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ABSTRACT 

Co-occurrence constraints play an important role 
in rule-based systems such as natural language pro­
cessing. The constraints appear in many forms 
including agreement restrictions (e.g.. number agree­
ment between subjects and predicates), selectional 
restrictions on complement types, and filler-gap 
movement dependencies. A general account of such 
constraints is given in a parallel execution model for 
rule-based systems — Active Production Networks 
(APNs). The APN model is similar to connectionist 
(or spreading activation) models, but explicitly pro­
vides a functional interpretation of rule-based 
phenomena such as variable binding, multiple instan­
tiations (including recursion), and contextual expecta­
tions. Co-occurrence constraints are represented by a 
theory of coindexing and trace capture, based on a 
feedback mechanism. Several examples of constraint 
processing are presented which, surprisingly, also 
include phenomena such as phonological nulls and 
contraction. 

1. Introduction 

There has been an increasing interest by research­
ers in cognitive science and artificial intelligence in 
parallel processing models. Examples include 
Anderson's ACT* system (Anderson 1983), the work 
on connectionism at Rochester (Feldman and Ballard 
1982), the Boltzmann machine model (Fahlman 1979; 
Fahlman, Hinton and Sejnowski 1983), and the models 
of Hopfield (1982) and Kirkpatrick (Kirkpatrick, 
Gelatt and Vecchi 1983). The common theme in this 
research is that intelligent activity can be modeled by 
large networks of simple processing elements that use 
some restricted form of message passing on a mas­
sively parallel basis. The models are somewhat simi­
lar to earlier neural network or spreading activation 
theories of human cognitive processes (Selfridge 1958; 
Minsky and PapErt 1972; Quillian 1968; Collins and 
Loftus 1975), but benefit from advances in knowledge 
representation, production systems and learning algo­
rithms. For example, several learning algorithms for 
multi-stage networks have recently been discovered, 
including the back-propagation learning algorithm of 
Rumelhart (Rumelhart and McClelland 1986). The 
lack of such learning algorithms was one obstacle to 

previous development of neural network models 
(Minsky and Papert 1972). 

Current connectionist approaches are particularly 
attractive for computations which can be cast as func­
tion optimization. By using distributed energy minim­
ization principles analogous to those of physical sys­
tems (e.g. annealing), minima that represent the prob­
lem solutions can be computed. A standard technique 
is to encode problem constraints in such a way that 
the energy minimum represents a "best-fit" solution; 
the energy minimization process is thus an iterative 
relaxation toward a solution. Hopfield and Tank 
(1985) have worked on schemes to model associative 
memories and the traveling salesman problem. Simu­
lated annealing has been applied to problems in VLSI 
design (Kirkpatrick. Gelatt and Vecchi 1983; Otten 
and van Ginneken 1984). In AI much of the work has 
concentrated on best-fit problems in machine vision 
(Sabbah 1982; Hinton 1981) and natural language 
problems such as word sense disambiguation (Cottrell 
1984; Waltz and Pollack 1984). Although relaxation 
techniques have promise as best-fit categorizers. it is 
not clear how the current models will deal with the 
rule-governed behavior of parsers or problem solvers. 
Selman (1985) has looked at the problem of parsing 
bounded length input strings. Touretzky and Hinton 
(1985) have proposed a hybrid production system 
architecture that attempts to capture some aspects of 
rule-based behavior. The overall operation is remin­
iscent of an OPS-5 interpreter in which conflict reso­
lution is accomplished by a relaxation process. 

The Active Production Network (APN) model is a 
parallel, rule-based network framework which 
accounts for properties such as priming, variable 
binding, and coindexing that are important for tasks 
such as natural language processing. The APN model 
describes processing behavior in terms of a distri­
buted activation algorithm as in connectionist models, 
but it is not centrally concerned with questions of 
detailed neural modeling, distributed vs. local 
representations, or fixed vs. dynamic connections. 
The emphasis is on the functional characteristics of 
context-driven, parallel, rule-based processing. The 
translation of the APN model into low-level connec­
tionist architectures remains an interesting, open 
problem. 
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2. The APN Model 

Each connector (node) in an Active Production 
Network is defined by an expression that describes 
the message patterns to which it responds and the 
resulting messages that are propagated. For conveni­
ence, each non-leaf connector is viewed as being pri­
marily an input connector (multiple inputs, one out­
put) or an output connector (multiple outputs, one 
input).* Figure I shows a simple APN and the 
corresponding rule-based description. The connector 
names in an APN are uninterpreted but are usually 
chosen to reflect the concepts which they represent. 
APNs bear some resemblance to rule connection 
graphs for theorem provers and graphical representa­
tions for grammars such as Augmented Transition 
Networks (ATNs) (Woods 1970). As in connectionist 
models, however, the APN network simultaneously 
represents the data (grammar, facts, rules) of the pro­
cess and the process itself. 

A comparison of the rules in Figure 1(b) with the 
network in Figure 1(a) reveals that the set of connec­
tors has been explicitly designed to correspond to 
familiar concepts in rule-based systems, while retain­
ing a clear interpretation in the activation-based 
model. The input connectors, for example, include 
disjunction and conjunction. The conjunctive connec­
tors, furthermore, divide into synchronous and asyn­
chronous types, and the asynchronous conjunctions 
may be ordered (sequence) or unordered. Terminal 
symbols correspond to network leaves having no 
inputs. Other common rule notations can be built out 
of these basic building blocks. Optionality. as in the 
VP rule, is expressed by a combination of disjunction 
and sequence. Repetition can be represented as 
recursive optionality. The unordered, asynchronous 
input conjunction (not shown in Figure 1) is useful in 
grammars for non-configurational (free word order) 
languages, for specifying order-free, conjunctive, 
semantic relationships and for representing 
unbounded movement. 

The association of lexical and non-lexical features 
is often described in first-order rule languages by 
elevating lexical categories to predicates having asso­
ciated terms to represent non-lexical features. The 
synchronous input conjunction performs this feature 
association or concept specialization. Specialization 
primarily defines feature sets and enforces selectional 
restrictions by intersecting features from orthogonal 
feature dimensions. For example, the concepts 

* In general, we wi l l relax this convention to allow multiple dis­
junctive outputs (for input connectors) or disjunctive inputs (for 
output connectors). Prior definitions of the A P N framework 
(Jones 1983; Jones and Driscoll 1985) were equivalently stated in 
node-based rather than connector-based terms. Nodes were 
defined with arbitrary amounts of nested input logic. The more 
atomic, connector-based scheme has proved more flexible and 
straightforward to implement. 

• * O f course, V[-trans] can also be considered a specialization 
of —trans. 
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feature dimensions. It is often convenient, as in Fig­
ure 1(b). to organize a grammar into rules which con­
vey phrase structure (generally input connector logic) 
and rules which express lexical properties (output 
connector logic). Ordered and unordered output 
feedback connectors (not shown in Figure I) are dis­
cussed in a later section on coindexing. 

In the basic cycle of execution in an A P N parser, 
each word (or morpheme) in a sentence initiates mes­
sage passing activity in the network through the 
corresponding (usually leaf) connector of the net­
work ; thus, the words supply exogenous inputs to the 
network. A uni form activation algorithm specifies 
the message passing behavior of each type of connec­
tor in response to the messages that it receives. In 
general, activation messages sweep "upward " in the 
network to instantiate or further instantiate the rules 
represented by the connectors in the network. Par­
t ial ly instantiated asynchronous rules init iate expecta­
tion messages "downward" through the network to 
contextually prime i t . In parsing terms, the expecta­
t ion messages dynamically compute a left-branching 
reachability set. 

Messages are simple, having only an associated 
t ime and value. They do not encode complex struc­
tures such as entire binding lists, parse trees, feature 
lists or meaning representations. Similarly, the local 
processing of messages by connectors consists of sim­
ple operations such as maximizing input values. Con­
sequently, the local computation time is bounded and 
the " resu l t " of a computation consists entirely of the 
activation trace and the new state of the network. 
The informat ion present in the activation trace can be 
interpreted to create a more tradit ional parse tree 
representation. For similar connectionist views, see 
Feidman and Ballard (1982) and Rumelhart and 
McClel land (1986). A comparison of marker passing, 
value passing and unrestricted message passing sys­
tems is given bv Fahlman, Hinton and Sejnowski 
(1983). 

Message values are subject to the fol lowing decay 
funct ion: 

where / (/) is the message value at t ime /, and / (t{)) 
is the value of the most recent message, f rom time r0-
For the sake of eff iciency in the current sequential 
simulat ion, the implementat ion numbers the input 
events and associates these integral " t imes" wi th the 
values sent in messages. The value is dynamically 
recomputed as necessary according to the decay func­
t ion. 

3. An Example 

Before we enter a more formal discussion, a sim­
ple example should help to convey a feel for the exe­

cution behavior of the A P N model. Figure 2 illus­
trate the operation of the A P N in Figure 1 on the 
input string likes me. The subscripted connectors and 
links which appear to the right of the defined net­
work represent the activation trace. The trace may 
be thought of as either an embedded state in the 
defined network or as a newly constructed copy or 
instance of a subgraph of the defined network. For 
expository purposes, the fo l lowing discussion adopts 
the latter view. The widths of the links in Figure 2 
crudely approximate activation levels which are actu­
ally represented as real numbers in the range [ - M A X , 
+ M A X ] . The width of the output l inks f rom a con­
nector indicates whether its pattern is ful ly (level = 
+ M A X ) or part ial ly (0 < level < + M A X ) satisfied. 
Expectations are shown by dashed lines in widths 
which analogously il lustrate fu l l (level = - M A X ) or 
part ial ( - M A X < level < 0) activation levels. Unac-
t ivated l inks are shown by a thin solid l ine. 

Figure 2(a) shows the network after the message 
passing activity spawned by the exogenous input likes. 
The activation messages passed upward in the net­
work cause new connectors (or states) V0. +trans0. 
V[+trans]0* etc. to be instantiated. Disjunctive input 
connectors (e.g.. VPO) maximize their inputs. Input 
sequences (e.g., V-NPO) respond weakly to the first 
input, using it primarilv to gate the second input 
value. Expectation messages are propagated down­
ward f rom V-NPO (opposite in sign, but equal in mag­
nitude to the value of the first input) to condition the 
network for an NP. At the end of each cycle of mes­
sage passing, the most highly-expected leaves 
represent the new, pr imed context. 

In Figure 2(b). me is introduced and activation 
proceeds upward in the presence of the expectations. 
Expectation messages do not instantiate rules, but 
they can dynamically alter the behavior of the net­
work. At NP, the expectations from V-NPO cause it 
(rather than PP. for example) to receive the activa­
tion message. Thus the network exhibits nonmono­
tonic behavior dependent upon the processing con­
text. In dif ferent expectation environments, the same 
input sequence can lead to dif ferent activation pat­
terns. 

It may help to compare the A P N execution model 
w i th that of Prolog. Prolog uses backward-chaining, 
static rule ordering and backtracking for non-
determinism. Roughly, APNs use forward-chaining, 
dynamic rule ordering (based on expectations which 
are passed by backward-chaining) and parallel ism. 
The message passing activity in the network has a for­
mal inference analog. From an activation-based per­
spective, the rules in Figure 1(b) may be understood 
as universally quanti f ied by an input event. For 
example, the rule V[+trans]:-likes is formal ly 
represented as (VA) likes ( . * ) -VCO A +trans (x). An 
input event at t ime *o will activate likes (XQ) and 
effectively instantiate the rule by universal specializa-
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tion and modus ponens. Once an input has been 
bound, its activation value can modulate in response 
to further input events which it dominates. Jones 
(1986) lists inference schemas that describe the 
semantics of activation messages for APN connectors. 

The value of VPO and hence the expectations from 
any input sequences being driven above VPO are con­
tinuously modulated up and down as the constituents 
below it are started and progress to completion. The 
final value of VPO, in Figure 2(b). is +MAX. indicat­
ing that the phrase was successfully parsed. If a PP 
attachment were to commence at this point, the value 
of VPO would be lowered until the PP "popped" by 
raising its value. It is this raising and lowering of 
activation levels, a kind of distributed pushing and 
popping of context, that promotes generally context-
free descriptions (augmented by coindexing con­
straints) of the syntactic base of natural languages. A 
similar phenomenon may extend to other levels of 
description (e.g.. see Litman (1985) for a discussion of 
nested discourse contexts). 

Another interesting property of the APN execu­
tion model is that an ungrammatical input may be 
recognized, but the overall score computed for the 
phrase will be penalized. Unlike rigid rule-based sys­

tems where rules discretely succeed or fail, APN 
rules are "leaky" and may partially succeed. This 
situation arises, for example, when obligatory 
sequences or conjunctions are only partially satisfied. 
Also, a small percentage of an expectation value 
received by an input sequence connector is distri­
buted to the second input; consequently, the nearest 
attachment can be found even when constituents are 
missing. 

4. Coindexing 

The grammar writing style exemplified in Figure 1 
introduced a number of important representational 
paradigms including the widespread use of features 
and specialization in an X style grammar. In X 
theory, rules generally have the form 
X ^ C 1 ) . . . ( C , ) - X n - r - ( C ; + i ) • • • ( Q ) , where each C, 
is either a full projection of a lexical category or a 
grammatical formative (Jackendoff 1977). The 
remainder of this paper addresses the problem of how 
to represent the numerous co-occurrence constraints 
that must be added to the context-free skeleton. We 
will focus primarily on agreement restrictions and 
selectional restrictions on complements, although a 
related application of the techniques may apply to 



filler-gap movement dependencies as well (Jones 
1985). 

A common type of constraint, technically dis­
tinguished here as feature agreement, occurs when the 
values of features in two constituents may vary, but 
must match. In logic programming, feature agree­
ment is implicitly specified by using the same variable 
name and requiring that the variable assignments 
unify. For example, determiner-noun number agree­
ment is written as: 

NP :- Det [number ]. N [number ]. 

Another type of co-occurrence constraint, feature 
selection, occurs in situations in which the presense of 
a particular feature constrains the value of another 
feature in a complement. For example, the rule for 
transitive VPs in Figure 1 fails to capture the case 
constraint on the object NP. A more accurate 
description is: 

VP :- V[+trans]. NP[+obj). 

One account is that the +trans feature controls the 
case of the NP. A similar (if not the same) feature of 
prepositions controls case in PPs. The same method 
can be used to define complement and adjunct condi­
tions in general (e.g., voice, mood, tense). Unfor­
tunately, the usual logic programming style does not 
make the dependence of +obj upon +trans explicit as 
in the feature agreement case. The rule language 
being developed in an APN compiler project syntacti­
cally distinguishes several types of feature depen­
dency. 

Feature agreement and feature selection both 
specify coindexing relationships. The general method 
for coindexing in the APN framework requires an 
activation trace along a feedback path between the 
coindexed feature, represented by an output feedback 
connector, and an asynchronous input conjunction 
which dominates it. As expectations feed back to the 
coindexed point, the coindexed feature is released 
into the new expectation environment creating a new 
activation trace. The trace effectively pre-instantiates 
the next input in the asynchronous input conjunction, 
constraining it to possess the selected features. Note 
that this trace capture occurs during the time frame 
of the current input without advancing in the input 
string. The feedback response threshold can be tuned 
to disallow feedback through distant (weak, non­
head) paths; this effectively implements a version of 
the head-feature convention prevalent in linguistic 
theories. 

The captured trace produces different effects 
depending on the form of the grammar that contains 
it. In the feature selection case, shown in Figure 3 
and discussed below, the expectations are transferred 
to the selected feature(s). For feature agreement, as 
in Figure 4, the expectations feed back directly to the 
coindexed feature. Feature control is thus a lexical 

property; for example, the +obj feature must conjoin 
to the NP head at the level of the lexicon, below any 
phrase structure specifier sequences. The expectation 
levels for the selected feature(s) will be modulated 
together with those of the head (N) by any interven­
ing context. 

Figures 3(b)-(d) illustrate the APN feature selec­
tion technique applied to object case control for tran­
sitive verbs with the phrase likes me. Figure 3(b) 
shows the network state after activation from the 
verb. Note that an object NP instance has already 
been created and an input sequence is used to 
transfer the expectations to +obj feature. In Figure 
3(c). after me. the +obj feature was correctly bound. 
Note that a lexical entry not possessing a feature of 
type +obj (such as /) would fail to satisfy the expecta­
tions of caseO and would be penalized accordingly. 

Figures 4(b)-(d) shows an example of feature 
agreement with the phrase a deer. In Figures 4(b)-(c), 
the activation from numberO is integrated with the sig­
nal from DetO and fed back to to the N side of the NP. 
where it is captured. The expectations uhop o f f " the 
trace at the disjunctive input connector numberO. 
which posts expectations for the connector (-plur) that 
spawned its currently active input. The expectation 
feedback prevents the full binding of the numberO 
connector to an instance, but results in a pattern spe­
cialization. Effectively, this causes the rule 
(Vx) -plur (x)-+number (x{)) to become active. In Fig­
ure 4(d), numberO is rebound to the new feature value 
-plurJ. 

The unordered output feedback connector, xand>. 
captures more general feature agreement relation­
ships than seq>\ multiple, matching input sequences 
can specify different input orders. In English 
subject-verb agreement, for example, the tensed verb 
element precedes the subject in questions and follows 
the subject in declaratives. As in the case of the input 
connectors seq< and xand<. seq> is really just a spe­
cial case of xand> in which the ordering is strict. 

The reader should note that the feature dimen­
sions of number and lexical category in the NP gram­
mar of Figure 4(a). for example, are orthogonal. The 
syntactic number agreement can be layered onto an 
initial, over-generalized grammar that permitted any 
determiner and noun combination on the basis of lexi­
cal category alone. The number feature can also be 
coindexed to verbs for subject-verb agreement. This 
kind of error correction is non-destructive, i.e.. previ­
ous network fragments do not have to be eliminated 
or completely rewritten. This property may be espe­
cially relevant for learning algorithms or incremental 
compiling approaches. Since the computations in 
each feature dimension proceed in parallel, the accu­
racy is improved without a penalty in (parallel) per­
formance. The intersection of relatively simple 
feature systems thus gives rise to complex behavior. 
Woods (1980) offers a similar example of cascaded 
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represent this theory. The same general principle 
used for feature selection is applied to preinstantiate 
the lexical category itself (instead of one of its 
features). Upon feedback to +trans, it w i l l insert 
itself as the null preposition. In turn, as a preposi­
t ion, it w i l l then pre-select the +obj feature for the 
object NP. This has the advantage of localizing NP 
case control to the preposition only. 

Figure 5. An Example of Phonological Nulls 

Interestingly, a similar principle can be used in the 
representation of phonological contractions or com­
pounds. Figure 6 illustrates the idea for auxiliary-
negation contractions. The feedback onto the con­
traction completes the respelling of can't, for exam­
ple, into can not. 

5. Conclusions 

Al though more work is needed to understand how 
to model syntactic and semantic processing in 
activation-based schemes, several key representa­
tional techniques have been developed. The tech­
niques include the intersection and synchronization of 
modular rule systems, specialization, feature selec­
t ion, feature agreement and phonological nulls. In 
addit ion, a general grammar wr i t ing methodology 
based on the features and phrase structure style of X 
theory, modular i ty, and feature coindexing has been 
proposed. This choice is consistent wi th trends in 
linguistics away f rom transformational theories 
toward modular theories such as Government-Binding 
Theory or perhaps some form of phrase structure 
grammar such as GPSG. It is our hope that adjust­

ments in linguistic theory and in the APN model wi l l 
produce a parsimonious account of the expressive 
power of natural languages. The current A P N model 
has evolved over the last three years and should prob­
ably be taken as representative of a class of possible 
approaches. 

The parallel execution model of APNs has several 
advantages over serial models. Besides the ability to 
maintain mult iple hypotheses in paral lel, the 
bandwidth among collections of modules (knowledge 
sources) can be quite high. Large numbers of 
features can be activated simultaneously in multiple 
modules; conversely, the collective context f rom these 
knowledge sources is also simultaneously projected in 
the form of expectations to reduce the nondetermin-
ism engendered f rom any single source alone. Furth­
ermore, the model can be used for both recognition 
and generation processes. 

Unl ike most connectionist models, we have tr ied 
to model explicit ly the functional characteristics of 
rule based systems such as variable binding, feature 
selection and agreement, mult iple instantiations 
(including recursion), and contextual expectations. 
Al though we are supportive of connectionist efforts 
to develop neural models and learning algorithms, we 
feel that there is also a need for research efforts such 
as the A P N model to reach toward them from what is 
known about rule-based systems. Ef for ts f rom both 
directions can help prune the space of possible 
models, of fer additional levels of description, and 
bridge the "symbol" gap. 
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