
Transfer Semantics in an Operating System Consultant:
The formalization of actions involving object transfer

Paul Me Kev i t t & Yorick Wi lks

Comput ing Research Laboratory, Dept. 3CRL
New Mexico State University

Box 30001, Las Cruces, NM 88003-0001, USA.
CSNET: paul@nmsu & yorick@nmsu [(505) 646-5466]

ABSTRACT
It is a characteristic of computer operating systems

that they contain actions or commands which transfer
objects such as files and directories f rom one state to
another. In formalizing the domain of operating sys­
tems we should build representations of actions which
circumscribe the transfer of objects in the system.
Transfer Semantics is a knowledge scheme that embo-
dies such representations. Knowledge structures called
object frames are used to represent numerous objects.
Act ion frames describe the effects of actions in terms
of preconditions, postconditions, actions and actors.
Preconditions denote possible or preferred sets of
objects that an action wi l l affect. Postconditions relate
the state of object sets after an action has occurred.
Actions include the particular actions that cause
transfer. An actor is the person (or user) who per­
forms some action. The power of Transfer Semantics
lies in the inference rules that manipulate action
frames. It is applied to the U N I X * and TOPS-20*
operating systems in a program called OS Consultant
OS Consultant wi l l be used by new users to learn
operating system concepts.

I INTRODUCTION

A. Introducing Transfer Semantics
It is our belief that people think (however

abstractly) of operating system commands in terms of
preconditions and postconditions. Preconditions and
postconditions are sets of states of objects before and
after a command is executed. Most English queries
about operating systems involve users expressing the
goal of obtaining some command. Commonly, users
wi l l try to describe the affect of a required command
on some ob jec ts) . For example, in the query, " H o w
do I pr int out a file with pages? " the user is expressing
the need for some command to print files with page-
headers.

• UNIX is a trademark of AT&T Bell Laboratories.

• TOPS-20 is a trademark of the Digital Equipment Corporation.

It is the constraints specified in a user query that
enable us to recognize a command. Therefore, it
seems useful to build knowledge structures for describ-
ing commands so that these structures are closely
related to possible natural language expressions of such
commands. Natural language queries involving
descriptions of commands can be parsed into some
high-level meaning representation. To interpret
queries effectively we need access to domain-specific
knowledge. Such knowledge could be formulated as
abstract representations of actions or objects which are
matched to natural language representations in order
to decipher them.

Transfer Semantics (TS) is a developing
knowledge representation scheme used to formalize
actions and preferred objects affected by actions. By
preferred objects we mean objects that are usually
affected by some action. We use TS to represent the
means by which operating system commands transfer
objects from one state to an other. In TS operating
system objects are represented by object frames. The
object frames are structured in a hierarchic (tree-l ike)
network representation. Act ion frames are used to
specify transfer relations between object frames.

Each action frame is a formal representation of
operating system actions or commands. Act ion frames
consist of preconditions, postconditions, actions and
actors. Preconditions are sets of states of objects exist­
ing before commands take effect. Postconditions
involve sets of states of objects after a command is
performed. Such conditions specifying states of objects
are preferred, i.e. we do not specify all conditions on
frames, only those that usually occur. Various rules of
inference are used to manipulate preferred conditions
in order to expand the meaning of each frame.
Actions include the particular command(s) that cause
transfer of object states. This representation can then
be used effectively to understand natural language
expressions describing actions. The ideas herein could
be applied to other domains.

B. The OS Consultant and its relation to other work
OS Consultant (OSCON) is a system, pro­

grammed in Common Lisp, which wil l help novice
users learn operating system concepts. While

McKevItt and Wilks 569

the capability of answering the query in terms of UNIX.
OSCON is designed in the form of an English interface
to a database *. Examples of other interfaces to data­
bases are found in Martin et al. (1983) & Waltz (1975).
Although we plan to build an English interface which
teaches novice users we do not intend the system to
become a command-level interface such as COUSIN (see
Hayes 1982).

In OSCON parsed English sentences are translated
into formal queries with uninstantiated variables. These
formal queries are instantiated by a database of operat­
ing system concepts and returned to the interface where
answers are produced in English. The formal queries to
the database are represented in the form, < { P } A {Q}
U > . P and Q represent preconditions and postcondi­
tions for any action A. U represents the particular per­
son (user) performing A. Original work on the formal
queries is discussed in Douglass & Hegner (1982) and
Hegner & Douglass (1984).

An important distinction of OSCON, as an inter­
face to a database, is that Transfer Semantics is used to
formalize abstractions of database detail in the interface
itself. The interface contains abstract knowledge about
the relationships between UNIX objects and actions and
includes four levels of meaning representation. Initially,
a shallow representation is produced by a syntactico-
semantic parser. Examples of such parsers are described
by Ball and Huang in Wilks (1986). The shallow
representation is translated into a meaning representa­
tion of embedded concepts where case labels are
attached to various items. The embedded concept
representation is replaced by a domain-specific structure
after processing with Transfer Semantics. This domain-
specific structure is further translated into a formal
query with uninstantiated variables. Finally, the formal
query is passed to a database where instantiation
occurs.

C. Relation to Other Work
Wilensky et al. (1984, 1986) are also working on

building an understanding system called Unix
Consultant (UC) which processes natural language
queries about UNIX. The Unix Consultant embodies a
knowledge representation called KODIAK. The central
theme of KODIAK is that it is a relation-based system.
KODIAK relations have a fixed number of argument
positions and each argument position of a relation is
itself a full-fledged object. The meaning of argument-
objects is derived from the named relation that holds
between them. KODIAK has a wide representational
scope and still maintains the possibility of conforming
to a canonical form. At the action frame level Transfer
Semantics is also a relation-based system where actions
are described in terms of precondition-postcondition
correspondence. In Transfer Semantics the meaning of
any action is the precondition and postcondition set for
that action. Wilensky decides to represent all concepts

* A complete formal database is being built by Dr. Steve Hegner
at the University of Vermont.

with relations. We only see the need to represent actions
which manipulate objects in terms of relations. Many
objects are not defined by relations in Transfer Seman­
tics although there may be relations between them.

The Unix Consultant system is not intended to
handle queries on operating systems other than UNIX.
In OSCON we are putting more effort into understand­
ing complex queries where there are a number of operat­
ing system commands interrelated with each other, to
denote some higher level process. It seems that
Transfer Semantics which captures the meaning of com­
mands, is a suitable formalism for abstracting operating
system behavior.

Our object frames are similar to the frames pro­
posed by Minsky (1975). Yet, Minsky decides (p. 234),
"...that any event, action change, flow of material or
information can be represented by a two-frame general­
ized event." This is in contrast to our system where sin­
gle action frames are used to represent state changes of
objects. Wilks (1978) describes semantic structures
called pseudo-texts for natural language understanding.
A pseudo-text is a structure of factual and functional
information about some concept and is intended to fall
broadly within the notion of frame in the sense of Min­
sky, Charniak, and Schank. Pseudo-texts are also simi­
lar in function to the object frames we describe herein.
Our action frames have similarities with the "scripts"
discussed by Schank & Abelson (1977). Action frames
could be interpreted as structured scripts for various
operating system commands.

The arrangement of object frames is based on
many semantic network and frame systems. Examples
are Bobrow & Winograd (1977) and Brachman (1979).
Our network structure is closely related to that of Fass
(1986) where he uses dictionary entries called "sense-
frames" to define word senses in a sense network for
Collative Semantics.

I I TRANSFER SEMANTICS

A. Object Frames
Various operating system objects such as "files",

"protection", "commands", "last-read-time",
"creation-time", and "password" are represented by
object frames. Object frames exist statically in the sys­
tem before any processing begins. Each object frame has
a set of arcs and nodes. Arcs specify types of relations
between some object and other related objects in a net­
work hierarchy. Nodes define characteristics of the par­
ticular object represented by a frame. Object frames are
a refinement of more detailed information about operat­
ing system objects residing in the static knowledge base
of the database (see Hegner 1987).

Presently, in OSCON there are three types of arc
relation linking objects. These are type-of, part-of and
instance-of relations. It may be necessary to define
other types of relation as research continues. The type-
of arc relation is used to specify one object as a type of
another. So, a plain file is a type of non-directory-file

570 KNOWLEDGE REPRESENTATION

and a non-directory file is a type of file. A part-of arc
relation indicates that one object frame is part of
another. For example, "creator" and "last-tape-read-
time" are parts of files. Each instance-of relation indi­
cates that an object is an instance of another. The
commands "lpr", "cat", and "cp" are related to the
"command-name" object frame by this relation.

Each node is a set of attributes characterizing an
object frame. Nodes in object frames are specified
using the has relation. Has relations usually contain
other object frames. In Figure 1 below there is an
example of the object frame for protection-type.

(o-frame protection-type
(arcs (part-of protection))
(node (has user-designator)

(has access-privilege)
(has file-access)))

Figure 1.
Objects are related in a complex hierarchy. In the
diagram below there is a description of some of the
hierarchy:

plain-file device-file
directory-password
has: application TOPS-20

password-type
has: user-designator

access-privilege
file-access

Figure 2.
So, from this diagram we note such relations as:
plain-file

is a type of non-directory file
is a type of file

is a type of container.
We note above that "directory-password" (a con­

cept from the TOPS-20 operating system) is defined in
terms of UNIX concepts. This will be particularly use­
ful for helping some user who is confused as to which
operating system he/she is using.
B. Action Frames

Operating system actions such as "print ing",
" l ist ing", "moving", "deleting" and "mail ing" can
be represented by action frames. Action frames also
exist statically in the system before any processing
begins.

Preconditions and postconditions for any action
denote sets of preferred conditions on objects. Not

only are the conditions on objects preferred, but the
actual objects themselves are also preferred. It is
important that we specify preferred sets of conditions
because there are many possible conditions for any
action. Preconditions are mentioned in most planning
literature and have been used for specifying plans and
goals. For example in Wilensky (1987) there is a
description of concerns which are preconditions partic­
ularly relevant to a given plan. The term concern is
synonymous with our concept of preferred conditions.

Preferences are used in frame selection processes
where the frame with the maximum number of prefer­
ences satisfied is probably the best frame for interpret­
ing the input. For example, the print frame will have
more preferences satisfied than the list frame from the
query, "How do I list a file on the line printer". Of
course, that is because one usually associates line
printers with printing rather than listing. The idea of
preference is not new to Artificial Intelligence. It has
been used by Wilks (1978) in Preference Semantics
and Fass (1986) in Collative Semantics to formulate
correct interpretations of natural language sentences.

1. Preconditions
Each action frame precondition set contains vari­

ous conditions related by the logical operands AND,
OR, and NOT. For example, the precondition set for
the action frame "pr int" is:

(preconditions
(AND (NOT (o-frame directory-file))

(OR (AND ((o-frame file)
((o-frame contents)
- (o-frame visible-byte-sequence))))

(AND ((o-frame file)
((o-frame contents)

= (o-frame visible-byte-sequence)))
(o-frame print-queue))

(AND ((o-frame file)
((o-frame contents)

- (o-frame visible-byte-sequence)))))))
Figure 3.

The initial logical operand in any precondition set
is usually AND. The reason for this is that mandatory
conditions must be ANDed to other conditions in the
set. The optional conditions in each precondition set are
ORed together. The final ORed condition is a default.
In Figure 3 there are three ORed preconditions which
are ANDed to one mandatory precondition. Of course,
the third ORed condition is the default.

Interpreting the above set, it is noted that the
mandatory condition specifies that a directory file
should not be printed. Of course, it is possible to print
a directory by first listing it and then printing it. Yet,
one does not usually print directories themselves, and
this is what we are concerned with here. The first
optional condition specifies a preference that files are
printed and their contents are preferably visible byte
sequences. The second optional condition declares in

McKevitt and Wilks 571

addition the existence of a printer queue. In order to
print a file on the printer it is certainly useful to have a
printer queue. Finally, the third condition in the set is
a default, and is the same as the first condition. We do
not worry about preconditions such as the system being
up, the terminal working or keyboard cm-line. These are
simply assumed.

It is important that we represent the "weakest"
precondition set for any action. By weakest, we mean
the least number of (or least constraining) preconditions
necessary to characterize some action sufficiently. For
example, we know non-directory files to be types of files
(Figure 2) and that either can be preconditions for
printing. The use of files (weak) as a precondition for
printing will do just as well as non-directory files
(stronger). That is exactly why we reflect files in the
precondition set rather than say non-directory files (or
device files or plain files) which are types of file.
2. Postconditions

Postconditions for any action denote preferred con­
ditions on objects resulting from the execution of that
action. In all action frames the postconditions represent
changes in state of the precondition set. The postcondi­
tions for the action frame "print" are shown in Figure
4.

In the postcondition set below there are no manda­
tory conditions. Hence, the initial logical operand is
OR. There are three ORed conditions, the final one del­
imiting a default. The first condition declares that the
file which we saw in the precondition set also exists in
the postcondition set. The file doesn't disappear after
printing as would be the case with a delete frame. The
file still contains visible byte sequences although a filter
is now also applied. Filters are items such as page-
headers, line numbers and dates. Also a device file
exists to denote default standard output which is the
terminal screen.

The second ORed condition tells us that a print
queue exists and has a print queue entry. Also, a filter
may be applied to the contents of the file. The third
postcondition in the set is again a default and specifies
output to a device file,

(postconditions
(OR (AND ((o-frame non-directory-file)

((o-frame contents)
- (o-frame visible-byte-sequence)

(o-frame filter)))
(o-frame device-file))

(AND ((o-frame non-directory-file)
((o-frame contents)

- (o-frame visible-byte-sequence)
(o-frame filter)))

(o-frame print-queue)
(o-frame print-queue-entry))

(AND ((o-frame non-directory-file)
((o-frame contents)
• (o-frame visible-byte-sequence)))

(o-frame device-file))))
Figure 4.

We try to represent the "strongest" postcondition
set for any action. By strongest we mean the maximum
number of (or most constraining) postconditions neces­
sary to characterize some action sufficiently. We know
device files to be types of non-directory file (Figure 2)
and that either could denote postconditions for printing
files. However, the use of device files (strong) as a
postcondition for printing rather than non-directory files
(weaker) is a more precise definition about the effects of
printing. That is why we reflect device-file in the
postcondition set rather than say file or non-directory
file. There is no harm in weakening the postcondition
set. We will see in section four that the ability to
weaken postconditions is, in fact, an advantage.

3. Precondition-Postcondition Correspondence
Now, one may think there is some redundancy in

the condition sets for print. For example, one condition
occurs twice in the precondition set. However, we have
done this because there is an exact one-to-one
correspondence between the ORed conditions in the
precondition and postcondition sets. Say, { P0, P1 ... Pn
} denote the ORed preconditions for some action A.
Then, these are related to the ORed postconditions {
Qo, Q1, - Qn } so that Po -> Q0, P1 -> Q1 ... Pn =>
Qn for action A. So, the first ORed precondition in the
precondition set corresponds to the first in the postcon­
dition set, the second to the second, and so on. As
there are no mandatory postconditions there is no
correspondence for them at all.

The one-to-one correspondence between precondi­
tions and postconditions is implicit: it is the position of
a particular condition in its precondition/postcondition
set that determines correspondence. If it turns out that
many some conditions need to be repeated exhaustively
(it only happened once above) for action frames we can
represent the correspondence explicitly by placing a
marker on each condition. One may wonder what's the
use of all this correspondence. Correspondence aids in
predicting the most likely postcondition (or precondi­
tion) for some explicitly mentioned precondition (or
postcondition) in a user query. It is the ability to predict
preconditions and postconditions for user queries that
gives added power to the system.

4. Actions and Actors
It is also necessary to specify the possible actions

that cause transfer between preconditions and postcon­
ditions. Associated with each action will be a number of
options. So, for the print frame actions are represented
as:

(actions
(OR (o-frame cat)

(o-frame more)
(o-frame Ipr)
(o-frame pr)
(o-frame print)
(o-frame option-list)))

figure 6.

572 KNOWLEDGE REPRESENTATION

Printing can be completed with any of the com­
mands in the ORed set of actions and their respective
options. Finally, in Figure 6 we specify the actor per­
forming the action or transfer. Any user can print a file
and this is represented in the actor set.

To summarize, operating system actions are defined
in terms of preconditions, postconditions, actions, and
actors. Action frames reflect the behavior of operating
system actions in terms of the effect of these actions on
objects. We use the notation,

to denote the fact that some user U can execute the
action A to transfer the precondition set P to the
postcondition set Q. Now that we have described
object frames and action frames it is possible to show
how they may be used to interpret natural language
queries about operating systems.

I l l LANGUAGE & TRANSFER SEMANTICS
In this section we will show how various queries

could be interpreted using object and action frames.
We adopt a distinction between concept description and
dynamic queries. This distinction has been emphasized
by Hegner (1987). Concept description queries are sim­
ple queries about objects involving no manipulation of
those objects. Dynamic queries are those which involve
actions transferring objects.

A. Concept Description Queries
In handling concept description queries such as,

"What is read protection?" the hierarchy of object
frames becomes very useful. From the network it is
possible to locate relevant object frame relations. The
following section of network is used in generating a
static domain-specific representation of the latter query:

Now, say some user has used the TOPS-20 operat­
ing system for most of his computer time and decides to
use UNIX for a change. Then he/she is likely to assume
that UNIX is similar to TOPS-20. One could expect
queries such as, "What is the permanent storage limit?".

The following relations from the object network are
used:
directory-file

has permanent-storage-limit
has application TOPS-20
has similarity disk-space-hard-limit.

The above relations denote the similarity between
concepts from two operating systems. The similarity
between disk-space-hard-limit and permanent-storage-
limit is marked using has relations. This mechanism is
especially useful if a user thinks in terms of one operat­
ing system but is using another.

B. Dynamic Queries
The object hierarchy is availed of again for

dynamic queries. However, as dynamic queries involve
actions, action frames must be referenced. Say, for
example we want to interpret the query, "What is the
option on the cat command which numbers lines?".
Looking at Figure 3, the first ORed condition would be
matched. This condition constitutes the precondition
for this particular query. The relevant postcondition is
specified by the first ORed condition (Figure 4). This is
done by moving down the object hierarchy from filter
(Figure 4) to numbered-lines which are a type of filter.
Also, the first action in Figure 5 is marked because
"cat" was mentioned in the query. From Figure 6 we
mark the user as being the relevant actor. Similarly,
the query, "How do I print a file on the line printer?"
matches ORed precondition two (Figure 3), ORed
postcondition two (Figure 4), and no match is found in
Figure 5. The actor is again "user" from Figure 6.
C. Rules of Consequence

As we mentioned earlier, it is possible to
"strengthen" preconditions and "weaken" postcondi­
tions for action frames without affecting the truth of the
frame. Say, we have the query, "How do I print a dev­
ice file?". Even though we only represent files in the
precondition set (Figure 3) it is possible to use inference
rules to infer more specific preconditions. This inference
capacity is implemented by moving down the object
frame hierarchy from file to non-directory file to device
file.

In this example the inference processes are rather
straightforward. They simply involve moving down the
object hierarchy from one object frame to another. In
the example "How do I print a device file which has
pageheaders?" the system should recognize pageheaders
as being a precondition. Now, in the object network we
can derive the relations:

pageheaders
is a type of filter

is a type of visible-byte-sequence.

and from Figure 3 we know:

(o-frame contents
= (o-frame visible-byte-sequence))

McKevitt and Wilks 573

The inference processes used here involve com­
parison of objects such as pageheaders and visible-byte-
sequences. We use a process of projection to derive
pageheaders as a precondition when they are not
already specified.

It is also possible to "weaken" postconditions and
still preserve the truth of {P} A {Q}. So, the query,
"How do I print files on the printer?" will still be inter­
preted from the postcondition set in Figure 4 by weak­
ening the first ORed condition so that non-directory file
becomes file.

The processes of strengthening and weakening
above are definable by logical inference rules. More
specifically, they are called the Rules of Consequence.
The above rules and other inferencing techniques are
described more completely in Mc Kevitt (1986b). In
that paper there is a description of various rules and
how they specify manipulation of action frames. The
rules allow the system to directly infer new object
preferences for action frames from the object hierarchy.
Minsky (1975) also notes that we need some method of
applying transformations between frames in a system.
He says, "I do not understand the limitations of what
can be done by simple processes working on frames. One
could surely invent some "inference-frame technique"
that could be used to rearrange terminals of other
frames so as to simulate deductive logic."

It is important to note that only the "best" condi­
tions are selected while matching a frame to an initial
meaning representation of some query. For each condi­
tion we determine the ratio of matched to non-matched
predicates. The best condition is the one with the
highest ratio. For any condition to be best not all its
preferences have to be satisfied. Indeed, we saw above
that the process of weakening postconditions is required
because local preferences in conditions are not satisfied.

D. The Rule of Composition
Many queries about UNIX involve more than one

action to complete some process. For example, the
query, "How do I stop a listing of my directory, which is
printing on the line printer?" involves three actions:
"removing", "listing" and "printing". We call these
queries embedded queries. The previous query is an an
example of explicit embedding where three actions are
explicitly mentioned. Other types of embedding are
described in (Mc Kevitt 1986a).

We use the notation [A1 < A2 < An] to denote an
embedding set where action A1 is embedded inside
action A2, and so on. One can think of embedding in
terms of a stack where An is pushed on top of An-1 and
so on. Interpreting the stack, the postcondition {Q}
from performing A1 is passed as a precondition to A2
and so on until we reach the top of the stack. For the
previous query we have the embedding set, [LIST <
PRINT < REMOVE] and for the query, "How do I
print a listing of my directory on the line printer?" we
get, [LIST <

In the latter example a directory
is initially listed and then printed. In effect, the concept

of listing is embedded inside printing. Certainly, in
order to interpret queries involving embedding, we need
to use some other inference rule to process action
frames. We describe such an inference rule using the
notation below:

This general formula states that if {P} A1 {Q} is
true and {Q} A2 {R} is also true then we can infer {P}
[A1 < A2] {R} to be true too. We call this inference
rule the Rule of Composition. A more specific formula
for the example query, "How do I print a listing of my
directory on the line printer?" is:

j

Interpreting this inference rule we deduce that if
the postcondition of LIST is applied as the precondition
of PRINT then it is inferred that the postcondition of
PRINT is the postcondition of executing both actions.

We can formulate the domain specific information
needed for the query, "How do I print a listing of my
directory on the line printer?1', in terms of {P} LIST
{Q}, {Q} PRINT {R}. Our inference rule tells us that
this is equivalent to {P} [LIST < PRINT] {R}. Note
that the system must derive the new postcondition set
{R}. The techniques for developing interpretations of
other queries involving embedding are aspects of ongo­
ing research.

IV CONCLUSION
It is concluded that Transfer Semantics is an

appropriate mechanism for describing actions and how
these actions transfer objects. It seems a particularly
effective mechanism for abstracting characteristics of
various computer operating system actions in a concise
formalism. The use of Transfer Semantics in OSCON
enables the production of complex formal queries to be
instantiated by a fully formalized database. Sets of con­
ditions for action frames are only preferences in the sys­
tem which are typical of some action. We use prefer­
ences for two reasons: (1) in order to select the correct
frame (2) if we specified all possible transfer conditions
on frames they would certainly become very large. Yet,
the system is not restricted to preferred conditions due
to the presence of various inference rules.

It is a significant feature of Transfer Semantics
that there exists a number of inference rules enabling
manipulation of action frames. Therefore, by using the
object frame hierarchy and these inference rules an
action frame can circumscribe a large quantity of
domain-specific relations. In this paper we have shown
the usefulness of logical inference rules of consequence
and composition. The consequence rules enable the sys­
tem to infer more detailed or less specific objects from
an object hierarchy. Embedded queries involving many

574 KNOWLEDGE REPRESENTATION

concepts can be interpreted effectively on application of
the composition rule.

A particularly useful feature of Transfer Semantics
is that similarities between object frames are marked.
Therefore, even though a query may be presented to
OSCON with TOPS-20 lingo, that query can be inter­
preted and answered in terms of UNIX. It is hoped that
Transfer Semantics will be used to model other operat­
ing systems as research continues.

We are continuing to build action frames for other
actions such as ''mailing", "moving", and "creating".
Of particular interest is the possibility of recognizing
user misconceptions in queries. For example, say a user
asks the query, "How do I print a file with the -Z
option?". " -Z" is not an option on printing. Nor, can -Z
be inferred for printing. So, the action frame for "print­
ing" does not specify a formula of the form < {P } A
{Q} U> because A is not satisfied. We also hope to
investigate the possibility of recognizing ill-formed
embedding. For example, the query, "How do I delete
my files and then list them?" doesn't make much sense
at all.

We have not described the meaning representations
of English queries before the frames are matched to
them. These representations are discussed in Mc Kevitt
(1986a). In this paper we are interested only in the
frames themselves. Further research includes develop­
ing robust matching processes that determine the right
frame for some query.

ACKNOWLEDGEMENTS
We wish to acknowledge the Natural Language

Group at the Computing Research Laboratory (CRL)
for valuable discussion on the content of this paper. We
are indebted to the referees for suggested revisions.

REFERENCES
Bobrow, D.G. & Winograd, T. 'An overview of KRL, a

knowledge representation language.' Cognitive
Science. 1:1 (1977) 3-46.

Brachman, R.J. 'On the epistemological status of
semantic networks.' In Associative Networks:
Representation and use of knowledge by computers,
N.V. Findler (Ed.). New York: Academic Press, 3-
50, 1979.

Douglass, Robert J. & Hegner, Stephen J. 'An expert
consultant for the UNIX operating system: Bridging
the gap between the user and command language
semantics.' Proc. Fifth National Conference of the
Canadian Society for Computational Studies of
Intelligence (CSCSI)/SCIEO Conference. Saska­
toon, Saskatchewan, May, 1982.

Fass, D.C. 'Collative Semantics: an approach to coher­
ence.' Memoranda in Computer and Cognitive
Science, Memorandum MCCS-86-56, Rio Grande
Research Corridor, Computing Research Labora­
tory, New Mexico State University, Box 30001, Las
Cruces, NM 88003-0001, USA, 1986.

Hayes, Philip J. "Uniform help facilities for a
cooperative user interface." Proc. National Com­

puter Conference, Houston, 1982, 469-474.
Hegner, Stephen J. & Douglass, Robert J.

"Knowledge base design for an operating system
expert consultant." Proc. of the Fifth National
Conference of the Canadian Society for Computa­
tional Studies of Intelligence (CSCSI). London,
Ontario, December, 1984, pp. 159-161.

Hegner, Stephen J. "Representation of command
language behavior for an operating system consul­
tation facility." Technical Report CS/TR87-02,
CS/EE Department, University of Vermont,
USA, 1987.

Martin, Paul; Appelt, Douglas & Pereira, Fernando
"Transportability and generality in a natural-
language interface system". In Bundy, Alan (Ed.)
Proc. IJCAI-8. Karlsruhe, West Germany,
August, 1983, pp. 573-581.

Mc Kevitt, Paul "Parsing embedded queries about
UNIX." Memoranda in Computer and Cognitive
Science, MCCS-86-72, Rio Grande Research Cor­
ridor, Computing Research Laboratory, New
Mexico State University, 1986a.

Mc Kevitt, Paul 'Formalization in an English interface
to a UNIX database'. Memoranda in Computer
and Cognitive Science, MCCS-86-73, Rio Grande
Research Corridor, Computing Research Labora­
tory, New Mexico State University, 1986b.

Minsky, Marvin "A framework for representing
knowledge." In The psychology of computer vision,
PH. Winston (Ed). New York: McGraw-Hill,
1975.

Schank, R.C. & Abelson R.P. "Scripts, plans, goals
and understanding: an enquiry into human
knowledge structures." Hillsdale, New Jersey:
Lawrence Erlbaum Associates, 1977.

Waltz, David "Natural language access to a large data­
base: an engineering approach." Advance papers
IJCAI-4. Tbilisi, Georgia, USSR, Sept, 1975,
868-872.

Wilensky, Robert; Mayfield, Jim; Albert, Anthony;
Chin, David; Cox, Charles; Luria, Marc; Martin,
James and Wu, Dekai 'UC — a progress report.'
Report No. UCB/CSD 87/303, Computer Science
Division (EECS), University of California, Berke­
ley, California 94720, July, 1986.

Wilensky, Robert "Some complexities of goal
analysis." Preprints of Conference on Theoretical
Issues in Natural Language Processings (TINLAP-
S) Computing Research Laboratory, New Mexico
State University, January, 1987, pp. 97-99.

Wilks, Yorick "Making preferences more active."
Artificial Intelligence 11, (1978) 197-223.

Wilks, Yorick "Projects at CRL in Natural Language
Processing." Memoranda in Computer and Cog­
nitive Science, MCCS-86-58, Rio Grande
Research Corridor, Computing Research Labora­
tory, New Mexico State University, 1986.

McKevitt and Wilks 575

