
Repair Strategies in a Diagnostic Expert System 

Jeff Pepper and Gary S. Kahn 
Carnegie Group Inc. 

Pittsburgh Pennsylvania 15219 

Abstract 

Successful machine diagnosis consists not only of 
sound diagnostic reasoning, but also the selection of 
appropriate repairs, sequencing the repairs correctly, 
interactively validating the success of each repair, and 
performing follow-on diagnosis in case of repair failure. 
We discuss some of the issues involved in formulating a 
repair strategy for an expert system, review some 
aspects of expert human behavior with respect to repair 
strategy in a complex domain, and finally describe an 
implementation of a repair strategy in the TEST 
diagnostic shell. 

1. INTRODUCTION 
Diagnostic applications remain the most heavily 

explored area of expert systems technology, but little 
attention has been given to the selection, sequencing 
and interactive verification of repairs. These aspects of 
diagnostic behavior, collectively referred to in this paper 
as repair strategy, are critical to the success of a real-
world machine diagnosis expert system. 

Typically, repair strategy is seen as a straightforward 
selection keyed to a successful diagnostic conclusion 
([Bennett 81,Bylander 83, Fink 84, Ali 85, Maletz 
85, Strandberg 85] and others). In a few cases, 
supplementary repair or treatment modules have been 
developed to provide customized or special case 
recommendations [Clancey 84, Kahn 85]. However, 
apart from possibly [Hofmann 86], none of this work has 
attempted to formulate an approach which permits the 
degree of integration of diagnosis and repair tasks 
required to effectively troubleshoot faults in complex 
machines. 

TEST (Troubleshooting Expert System Tool), as 
reported in this paper, recognizes a larger class of 
integration issues than earlier work, and provides a 
representation more easily customized to differences in 
repair strategy, even within the same application 
domain. TEST is an application independent diagnostic 
problem-solver which operates on domain-specific 
knowledge bases. Work on TEST began late in 1985, 
and there are now several applications in progress, the 
largest being Ford Motor Company's Service Bay 
Diagnostic System [Tedesco 86]. Other applications 
include factory floor machine diagnosis, online 

monitoring of generator equipment, and computer 
performance tuning. TEST has been implemented in 
Common Lisp using Knowledge Craft™ [Pepper 86a], 
and a C version is under development. 

The next section describes ways in which human 
expert diagnosticians integrate diagnostic reasoning 
and repair strategy. The remaining two sections 
describe TEST'S repair strategy, and how it models 
aspects of this behavior. 

2. WHAT MAKES REPAIR HARD 
While it is easy to imagine a prototypical diagnostic 

system that identifies a single cause for observed 
symptoms, and recommends the corresponding, 
inevitably successful repair, this is an ideal but unlikely 
case. More often, technicians make repairs during the 
diagnostic process itself, and are prepared to (1) select 
from among competing repair alternatives, (2) delay 
making certain repairs until deeper causes are 
identified, and (3) continue with the diagnosis if the 
repair does not succeed. 

Selection and sequencing. The selection of a repair 
for a single failed component depends on several 
factors: the cost of the repair, its degree of "goodness", 
and the availability of required tools and parts. But 
sometimes a diagnosis results in several failed 
components requiring repair, and sequencing becomes 
an issue. For example, a car's failure to start may be 
caused by a dead battery, which requires either 
recharging or replacement of the battery. However the 
diagnosis must proceed further to find the cause of the 
dead battery, possibly discovering a fault in the charging 
system. This second fault also has repairs associated 
with it. In such a case, the technician must determine 
the proper sequencing of repairs, and handle situations 
where performing one repair makes another one 
unnecessary. Further, repairs change the state of the 
UUT (unit under test), invalidating some or all evidence 
gained prior to the repair and complicating the follow-up 
diagnosis that must be performed if any repairs fail. 

Handling failed repairs. Repairs fail for three 
reasons. First, the selected repair may be performed 
incorrectly because of errors in technique, use of the 
wrong replacement part, or use of a correct part which 
turns out to be defective. Second, the wrong repair may 
be selected because of an error in the technician's 
domain knowledge, or faulty evidence obtained during 

Pepper and Kahn 531 



diagnosis. And third, the diagnosis addressed by the 
repair may be incorrect. This last reason, misdiagnosis, 
can result from errors in domain knowledge or faulty 
evidence gained during diagnosis. Or a diagnosis may 
be partially correct, but the effectiveness of the repair 
masked by co-occurring problems that have yet to be 
identified. Until all causes for the failure are identified 
and repaired, the UUT remains in a failed condition. 

Hypothesized diagnosis. Sometimes repairs are 
made on the basis of a hypothesized diagnosis, 
because it is difficult or impossible to acquire direct 
confirming evidence. The hypothesized diagnosis is 
then confirmed by the repair itself, or discarded in favor 
of a new diagnosis. For example, one car diagnosis 
heuristic states that "to fix certain fuel pressure 
problems, replace the fuel pump. Afterwards, do a fuel 
pressure test, and if the test fails, conclude a bad fuel 
pressure regulator. In this example, the conclusion is 
hypothesized, then either confirmed or replaced by 
another conclusion as a result of evidence obtained 
during the repair. 

A hypothesized diagnosis can also result from a 
repair in cases where a previously confirmed diagnosis 
is proven to be correct but inadequate. As an example, 
another car repair heuristic states that "for a no-start, if 
you find that the battery posts are corroded but cleaning 
the posts does not solve the problem, it must be due to 
a fault in the charging system". In this case, the correct 
repair was made for a properly diagnosed condition, but 
performing the repair revealed that the condition was 
not severe enough to cause the problem. 

3 . TEST 'S REPAIR STRATEGY 
Because the repair strategies discussed in the 

previous section are an integral part of human expert 
diagnostic behavior, it is desirable to include similar 
capabilities in expert systems. In this section we 
provide an overview of TEST, and discuss its repair 
stratgies in detail. (More complete discussions of the 
TEST architecture are given in [Kahn 87a], [Kahn 87b], 
and [Pepper 86b].) 

3 .1 . Overview of TEST 
TEST provides a domain-independent problem-

solver, together with a library of schematic prototypes 
which constitute the structure within which domain-
specific knowledge bases must be built. A TEST 
knowledge base consists of a highly interconnected 
network of schemata, each of which is an instance of a 
schematic prototype. 

Failure-mode is the most important schematic 
prototype. Each failure-mode represents a deviation of 
the UUT from its standard of correct performance. The 
failure-modes in a knowledge base are linked in a 
hierarchy ranging from top-level failure-modes called 
concerns through intermediate-level failure-modes down 
to leaf-level failure-modes (see Figure 1). Typically 
intermediate-level failure-modes are functional or 

subsystem faults, and leaf-level failure-modes are 
component faults. Failure-modes are interconnected 
via due-to and always-leads-to relations. Domain 
information which affects the behavior of the diagnostic 
interpreter or the repair strategy is attached as slot 
values to failure-modes, or other schemata as 
appropriate. 

In addition to failure-modes, the knowledge base 
contains datum schemata which represent evidence-
collection actions such as tests, questions and sensor-
data acquisition functions. Failure-modes are linked to 
datums by has-tests relations, with meta-information 
attached to the relation indicating how evidence 
acquired from the datum(s) is used to 
confirm/disconfirm the failure-mode. Mechanisms exist 
to disjunctively and conjunctively combine datums. 
There are also schemata to represent repairs, 
documentation, exception conditions, and many other 
kinds of supporting information. 

The TEST problem-solver begins by focusing on an 
observed or suspected failure-mode. If the failure-mode 
has occurred or if its status remains unknown, its 
possible causes are investigated to see if they have 
occurred. The search process is guided by an 
underlying representation of the order in which 
diagnostic experts explore possible causes for identified 
failure-modes. Heuristic rules can be inserted in the 
knowledge base to modify search behavior as runtime 
information is acquired. Diagnosis proceeds until a leaf 
failure-mode is confirmed, and control is passed to the 
repair strategy. 

3.2. TEST'S repair strategy 
TEST queues all confirmed failure-modes that require 

repair, and by default, repairs them in the reverse order 
that they are identified. Thus, lower-level, component 
failures are generally repaired before the higher-level 
conditions they caused. 

Repairs are attached to failure-modes via a 
has-repairs relation. If a failure-mode has links to 
multiple repairs, they are ordered from most desireable 
to least according to a domain expert's prior judgement. 
This ordering incorporates possible tradeoffs between 
cost and goodness of repair. If the ordering is 
dependent on runtime information or UUT configuration, 
this is represented by reorder rules which attach to the 
has-repairs relation and dynamically modify the ordering 
if their conditions are met. 

Once a repair is selected, the repair strategy module 
leads the technician through the steps of the repair and 
its subsequent validation. Validation generally consists 
of checking two failure-modes - the failure which has the 
repair attached to it and the original concern that 
triggered the diagnosis - to see whether they still occur. 

After performing a repair and validation, the repair 
strategy selects one of four different sub-strategies, 
according to an algorithm shown below. TEST follows 
the selected sub-strategy, modified as necessary to 

532 KNOWLEDGE REPRESENTATION 



reflect domain-specific exception information provided in 
the knowledge base. 

The first sub-strategy is for a known bad repair, one 
which fails to fix the failure-mode directly associated 
with it. The follow-on diagnostic issues are trivial in this 
case. TEST knows that regardless of the status of the 
original concern the leaf failure-mode is still broken. 
The technician is instructed to check that the 
replacement parts are good, that they are the proper 
parts called for by the repair schema, and that they are 
installed correctly. If the repair still fails, TEST tries to 
prescribe an alternate repair. If that fails, TEST 
presumes an error in the knowledge base, either the 
wrong repair associated with the leaf failure-mode or the 
wrong method for confirming the failure, and halts. 

In the second sub-strategy, success, the repair has 
fixed the original concern. This is the desired outcome, 
and causes the repair strategy to halt. Note that the 
repair strategy does not differentiate between situations 
where (1) both the leaf failure-mode and the original 
concern are known to be fixed, and (2) the status of the 
leaf failure-mode is unknown (eg., not directly testable) 
but the concern is known to be fixed. This models a 
heuristic provided by human experts: if the UUT is 

broken before performing the repair and works 
afterwards, one can reasonably conclude that the repair 
fixed all the causes of the original problem. 

In the third sub-strategy, misdiagnosis, the repair 
fixed the leaf failure-mode, but did not fix the original 
concern. As discussed earlier, this can result from a 
domain knowledge error, other co-occuring problems, or 
diagnostic reasoning based on faulty evidence. Since 
TEST cannot tell if its own knowledge base is in error, it 
adopts a strategy to discover co-occurring problems if 
any, and also verify the evidence gained during the first 
diagnostic pass. 

The last sub-strategy, the unknown problem or 
"broken black box", is the most difficult. A repair has 
been made, but the original concern is not fixed and 
there is no direct test for the repaired component. Thus 
it is impossible to tell if the repair was performed 
correctly, or to confirm the causal relation between the 
component repaired and the original concern. Further, 
the repair may have succeeded but its success masked 
by additional co-occuring failures. For this case, TEST 
uses a heuristic from the automotive domain which 
states "if you do something to fix a black box and it 
doesn't work, repeat the repair before trying anything 
else." This approach is not entirely satisfying, and 
clearly has the potential for incurring needless expense 
in certain cases. But human experts consistently 
preferred to simply repeat the repair before taking the 
trouble to go back and verify the diagnosis. 

At the completion of any of these four sub-strategies, 
TEST moves on to repair the next known failure-mode 
in a similar manner. 

Figure 1: A TEST knowledge base is a hierarchical network of failure-mode (FM) schemata, each of 
which may have datum (D) and repair (RP) schemata attached via has-tests and has-repairs relations. 
Failure-modes are linked "downward" by due-to relations, and may also be linked "upward" by 
always-leads-to relations. Rules which conditionally modify the knowledge base structure may be 
attached virtually anywhere, but are not shown here. Diagnosis consists of traversing the failure-mode 
network, starting at a top-level concern and ending at a leaf node. The final path, shown here in boldface, 
Is called the causal chain. 

Pepper and Kahn 533 



3.3. Customizing TEST'S repair strategy 
The repair strategies as described above may be 

modified or overridden by specifying exception 
information in the knowledge base. Exception 
information is used to modify how a repair's success is 
verified, how follow-on diagnosis is performed 
subsequent to repair failure, and the sequencing of 
multiple repairs. 

Verification. As noted earlier, TEST generally 
verifies repair by checking for the occurrence of two 
failure-modes: the leaf node directly associated with the 
repair, and the original concern. But there may be 
domain-specific reasons to check additional failure-
modes, either on the causal chain connecting the two or 
outside it. Certain repairs may have possible negative 
side-effects, or certain intermediate failure-modes may 
have cheap, accurate tests which are more desireable 
than rechecking the original concern. In other cases, 
repairs may be trivial and it may be unnecessary to 
verify them afterwards. TEST provides mechanisms for 
representing all these exceptions, and for modifying the 
repair strategy's behavior accordingly. 

Alternative diagnosis. If a repair fails, the default 
strategies described in section 3 can be modified to 
prune search in domain-specific ways. A domain expert 
can indicate certain conclusions that can be 
automatically drawn from specific tests performed as 
follow-up to a repair (eg, "if there is no leak in the 
primary vacuum chamber, and if after replacing the 
vacuum pump the result of the vacuum test is FAIL, 
then conclude a leak in the secondary vacuum 
chamber'). A domain expert can also modify TESTs 
rather simplistic default behavior of clearing the 
knowledge base of all evidence after a repair, by 
specifying which kinds of evidence are likely to be 
unaffected by certain changes in the UUT's state. 

Sequencing. As noted earlier, the default behavior is 
for TEST to repair failure-modes in the reverse order 
that they were confirmed. This can be overridden in 
cases where a repair is needed in order to continue with 
diagnosis (eg., an empty radiator must be refilled to 
locate a leak). 

4 . CONCLUSIONS 
We have shown that a diagnostic expert system can 

be made significantly more powerful by extending its 
capabilities into the process of repair selection, 
sequencing and verification. TEST'S repair strategy is a 
step in that direction. It provides mechanisms in the 
diagnostic problem-solver for performing default repair 
strategies, and provides a schematic representation 
model which permits modification of the repair strategy 
in domain-specific ways. 

TEST succeeds in capturing much of the repair 
behavior of expert technicians, but it is limited in several 
ways. Since its knowledge is based on a 
troubleshooting model, it lacks understanding of the 
deep structure of the UUT and cannot predict how a 
repair will affect the reliability of evidence gained prior to 

that repair, nor can it reason about likely side-effects of 
repairs. TEST does not currently support temporal 
representation of evidence, hence it cannot represent or 
reason about changes to test results or failure-modes 
over time. And we have not yet fully integrated the 
repair strategy with TESTs belief maintenance and 
explanation facilities. As TEST matures with field 
experience, we expect to correct these problems as 
required by the user community. 

We have only begun to understand the issues of 
integrating repair strategy with diagnostic reasoning. 
We are continuing to refine our model of repair 
behavior, and look forward to the eventual emergence 
of a sound theory of repair strategy in troubleshooting 
expert systems. 

References 

[All 85] All, M., D. A. Scharnhorst. Sensor-based Fault 
Diagnosis in a Flight Expert System. In Proceedings of the Second 
Conference on At Applications. 1985. 
[Bennett 81] Bennett, J.S. DART: An Expert System for 
Computer Fault Diagnosis. In Proceedings IJCAI-81. 1981. 
[Bylander 83] Bylander, T., S. Mittal, B. Chandrasekaran. 
CSRL: A Language for Expert Systems for Diagnosis. In 
Proceedings IJCAI-83. 1983. 
[Clancey 84] Clancey, W. Details of the Revised Therapy 
Algorithm. in Buchanan, B.G., Shortliffe. EH. (editor). Rule Based 
Expert Systems. Addison Wesley, 1984. 
[Fink 84] Fink, P.K., J.C Lusth, J.W. Duran. A General 
Expert System Design for Diagnostic Problem Solving. In IEEE 
Workshop on Principles of Knowledge Based Systems. 1984. 
[Hofmann 86] Hofmann, M., J. Caviedes, J. Bourne, G. Beale, 
A. Brodersen. Building Expert Systems for Repair Domains. 
Expert Systems 3(1 ):4-11, January, 1988. 
[Kahn85] Kahn.G. MUD, a drilling fluids consultant 
Technical Report, Dept. of Computer Science, Carnegie-Mellon 
University. 1985. 
[Kahn 87a] Kahn, G., A. Kepner, J. Pepper. TEST, a 
Model-Driven Application Shell In Proceedings AAAI-67. 1987. 
[Kahn 87b] Kahn.G. S. From Application Shell to 
Knowledge Acquisition System. In Proceedings UCAI-87. 1987. 
[Maletz 85] Maletz, M. C. An Architecture for Consideration 
of Multiple Faults. In Proceedings of the Second Conference on Al 
Applications. 1985. 
[Pepper 86a] Pepper, J. and G. Kahn. Knowledge Craft: an 
Environment for Rapid Prototyping of Expert Systems. In 
Proceedings of the SME Conference on Al for the Automotive 
Industry. March. 1986. 
[Pepper 86b] Pepper, J., D. Muliins. Artificial Intelligence 
Applied to Audio Systems Diagnosis. In Proceedings of the Int'l 
Congress on Transportation Electronics. 1986. 
(Strandberg 85] Strandberg, C, I. Abramovich, D. Mitchell, 
K. Prill. Page-1: A Troubleshooting Aid for Nonimpact Page 
Printing Systems. In Proceedings of the Second Conference on Al 
Applications. 1985. 
[Ted68C0 86] Tedesco, L. S. Service Bay Diagnostic System. 
In Proceedings of the International Congress on Transportation 
Electronics. 1986. 

534 KNOWLEDGE REPRESENTATION 


