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A B S T R A C T 

A prerequisite of any a t tempt to bui ld intell igent tools to as­
sist in the programming process is a representation language for 
encoding programming knowledge. Languages that have been 
used for this purpose include the predicate calculus [5] and var­
ious program-schema languages [1,4]. This paper advocates a 
new candidate which is as expressive as the predicate calculus 
bu t more int imately connected w i t h programming: the lambda 
calculus. I ts advantages lie in i ts close resemblance to conven­
t ional programming languages, and in a straighforward model of 
inference by rewr i t ing, which can be applied to automatic pro­
gramming and program understanding. The use of the lambda 
calculus in an automatic program understander is described. 

1 I N T R O D U C T I O N 

The general goal of research in A l /Sof tware Engineering 
( A I / S W ) is to construct tools which automate aspects of the 
software development process tha t are presently carried out by 
expert programmers. Such tools need knowledge bases which 
encode the expertise current ly possessed only by programmers. 
One impor tan t category of programming knowledge is the stan­
dard plans of programming: this category includes algori thms, 
data structures and associated operations, and simple cliches 
such as summing and count ing. Th is paper describes an ap­
proach to notat ing these plans, and to performing mechanical 
inference w i t h them. 

I I M E T H O D S O F R E P R E S E N T I N G P L A N S 

One might th ink that a programming language would suffice 
to notate the plans used by programmers: after a l l , program­
ming languages are languages for notat ing programming knowl­
edge. There are two problems w i t h this idea. F i rs t , the syntax 
and semantics of programming languages tends to be rather too 
clunky and complex for the needs of mechanical inference. More 
important ly , the types of composit ion of concepts supported by 
programming languages, via language constucts such as subrou­
tines, packages, abstract data types, or objects, correspond to 
only a subset of the ways that concepts can combine in a pro­
grammer's m ind . 

These l imi tat ions on the expressivity of programming lan­
guages have led A I / S W researchers to use more expressive lan­
guages for wr i t i ng down the knowledge. These include a var i -
ety of program schema languages and the predicate calculus. A 
schema language (eg.,[4,1]) is usually a programming language of 
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some sort augmented w i t h pattern-matching variables. Plans are 
represented as incomplete programs, w i t h variable parts. Th is 
approach lends itself wel l to syntactic matching on programs 
wr i t ten in the base programming language, but the reasoning 
is subject to various types of errors, because the syntactic pat­
tern matching can generate semantic nonsense. In part icular, 
schema variables can be instant iated w i t h code segments which 
destroy the dataflow relationships assumed by other parts of the 
schema. 
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