
PROGRAM UNDERSTANDING
WITH THE LAMBDA CALCULUS

Stanley Letovsky
Department of Computer Science

Yale University
New Haven, CT 06520

A B S T R A C T

A prerequisite of any a t tempt to bui ld intell igent tools to as­
sist in the programming process is a representation language for
encoding programming knowledge. Languages that have been
used for this purpose include the predicate calculus [5] and var­
ious program-schema languages [1,4]. This paper advocates a
new candidate which is as expressive as the predicate calculus
bu t more int imately connected w i t h programming: the lambda
calculus. I ts advantages lie in i ts close resemblance to conven­
t ional programming languages, and in a straighforward model of
inference by rewr i t ing, which can be applied to automatic pro­
gramming and program understanding. The use of the lambda
calculus in an automatic program understander is described.

1 I N T R O D U C T I O N

The general goal of research in A l /Sof tware Engineering
(A I / S W) is to construct tools which automate aspects of the
software development process tha t are presently carried out by
expert programmers. Such tools need knowledge bases which
encode the expertise current ly possessed only by programmers.
One impor tan t category of programming knowledge is the stan­
dard plans of programming: this category includes algori thms,
data structures and associated operations, and simple cliches
such as summing and count ing. Th is paper describes an ap­
proach to notat ing these plans, and to performing mechanical
inference w i t h them.

I I M E T H O D S O F R E P R E S E N T I N G P L A N S

One might th ink that a programming language would suffice
to notate the plans used by programmers: after a l l , program­
ming languages are languages for notat ing programming knowl­
edge. There are two problems w i t h this idea. F i rs t , the syntax
and semantics of programming languages tends to be rather too
clunky and complex for the needs of mechanical inference. More
important ly , the types of composit ion of concepts supported by
programming languages, via language constucts such as subrou­
tines, packages, abstract data types, or objects, correspond to
only a subset of the ways that concepts can combine in a pro­
grammer's m ind .

These l imi tat ions on the expressivity of programming lan­
guages have led A I / S W researchers to use more expressive lan­
guages for wr i t i ng down the knowledge. These include a var i -
ety of program schema languages and the predicate calculus. A
schema language (eg.,[4,1]) is usually a programming language of

1Thl i research was supported by NSF under 1ST grant #8505019.

some sort augmented w i t h pattern-matching variables. Plans are
represented as incomplete programs, w i t h variable parts. Th is
approach lends itself wel l to syntactic matching on programs
wr i t ten in the base programming language, but the reasoning
is subject to various types of errors, because the syntactic pat­
tern matching can generate semantic nonsense. In part icular,
schema variables can be instant iated w i t h code segments which
destroy the dataflow relationships assumed by other parts of the
schema.

512 KNOWLEDGE REPRESENTATION

Letovsky 513

References

[l] David Barstow. Knowledge-Based Program Construction. Else­
vier North Holland Inc., 1979.

[2] Robert S. Boyer and J. Strother Moore. A Computational Logic.
Academic Press, 1979.

[3] Alonio Church. The calculi of lambda conversion. Annals of
Mathematical Studies, 6, 1951.

[4] W. L. Johnson and E. Soloway. Proust: knowledge-based pro­
gram understanding. In Proceedings of the 7th International Con­
ference on Software Engineering, IEEE, Orlando, Florida, 1983.

[5] Charles Rich. A formal representation of plans for the program­
mer's apprentice. In Proceedings of the Seventh International
Joint Conference on Artificial Intelligence, pages 1044-1053, IJ-
CAI, Vancouver, B.C., 1981.

[6] Charles Rich. Inspection Methods in Programming. Technical
Report AI-TR-604, MIT AI Lab, 1981.

[7] Stephen Slade. The T Programming Language: A Dialect of
LISP. Prentice Hall Inc., 1987.

[8] Guy Lewis Steele and Gerald Jay Sunman. The Revised Report
on SCHEME, a Dialect of LISP. Technical Report AI-Memo-
452, MIT AI Lab, January 1978.

(9] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. The MIT Press, 1977.

[10] Richard C. Waters. A method for analysing loop programs.
IEEE Transactions on Software Engineering, SE-5(3):237-247,
1979.

514 KNOWLEDGE REPRESENTATION

