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A b s t r a c t 

The quan t i t y of resources tha t an agent expends in 
so lv ing problems in a given domain is determined by 
the representations and search control strategies tha t 
i t employs. The value of i nd iv idua l representations or 
strategies to the agent is determined by the i r 
cont r ibu t ion to the resource expenditure. We argue 
here t ha t in order to choose the component 
representat ions and strategies appropriate for a 
par t i cu la r problem domain it is necessary to measure 
the i r cont r ibu t ion to the resource expenditure on the 
actual problems the agent faces. Th is is as true for a 
system designer m a k i n g such choices as it is for an 
autonomous mechanical agent. We present one way to 
measure th is cont r ibut ion and give an example in 
which the measure is used to improve problem solving 
performance. 

1 I n t r o d u c t i o n 

A p r imary goal of A r t i f i c i a l Intel l igence research is to 
enable automated agents to have general reasoning 
abi l i t ies over a wide range of domains. Due to the 
inheren t computat ional complexity of th is task, system 
designers make performance choices t ha t trade 
genera l i ty for improved resource use. Such 

performance choices are necessary for any agent w i t h 
Limited amounts of space and t ime to be effective 

w i t h i n a dynamic wor ld . Most r u n n i n g AI systems 
have embedded w i t h i n them the choices tha t the i r 
designers fe l t would maximize the i r usefulness. 
Un fo r tuna te ly , such choices re ly on hidden 
assumptions, such as what var ie ty and frequency of 
problems w i l l be encountered, or now correct or close to 
op t ima l the eventual solut ion should be. Of ten, the 
designers themselves may not know wha t these 
assumptions are, since they are fu r ther obscured, for 
example, by choices imp l i c i t in the implementat ion of 
the representat ion language, or by insuf f ic ient pr ior 
in fo rmat ion on the range of problems tha t the system 
may encounter. Unfor tunate ly , th is makes i t d i f f i cu l t 
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for other researchers to determine if the tradeoffs are 
appropriate for the i r problem domain. 

In th is paper, we argue tha t performance choices 
should be made explicit in order to establish measures 
w i t h which di f ferent choices can be compared. Fur ther , 
we provide an example of how th is m igh t be done by 
developing a cost metr ic defined over search control 
strategies. The short- term benefit of th is approach is 
tha t system designers w i l l have a formal ism which can 
be applied in de termin ing preferred performance 
choices for the problems they are solv ing. The long-
te rm benefi t is tha t an automated agent w i l l have the 
ab i l i t y to evaluate its success in sat is fy ing i ts goals in 
comparison w i t h other candidate control strategies. 

2 I n t r a c t a b i l i t y 

In te l l igen t agents perform computat ions upon an 
in te rna l l y stored representation of the wor ld . 
Examples in [Levesque and Brachman, 1985] show how 
the choice of representat ion language bears on the 
computat ional complexi ty of so lv ing problems us ing 
tha t language. As they point out, reasoning systems 
" w i l l e i ther be l im i ted in what knowledge tney can 
represent, or un l im i ted in the reasoning effort they 
m i g h t requi re." For example, if we use a f irst-order 
predicate representation language, then there exists no 
a lgor i thm tha t w i l l decide for any theory T and 
sentence S encoded in th is language whether S is a 
theorem of T. However, it m igh t be the case tha t a 
par t icu lar theory T in wh ich we are interested can be 
encoded w i t h i n a weaker representat ion, such as f in i te 
automata. Then there exist a lgor i thms of bounded 
computat ional complexi ty tha t w i l l answer most 
questions w i t h regard to this theory, such as if a s t r ing 
is accepted by the automaton. Unfo r tuna te ly , no 
a lgor i thm exists tha t decides whether some f irst-order 
theory can also be expressed in a weaker 
representat ion language. 

We w i l l say tha t a problem P is int ractable if there is 
no expression language L in wh ich to state problem 
instances of P sucn tha t there is a determinist ic T u r i n g 
machine tha t can compute solut ions to such instances 
w i t h i n polynomial t ime and space. The fo l lowing, a 
version of the t rave l l i ng salesman problem, is an 
example of a problem believed to be int ractable. 
Imagine tha t an agent f inds i tsel f in a c i ty and is given 
a set of n bu i ld ings to v is i t , a long w i t h in format ion as 
to the distance between each pair of buid ings. The 
question to determine is whether the agent can v is i t 
each bu i l d ing exact ly once on a pa th no more than k 
un i ts long. I t is possible tha t the agent can answer th is 
question qu ick ly for some given set of parameters, but 
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it is believed that there is no deterministic algorithm 
(serial or parallel) that wi l l solve every possible 
instance of this problem within an amount of time 
polynomial in the number of buildings in the problem. 
Note that this is not a function of the representation, 
but of the problem, since it is believed that there exists 
no representation for which this problem is tractable. 
Many problems that agents are called upon to solve are 
intractable. 

The fact that an agent wi l l encounter difficult problems 
does not mean that the agent should make no attempt 
to solve them. But in order to perform effectively, an 
agent must reason not about whether it can solve all 
possible problems optimally but, rather, how it can 
maximize resource use over the entire sample of 
problems that it will encounter. In order to do this, we 
believe that defining notions of problem class and 
resource cost is essential. 

3 Problem Classes 

Standard complexity theory typically defines a 
problem class in terms of the worst-case time or space 
behavior of a particular computational model, as a 
function of the size of the input problem. For example, 
the travelling salesman problem mentioned above falls 
in the class NP-TIME, which means that there is a 
non-deterministic Turing machine that solves every 
instance of a travelling salesman problem within time 
polynomial in the size of the input. The fastest known 
deterministic Turing machines for these problems take 
at least time exponential in the size of the input. 
Unfortunately, it is not known whether there are faster 
deterministic algorithms. It is in fact quite difficult to 
determine what is the fastest algorithm one can 
construct for a given problem. 

There are several aspects of this definition of class 
which are inadequate for the task of optimizing an 
agent's use of its resources. First, each input problem 
instance to an algorithm is assumed to be in the correct 
form so that all operations of the algorithm are defined. 
For example, a typical sorting algorithm requires a list 
of elements from a set as input. The interpretation of 
this data structure is implicitly defined by the 
algorithm. Intelligent agents, however, are required to 
determine from general representations of its input 
which specific type of problem its input is an instance 
of. For example, if an agent has the goal of ordering a 
set of objects, it must recognize that this is a sorting 
problem and that there are algorithms for solving such 
problems. The difficulty of this recognition task wi l l be 
a property of the language in which sorting problems 
are expressed. 

Second, worst-case behavior is often too pessimistic. In 
practice the worst case may occur infrequently. Third, 
there might be restrictions one can place on the input 
that allow a subset of the problems to be solved quickly. 
For example, in the travelling salesman problem, if the 
cities are known to be collinear, then the solution can 
be tr iv ial ly generated. Typically, general algorithms 
do not attempt to determine if the given input falls 
wi thin one or the easier restricted subsets. 

class if the algorithm solves that instance.We can 
assume that any complex agent wil l be called upon to 
solve a variety of tasks, some as easy as finding the 
largest element from a set, and some at least as 
difficult as the travell ing salesman problem. If a 
domain is encoded using a general representation for 
which there exists an algorithm capable of solving each 
problem expressible in this representation, then we can 
consider an agent using this algorithm as solving 
problems from a single class. That is, every problem 
that the agent encounters falls within the large 
problem class defined by the algorithm. 

Many algorithms fail to distinguish between tasks of 
various difficulties, as was noted earlier with the 
travelling salesman problem. Due to the general 
nature ofthe algorithms, a high computational cost is 
incurred when solving both the easy and the hard 
tasks. Taking a more general example, suppose an 
agent's domain is represented in the first order 
predicate calculus, and the agent is able to solve each 
problem it is presented, i.e., each theorem to be proven, 
using a complete proof procedure. Unfortunately, these 
proof procedures take greater than exponential time in 
the length ofthe input to generate a proof in the 
generalcase, if a proof exists. Assuming that some of 
the input problems involve finding the largest element 
from a set, the agent is expending considerably more 
resource than necessary to solve these problems using 
the general proof procedure. That is, it the agent were 
able to distinguish these problems at low cost, then the 
agent could use one of the known polynomial time 
algorithms for their solution. This fact motivates the 
use of, for example, procedural attachment in theorem 
proving [Nilsson, 1980]. 

An agent, then, can be provided with a repertoire of 
algorithms, each one optimized to a particular set of 
problems. The agent can be considered to encounter 
problems from a variety of classes - one problem class 
for each algorithm. Unlike the standard complexity-
theoretic model where the algorithms are never 
required to distinguish between the various restricted 
subcases, we assume that complex agents wi l l be 
obliged to do so. There wil l therefore be a cost 
associated with determining into which class a given 
input problem falls, i.e, which algorithm should be 
used to solve the problem. There might thus be no 
computational advantage to an agent in having a large 
repertoire of algorithms. The usefulness of a member 
algorithm wi l l be a function both of the frequency with 
which problems fall ing within this algorithm's class 
are encountered by the agent, and of the comparative 
costs of solving problems using this algorithm versus 
other candidate algorithms. By considering the entire 
set of encountered problems as fall ing into a variety of 
problem classes, the statistical properties of the 
various classes can be exploited to improve 
performance. A faster running time of an algorithm 
whose class occurs with high relative frequency wi l l 
improve the overall performance of the agent. The 
longer a period of time over which an agent solves 
problems, the greater wi l l be the gains from the 
algorithm optimization, assuming the relative 
frequencies remain invariant. Hence such sustained 
problem solving activity justifies the expenditure of 
resource to perform the optimization. We wi l l consider a much weaker notion of problem 

class. In general, an algorithm wi l l define a problem 
class, in tnat a problem instance is a member of the 
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4 Costs 

There are few precedents in AI that involve measuring 
costs. One example is the A* algorithm [Nilsson, 
1980]. A* is an algorithm for searching a state space, 
described by an ini t ial state, a goal state, and the legal 
transitions between states, which computes a path 
between the ini t ia l and goal states. This algorithm has 
the characteristic that it is admissable, meaning that 
the first path it finds that solves the problem wi l l be of 
minimum length, if any solution patn exists. The 
algorithm works by searching through the current 
least-cost transition, where cost is a function of the 
number of transitions already taken on that path, and 
an estimate of the number of transitions required to 
reach the goal along that path. This cost, therefore, 
only measures the length of the solution. A* makes no 
attempt to model the resources required to arrive at a 
state, which includes the resources expended on the 
other incomplete or failed attempts up to that point in 
the computation. It is just such a measure of total 
computational costs that we are attempting to model. 
This replaces search for minimal length solutions with 
search for minimal resource use solutions. 

A* places a premium on the optimality and correctness 
of every solution it reaches, which makes it generally 
un suited for the task of searching through complex 
domains. It wi l l typically be cost-effective for an agent 
to trade some degree of minimality, completeness and 
correctness of the solution for a speed-up in the time 
required to compute it. For example, several 
polynomial time algorithms have been constructed 
that find sub-optimal solutions to NP-complete 
problems [Garey and Johnson, 1979]. Many of these 
algorithms are such that the larger the upper bound on 
the acceptable distance between an approximate 
solution and the optimal solution, the taster the 
algorithm returns one of these approximate solutions. 

Augmenting the symbolic approach of AI by decision 
theoretic techniques is suggested in [Feldman and 
Sproull, 1977]. It is argued there that for many 
problems in AI there are natural numeric measures of 
cost and that it is only on the basis of such measures 
that good decisions can be made. That is, a decision 
theoretic form is an appropriate representation for 
certain problems. In the search for a solution to a 
problem instance, the paper discusses how to select 
between alternate plans, how to deal with the 
uncertainty of the outcome of plan steps and how to 
introduce knowledge producing actions into plans. The 
basic mechanism is to compute the expected uti l i ty of a 
problem instance's candidate solutions. Our goal here 
is to investigate the expected uti l i ty, or more 
specifically, the expected computational expenditure, 
of a problem solving strategy over an agent s entire 
sample of problem instances. Similar to choosing, from 
a set of candiates, a solution that maximizes expected 
ut i l i ty, we intend to choose from a set of candidate 
problem solving strategies one that maximizes 
expected computational cost. 

Also discussed in [Feldman and Sproull 1977] is the 
ut i l i ty of additional planning. If an agent possesses a 
solution to a problem then in order for further planning 
effort to be profitable, the improvements in the solution 
must offset the additional cost. In a similar way the 

measurements and computation required to determine 
the expected computational cost of a strategy must be 
offset by the performance improvement that results 
from this improvement. 

As mentioned earlier, finding lower bounds proofs is 
difficult for people, and wi l l certainly be so for 
automated agents. This means that most agents wi l l 
rarely be able to prove that they are doing the best 
possible. Therefore, it wi l l usually be in the interests of 
an agent (and its designer) to express its performance 
choices in such a way that measuring the efficacy of 
these choices is possible. This requires considering al l 
resource expenditure as cost, and expected 
improvements of one strategy over another as benefits. 
We claim that for agents who are called upon to make 
decisions in domains containing intractable problems, 
performance choices can only be made with respect to 
the sample of problem instances that an agent 
encounters. Whereas a particular performance choice 
may work quite well for a given problem sample, it 
may give equally poor performance for another sample. 
That is, agents cannot solve al l problem instances 
optimally within such domains. By making the 
performance choices explicit, it is possible to evaluate 
whether a given choice is a good one for a particular 
sample. Thus, one is able to exploit any information 
about the sample of problems that is believed wi l l be 
encountered in the future. Although the properties of 
future problems are unknown, predictions can be based 
upon the sample of problems that have already been 
seen. One of the long-term objectives of the approach 
advocated here is to state in a domain independent 
fashion those invariant properties of a particular 
domain or sample of problems that justify the belief 
that one has a good algorithm for the domain. Such 
domain independent properties also provide 
justification for applying the algorithm to other 
domains that are similar to the original domain with 
respect to these properties. Additionally, future 
performance improvements may also transfer across 
these similar domains. 

5 Definit ions 

This section defines a cost metric for problem solving 
that illustrates some of the points raised above. This 
metric corresponds to the expected cost per problem 
that an agent expends. The metric is based on problem 
classes and the relative frequency that a given problem 
is a member of a particular class. The solution strategy 
used by an agent partitions problems into equivalence 
classes. One of these equivalence classes is intended to 
correspond to a set of problems of comparable difficulty 
or computational complexity. The cost metric makes 
clear how classes of difficult problems increase the 
expected cost and how an agent can exploit the 
presence of a class of easy problems. 

We take the agent to consist of a search strategy. The 
agent exists in an environment in which problems are 
presented to it one at a time. The agent's response to 
the current problem is a solution to that problem 
obtained by the search strategy. We assume that the 
statistical properties of this seauence of problems 
presented to the agent are fixed. Specifically, we 
assume that the probability of members of a problem 
class being presented to the agent are constant and 
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that this probability is asymptotically approximated by 
the relative frequency of the problem class. 

Let X be a countable set of problems. The problem 
instances that are presented to an agent are members 
of X, Let P be the set of solutions that correspond to the 
problems in X. We intend that P have a flexible 
interpretation. The members of P may be, for example, 
literal solutions as a sorted list is the solution to a sort 
problem. Alternatively the members of P may be 
algorithms that generate such literal solutions. 
However P is interpreted, the agent's problem-solving 
strategy selects members from P. Without loss of 
generality, every problem in X is assumed to have a 
solution in P. For the present purposes we also assume 
that whether a member of P solves a member of X is 
decidable. 
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6 Example: A hybr id a lgor i thm 

Having defined a measure of computational cost, the 
question arises as to how it may be used. The following 
example illustrates the use of this measure to improve 
performance. A problem solution strategy is defined 
such that, given a problem, it selects an algorithm 
whose output is the solution to the problem. From a 
family of such strategies we show how to choose the 
optimal one according to the performance measure. 

Consider a sequence of algorithms A1 A2 ... A n , each 
member of which terminates on all input, takes as 
input an encoding of a problem and yields as ouput a 
solution to the problem or an indication of failure. Let 
the sequence have the additional property that any 
member of the sequence solves at least all of the 
problems of its predecessor. We refer to this property of 
a sequence of algorithms as the subsumption property. 
A specific instance of such a sequence of algorithms can 
be constructed to address the motion planning problem 
in robotics. The motion planning problem, e.g., 
[Lozano-Peres, Wesley, 1979], is to find a collision free 
path for an object from an ini t ia l position to a desired 
f inal position. For an object B, if we have a sequence of 
object approximations B1 B2 .. Bn -B and a motion 
planning algorithm M, we can specialize M by each of 
the Bi's to yield M1 M2... Mn so that Mi computes paths 
only for Bj . That is, M i computes paths for the ith 
approximation of object B. if B; strictly contains its 
successor in the sequence and if M is suitably well-
behaved then the Mi's have the subsumption property. 
That is, since Mi uses an approximation to the object 
that is bigger than that used by Mi + /, Mi; can only find 
a path if Mi +1 does (figure 6.1). 

We are appealing to the intuit ion that giving up detail 
and completeness, i.e., the property that a solution is 
found if one exists, enables us to obtain more quickly 
the solutions we do find. In ascending order the Bi's are 
increasingly better approximations to the original 
object. Similarly, the Mi's are increasingly better 

approximations to a complete algorithm to find motion 
plans for the original object. In this instance we may 
profit from giving up the precision of a complete 
algorithm by being able to use representations of lower 
combinatorial complexity. 

Now let the search strategy s be such that, given a 
problem, s applies the A;'s in turn unt i l one of the Aj's 
returns a l iteral solution to the problem. Such a search 
strategy, which we wi l l refer to as a hybrid algorithm, 
is unambiguously specified by its component 
algorithms. Intuit ively s has generality and also 
exploits the presence of simple problems. The strategy 
s can be as general as we want by appending to the 
sequence the most general known algorithm. In 
particular, s can be made complete if a complete 
algorithm is known. Because the simpler and, 
presumably, faster approximation algorithms are 
applied first, s solves easy problems quickly. To some 
degree a hybrid algorithm invests an appropriate 
amount of effort in solving a problem instance. 
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In addition to obtaining a globally optimal set of 
component algorithms for a particular problem sample, 
we can also determine under what conditions an 
incremental change to s, e.g., the insertion of a new 
component algorithm into the sequence, yields an 
improvement on the expected cost per problem. That 
is, we know where candidates for future improvements 
may be found. 

We do not claim that this is the best way to solve any 
particular kind of problem. The optimization is only 
within the narrowly defined class of hybrid algorithms. 
However, the example does show how the cost measure 
defined in the previous section can be used to optimize 
performance, In particular, the Derformance 
improvement is independent of the actual 
representations and component algorithms used. It 
does not depend on increasing knowledge about how to 
solve the particular problem such as, in this case, 
motion planning. The improvement is based solely on 
the invariant statistical properties of the problem 
sample and measurement or performance. 

7 Conclusion 

Agents in real world domains wi l l be called upon to 
solve diff icult problems. Although an agent might 
choose to expend arbitrari ly large amounts of a 
resource in solving a particular problem, the 
opportunity costs of doing so typically make such a 
choice prohibitively expensive. This resource would be 
better spent in either solving approximations of this 
problem, ignoring this problem completely and solving 
other, easier problems, or improving the agent's 
general abil i ty to solve these difficult problems. This is 
as true for agents who introspect upon their own 
problem solving abil i ty as it is for designers who 
attempt to ascertain the ut i l i ty of AI systems that they 
develop. We argue that these performance choices 
should be made explicit, and that they should be based 
upon the resource cost incurred in solving actual 
problem samples. 

We have provided one example of a resource cost 
measure. Although by no means definitive, it 
measures the search costs associated with finding the 
solution to a given sample of problems using a given 
search strategy. As opposed to previous formal 
analyses of search strategies within artif icial 
intelligence, the emphasis here is not upon the 
efficiency of the solution, as it is in A*, but upon the 
amount of resources expended in finding solutions. 
Central to this endeavor is the concept of dividing a 
problem space into a set of problem classes. We can 
measure both the frequency with which a search 
strategy places problems from the sample within a 
class, ana the average cost of solving each problem 
placed into a class. This allows one to demonstrate 
improved performance by changing the search strategy 
to place more of the problems into tnose classes for 
which solutions can quickly be generated, or to 
ascertain more quickly into which class a problem 
belongs. Cost measures such as the one described here, 
wi l l be necessary, we believe, in order to maximize the 
resource use of an agent which must solve many 
problems drawn from an intractable class. 
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