
HARDWARE DIAGNOSIS AS PROGRAM DEBUGGING 

Ajay Gupta 

Hewlett-Packard Laboratories 
Bristol Research Centre 

Filton Road, Bristol BS12 6QZ, UK 
Email: ag®hplb.csnet 

ABSTRACT 

Horn clauses provide a useful framework for writing 
executable structural representations for digital circuits. This 
paper discusses how these representations can be used to 
diagnose faulty circuits using algorithmic program debugging 
techniques developed by Shapiro. The sound theoretical basis 
of these techniques is one of the major advantages of this 
approach. This framework also provides a new perspective on 
some of the hardware diagnosis techniques suggested in the 
literature. 

I INTRODUCTION 

Even after substantial effort the problem of diagnosing 
hardware faults remains a major research interest. Earlier work 
in this area was based on the empirical approach, i.e. having 
statically compiled fault dictionaries and various ways of 
searching through them. This approach, which has been 
widely used in many conventional expert-systems, is based on 
the heuristic classification technique [1]. The limitations of the 
classification-based approach to diagnosis have long been 
identified [3]. The main problems with this approach, e.g. the 
lack of flexibility and extensibility, arise due to mixing control 
information with domain knowledge. An alternative 
model-based approach has been suggested by Davis [4] and 
Qenesereth [5]. This approach uses explicit representation of 
the structure and behavior of the device; and instead of 
scanning a fault dictionary the principle of violated expectation 
[4] is used to localise the fault. 

A fundamental problem with the research in model-based 
hardware diagnosis has been its distinct lack of theoretical 
foundations. With recent work in the field of software 
debugging which has strong theoretical motivation, this 
absence becomes even more conspicuous. Not only has this 
led to a proliferation of seemingly different techniques, it has 
also shrouded the fundamental problems that need to be 
addressed before these techniques can be scaled up to handle 
real devices. The relationship between hardware and software 
being well known (at least at the coarse level of hardware 
granularity) there is a potential relationship to be explored 
between diagnosing hardware and debugging software. 

This paper explores the relationship between algorithmic 
program debugging based on the model-inference system 
(MIS) built by Shapiro [7] and the techniques for hardware 
diagnosis using device models proposed independently by 
Qenesereth and Davis. As MIS can be best illustrated in 
pure-PROLOG, we first describe how to represent a digital 
circuit as a PROLOG program. The next section summarises 
the program debugging component of the MIS and explains 

the terms used later in the paper. Then we present two 
observations that enable hardware diagnosis to be conducted 
by the contradiction backtracing in MIS. We illustrate the 
method on an example used by [5]. Then we illustrate how 
sequential circuits can be handled in this framework. Finally 
we explain how the contradiction backtracing technique relates 
to the techniques that have been proposed by Davis and 
Qenesereth. 

II CIRCUIT-DESCRIPTION IN PROLOG 

Circuits can be represented in pure-PROLOG by identifying a 
clause with a hardware module. The head of the clause gives 
the black-box view of the module - the predicate being the type 
of the module and the arguments being the ports of the 
module. This represents the top-level abstraction of the device, 
expressing its input-output behaviour with no reference to its 
internal structure. For instance a fulladder is represented as: 

Ml adder 

The internal structure of a module consists of its submodules 
and the connections between them. This information is 
represented by the body of the clause that describes the 
module. The body consists of a set of terms each representing 
a submodule, and the connections between these submodules 
are represented by sharing a variable between the terms. Note 
that the order of submodules in the body of a module is 
completely irrelevant. This method of representing circuits in 
pure-PROLOG has been called the definitional method by 
Clocksin [2]. We extend this representation to require that 
each module carries its name as Its first argument. The reason 
for this requirement, which are related to the diagnosis 
problem, will become clear later. 

The above definition reflects the structural composition of the 
fulladder, and at the same time its execution under a 
PROLOG interpreter simulates the behaviour of the device. 

524 KNOWLEDGE REPRESENTATION 



This representation also captures the hierarchical nature of the 
device, where hierarchy is achieved by including a call to a 
module in the definition of a higher-level module. The lowest 
level of the hierarchy consists of the basic elements 
represented as a set of unit clauses. For instance the logic 
gates can be represented as: 

xor(Name.O,X,X). and(Name,0,_,0). 
xor(Name,1,1,0). and(Name,l ,X,X). 
xor(Name, 1,0,1). 

Ill OVERVIEW OF MIS 

The program debugging techniques in MIS apply when the 
programmer has a program P that on input x returns an 
Incorrect output y. The goal of debugging is to locate the 
erroneous modules and possibly show how' they are failing. 
It is required that there exists a mechanism that can serve as 
an oracle for answering the queries of the form: 

'is y a correct output of module P on input x' and 
'what is a correct output of module P on input x' 

These two types of oracle have been termed ground and 
existential oracles respectively. Normally the programmer is 
expected to be able to answer such queries, hence act as the 
oracle. If the oracle can be mechanised debugging becomes 
completely automatic. 

If M is an interpretation for a procedure P, an oracle simulation 
of P on x with M is defined as a computation of P on input x 
where every procedure immediately called by P on input x is 
simulated by a call to an oracle for M. The goal of an oracle 
simulation is to isolate the execution of a procedure call from 
the possible errors in subordinate procedure calls. A procedure 
P is correct in M if, for any x, the output of any oracle 
simulation of P on x with M is correct in the model M. If a 
procedure is incorrect then there is some x such that oracle 
simulation of P on x returns an output y which is not correct in 
M. Such a simulation gives the desired counterexample to the 
correctness of P in M. 

The simplest algorithm to debug an incorrectly terminating 
program P on input x is based on traversing the tree of 
procedures invoked on the input. The parent relation in the 
tree reflects the procedure invocation relation, and the sons in 
the tree are ordered according to the order in which the 
procedures are invoked. If a procedure P' on input x' returns 
an output y' the algorithm calls the ground oracle to check its 
correctness. If the oracle returns 'yes' the simulation 
continues. The procedure that returns 'no' is the incorrect 
procedure. The order in which the algorithm queries the oracle 
corresponds to the post-order traversal of the procedure 
invocation tree. Various optimisations that attempt to minimise 
the number of queries asked have also been proposed [7]. 

IV HARDWARE DIAGNOSIS IN MIS 

In order to apply the program debugging techniques to 
hardware diagnosis we have to address two problems. First, in 
the case of software modules once a module has been tested, 
it can be used or called in any number of places without further 
verification. On the other hand, we know that just because one 
and-gate has been shown to be fault-free does not mean every 
and-gate will be behaving correctly. This problem can be 
handled by ensuring that each physical instance of a module 

has a unique name as part of its definition. It is for this reason 
we require that each module carries as its first argument a 
name, part of which is built using its parents name. 

Secondly.in the case of program debugging, the debugger 
has the incorrect program, and the oracle, usually the 
programmer, has the information about the correct or intended 
behavior. But in the case of faulty hardware the debugger has 
complete knowledge of the intended behavior from the design 
descriptions, but the faulty theory is embedded in the device 
under diagnosis from which it can be extracted only by making 
some measurements. Thus there is a complete duality 
between the knowledge available with the program debugging 
and hardware diagnosis systems. 

in order to map hardware diagnosis onto program debugging 
we only need to recognise that the correctness of a theory is 
defined in reference to a model. Thus diagnosis turns out to 
be finding the discrepancy between the theory and the model. 
Whether the model or the theory is correct' in the real world is 
irrelevant for diagnosis. We can now treat the incorrect or 
faulty device as the intended behavior, i.e. the model, and its 
design description as the incorrect theory to be debugged. In 
this framework the device under diagnosis acts as the oracle -
both functional and ground, that can be used for answering the 
queries while 'diagnosing' the designed behavior. 

With these two observations, fault-diagnosis as proposed by 
Davis [3,4] and Genesereth [5] can be reproduced by the 
diagnosis algorithms in MIS. For details of the debugging 
algorithms readers are referred to [7]. The following script 
shows the queries asked to diagnose a fault. A goal such as: 

?- fp(fadder(fa,1,0,0,1,1), X). 

is a query to find the clause that would explain the behavior of 
full_adder that results in (1,1) on inputs (1,0,0). The debugging 
algorithm attempts to find the culprit module by querying the 
oracle. This is very similar to signal tracing which Davis and 
Genesereth have suggested. Following is a trace for this 
simple example where the faulty module is and(a2): 

Oracles response is indicated in bold. The counterexample 
found indicates the faulty' module and how its behavior differs 
from the actual behavior. Notice that although this faulty' 
behavior refers to module in the design-description, in practice 
we would really need to modify the oracle so that it matches 
the intended behavior. 

V DIAGNOSING CIRCUITS WITH STATES 

So far we have only considered combinational circuits -
circuits whose output is a function of current input signals only. 
In sequential circuits, on the other hand, the output is 
determined by the order in which the signal is applied, thus the 
history is important for the behavior. Sequential circuits can be 
of two types: unclocked (asynchronous) or clocked 
(synchronous). Asynchronous circuits can be modelled only at 
an abstraction higher than the time-domain in the definitional 
method. For synchronous circuits additional arguments are 
required to represent history. For example, a JK-flip flop will 

Gupta 525 



VI CONCLUSIONS & FURTHER WORK 

There are two approaches to hardware diagnosis depending 
on whether the diagnosis system has complete or partial 
observability of signals in the device under diagnosis. In this 
paper we have demonstrated that in the framework where the 
diagnosis mechanism has complete observability, i.e. the 
oracle can take a measurement at any point in the device 
under diagnosis, hardware diagnosis can be conveniently 
modeled as algorithmic program debugging. This approach 
provides us a powerful framework for studying automatic fault 
correction as well. For instance, Davis [3] recognises different 
kinds of failures that need to be considered commonly in 
hardware diagnosis: 

stuck-ats or floating pins 
short-circuits 
ports in unintended directionality 

In the framework of MIS each of these failures would 
constitute a refinement relation [7]. We need to define the 
refinement relations for different kinds of hardware failures and 
the techniques for searching the refinement trees generated by 
them. 

The ability to take measurements at arbitrary points in the 
device is possible only in a laboratory environment. In the field 
however the devices have a limited observability because only 
the signals coming out on the output ports can be seen. 
Partial observability adds a fundamentally new dimension to 
fault-diagnosis. One approach would be find techniques to 
regain the effects of that resolution. In this regime, the crucial 
issues relate to the problem of test-generation. 

There are important issues to be addressed in order to make 
the definitional representation of circuits easier to use. In 
particular the clocks do not hierarchically abstract, so the 
behavior of the circuit at the top-most level still needs to be 
looked at the lowest level of clock granularity. We need 
gradual temporal zooming-in appropriate to the behavior of the 
module under study [6]. 

ACKNOWLEDGEMENTS 

Thanks are due to John Lumley, Bill Clocksin, Bill Sharpe and 
Andy Buchanan for their valuable comments. 

REFERENCES 

[1] Clancey, W.J., "Classification Problem Solving", in Proc. 
AAAI-84. 1984, pp. 49-54. 

[2] Clocksin, W.F., "Logic Programming and digital circuit 
analysis", to appear in J. Logic Programming (1987). 

[3] Davis, R., "Expert Systems: where we are and where do 
we go from here", Al Magazine, Summer 1982. 

[4] Davis, R., et. al., "Diagnosis based on description of 
structure and function", Proc. AAAI-83,1983, pp 137-142. 

[5] Qenesereth, M.R., "The use of design description in 
automatic diagnosis", Artificial Intelligence 24 (1984) 
411-436. 

[6] Hamscher.W. & R. Davis, "Diagnosing circuits with states: 
an inherently underconstrained problem", Proc. AAAI-84. 

[7] Shapiro, E.Y., Algorithmic Program Debugging, MIT Press, 
Cambridge, Mass. (1982). 

526 KNOWLEDGE REPRESENTATION 


