fragments do not have to be eliminated
or completely rewritten. This property may be espe­
cially relevant for learning algorithms or incremental
compiling approaches. Since the computations in
each feature dimension proceed in parallel, the accu­
racy is improved without a penalty in (parallel) per­
formance. The intersection of relatively simple
feature systems thus gives rise to complex behavior.
Woods (1980) offers a similar example of cascaded

606 NATURAL LANGUAGE

represent this theory. The same general principle
used for feature selection is applied to preinstantiate
the lexical category itself (instead of one of its
features). Upon feedback to +trans, it w i l l insert
itself as the null preposition. In turn, as a preposi­
t ion, it w i l l then pre-select the +obj feature for the
object NP. This has the advantage of localizing NP
case control to the preposition only.

Figure 5. An Example of Phonological Nulls

Interestingly, a similar principle can be used in the
representation of phonological contractions or com­
pounds. Figure 6 illustrates the idea for auxiliary-
negation contractions. The feedback onto the con­
traction completes the respelling of can't, for exam­
ple, into can not.

5. Conclusions

Al though more work is needed to understand how
to model syntactic and semantic processing in
activation-based schemes, several key representa­
tional techniques have been developed. The tech­
niques include the intersection and synchronization of
modular rule systems, specialization, feature selec­
t ion, feature agreement and phonological nulls. In
addit ion, a general grammar wr i t ing methodology
based on the features and phrase structure style of X
theory, modular i ty, and feature coindexing has been
proposed. This choice is consistent wi th trends in
linguistics away f rom transformational theories
toward modular theories such as Government-Binding
Theory or perhaps some form of phrase structure
grammar such as GPSG. It is our hope that adjust­

ments in linguistic theory and in the APN model wi l l
produce a parsimonious account of the expressive
power of natural languages. The current A P N model
has evolved over the last three years and should prob­
ably be taken as representative of a class of possible
approaches.

The parallel execution model of APNs has several
advantages over serial models. Besides the ability to
maintain mult iple hypotheses in paral lel, the
bandwidth among collections of modules (knowledge
sources) can be quite high. Large numbers of
features can be activated simultaneously in multiple
modules; conversely, the collective context f rom these
knowledge sources is also simultaneously projected in
the form of expectations to reduce the nondetermin-
ism engendered f rom any single source alone. Furth­
ermore, the model can be used for both recognition
and generation processes.

Unl ike most connectionist models, we have tr ied
to model explicit ly the functional characteristics of
rule based systems such as variable binding, feature
selection and agreement, mult iple instantiations
(including recursion), and contextual expectations.
Al though we are supportive of connectionist efforts
to develop neural models and learning algorithms, we
feel that there is also a need for research efforts such
as the A P N model to reach toward them from what is
known about rule-based systems. Ef for ts f rom both
directions can help prune the space of possible
models, of fer additional levels of description, and
bridge the "symbol" gap.

Jones 609

ACKNOWLEDGEMENTS

I owe a particular debt to Guy Story who. besides
providing programming support for the APN system,
has also contributed valuably to the insights presented
in this paper.

REFERENCES
Anderson, J. R. 1983 The Architecture of Cognition.

Harvard University Press. Cambridge. Mas­
sachusetts.

Bresnan, J. (Ed.) 1982 The Mental Representation of
Grammatical Relations. MIT Press. Cambridge.
Massachusetts.

Chomsky, N. 1982 Lectures on Government and Bind­
ing. Foris Publications, Dordrecht. Holland.

Collins, A. and Loftus. E. F. 1975 A Spreading-
Activation Theory of Semantic Processing. Psycho-
logical Review 82: 407-428.

Cottrell, G. W. 1984 A Model of Lexical Access of
Ambiguous Words. AAAI-84. Austin, Texas: 61-67.

Fahlman. S. 1979 NETL: A System for Representing and
Using Real-World Knowledge. MIT Press, Cam­
bridge, Massachusetts.

Fahlman. S. E.; Hinton, G. E.; and Sejnowski, T. J.
1983 Massively Parallel Architectures for A I :
NETL, Thistle, and Boltzmann Machines. AAAI-83.
Washington, D.C.: 109-113.

Feldman, J. A. and Ballard. D. H. 1982 Connectionist
Models and their Properties. Cognitive Science 6:
205-254.

Gazdar, G.; Klein, E.; Pullum, G.; and Sag, I. 1985
Generalized Phrase Structure Grammar. Harvard
University Press, Cambridge, Massachusetts.

Hinton, G. F. 1981 Shape Representation in Parallel
Systems. Proceedings of the 7th UCAI. Vancouver,
B.C.: 1088-1096.

Hopfieid, J. J. 1982 Neural Networks and Physical
Systems with Emergent Collective Computational
Abilities. Proc. Natl. Acad. Sci. 79: 2554-2558.

Hopfieid, J. J. and Tank, D. W. 1985 "Neural" Com­
putation of Decisions in Optimization Problems.
Biological Cybernetics 52: 141-152.

Jackendoff. R. 1977 X-Bar Syntax: A Study of Phrase
Structure. MIT Press. Cambridge, Massachusetts.

Jones, M. A. 1983 Activation-Based Parsing. Proceed­
ings of the 8th IJCAI. Karlsruhe, West Germany:
678-682.

Jones. M. A. and Driscoll. A. S. 1985 Movement in
Active Production Networks. Proceedings of the

23rd Annual Meeting of the Association for Computa­
tional Linguistics. Chicago: 161-166.

Jones, M. A. 1986 Active Production Networks — An
Activation-Based Parsing Model, released paper
(submitted for publication), AT&T Bell Labora­
tories.

Kirkpatrick, S.; Gelatt, Jr., C. D.; and Vecchi, M. P.
1983 Optimization by Simulated Annealing. Sci­
ence 220: 671-680.

Litman, D. 1985 Linguistic Coherence: A Plan-Based
Alternative. Proceedings of the 24th Annual Meeting
of the Association for Computational Linguistics.
New York: 215-223.

Minsky, M. and Papert, S. 1972 Perceptrons. MIT
Press, Cambridge, Massachusetts.

Otten, R. H. J. M. and van Ginneken, L. P. P. P. 1984
Floorplan Design Using Simulated Annealing.
International Conference on Computer-Aided Design.
Santa Clara, California: 96-98.

Quillian, M. R. 1968 Semantic Memory. In: Minsky,
M. L.. Ed.. Semantic information Processing. MIT
Press, Cambridge, Massachusetts: 227-270.

Rumelhart, D. E. and McClelland, J. L. 1986 Parallel
Distributed Processing. MIT Press, Cambridge,
Massachusetts.

Sabbah, D. 1982 A Connectionist Approach to Visual
Recognition. Technical Report 107. University of
Rochester, Rochester, New York.

Selfridge, O. G. 1958 Pandemonium: A Paradigm for
Learning. In: Uhr, L.. Ed., Pattern Recognition.
Wiley, New York: 237-250.

Selman, B. 1985 Rule-Based Processing in a Connec­
tionist System for Natural Language Understand­
ing. Technical Report CSRI-168. University of
Toronto, Toronto. Canada.

Touretzky. D. S. and Hinton. G. E. 1985 Symbols
Among the Neurons: Details of a Connectionist
Inference Architecture. Proceedings of the 9th
UCAI. Los Angeles, California: 244-248.

Waltz. D. L. and Pollack, J. B. 1984 Phenomenoiogi-
cally Plausible Parsing AAAl-84. Austin. Texas:
335-339.

Woods. W. A. 1970 Transition Network Grammars
for Natural Language Analysis. Communications of
the ACM 13(10): 591-606.

Woods, W. A. 1980 Cascaded ATN Grammars. AJCL
6(1): 1-12.

610 NATURAL LANQUAOf

