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Abs t rac t 
James Allen defined a calculus of time intervals by iden­
t i fying time intervals as pairs of real numbers, and con­
sidering binary relations that can hold between such pairs 
[Alll83]. We call this the Interval Calculus. We consider 
the system of interval time units defined in [Lad86.2] (the 
T U S ) , which was intended for the natural representation 
of real clock time on any scale. We introduce the convex 
part of the T U S , and show that it may be regarded as a 
canonical model of the Interval Calculus. We discuss the 
consequences of this result. 

1 I n t r o d u c t i o n 
T h e In te rva l Calculus 
The representation of time by means of intervals rather 
than points has a history in philosophical studies of time 
(e.g. [Ham71, vBen83, Hum78, Dow79, Rop79, New80]). 
James Allen defined a calculus of time intervals in [AU83], 
by considering binary relations on pairs of real numbers 
definable using only the natural ordering on the real num­
bers. He investigated the use of the calculus for repre­
senting time in the context of planning [All84, AUKau85, 
PelA1186].. Allen and Pat Hayes have investigated the first-
order logical formulation of interval theories in [AllHay85, 
AllHay87.1, AUHay87.2]. A modal logic using similar in­
terval concepts was introduced in [HalSho86]. 

Ladkin and Maddux [LadMad87.1] showed that Allen 
had defined the primitives of a proper relation algebra in 
the sense of Tarski [JonTar52], and showed that there is, 
up to isomorphism, a unique countable representation of 
this algebra. This representation is derived from the set of 
pairs of rational numbers, in the same way that Allen used 
the pairs of real numbers to define his calculus. We also 
showed that there is a canonical translation of an arbitrary 
finite relation algebra into a first-order theory, so a first-
order axiomatisation of the Interval Calculus is obtained. 
This theory is complete, countably categorical (i.e. has a 
unique countable model up to isomorphism), and decid-
able (by Vaught's Test) (LadMad87.1, ChaKei78]. 
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Recently, we showed in [Lad87.4] that this theory ad­
mits elimination of quantifiers (any statement in the the­
ory is equivalent to a quantifier-free statement in the same 
theory), and gave an explicit decision procedure for the 
theory. 

We use the expression Interval Calculus to refer to 
either the algebraic or the first-order formulation, and we 
use the expression Interval Algebra to refer specifically to 
just the relation-algebraic formulation of the calculus. 

The first-order Interval Calculus theory is stronger than 
the first-order axiomatisation of intervals in [AUHay85, 
AUHay87.1, AllHay87.2]. The Interval Calculus entails 
the density of the underlying ordering [LadMad87.1J. We 
characterised precisely all the models of the Allen-Hayes 
theory in [Lad87.8], as pairs of distinct, ordered points 
over an arbitrary, not necessarily dense, unbounded l in­
ear order. We showed in [Lad87.4] that the Allen-Hayes 
theory is decidable, but at the time of wr i t ing we do not 
yet have a really practical decision procedure for i t , in 
contrast to the situation for the Interval Calculus (for ex­
ample, the Allen-Hayes theory does not admit quantifier 
elimination). 

Allen was particularly concerned wi th constraint sat­
isfaction techniques in the Interval Calculus, and he pre­
sented an algorithm for detecting a l imited class of incon­
sistencies in [AU83]. Vi lain and Kautz have shown that 
constraint satisfaction in the Calculus is NP-hard in gen­
eral [VilKau86]. Ladkin and Maddux extended Allen's 
constraint propagation algorithm so that it detects in­
consistencies missed by his algorithm [LadMad87.2]. The 
decision procedure of [Lad87.4] combines quantifier elimi­
nation techniques w i th Allen's algorithm, as extended by 
Ladkin-Maddux, to decide arbitrary first-order formulas. 

Background to Th i s Paper 
In our work, we have considered the use of the Interval 
Calculus for reasoning about all aspects of time. Two of 
our major concerns are, firstly, that using intervals wi th­
out gaps (convex intervals) makes it hard to reason about 
interruptable processes, where the more natural model 
would use intervals w i th gaps; and, secondly, that it is of-
ten unnatural to use pairs of real numbers for representing 
intervals of real t ime, especially when standard everyday 
time units are needed, as in project management or real-
time programming. 
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The first concern led us to a taxonomy of binary rela­
tions on intervals that had gaps, called unions-of-convex 
intervals [Lad86.1]. We refer to this system as the Ex­
tended Interval Calculus. We provided an example of 
the use of the Extended Interval Calculus for the high-
level specification and synthesis of concurrent processes 
in [Lad87.1). The second concern led to a system of inter­
val time units [Lad86.2], which can represent all kinds of 
standard time intervals such as years, days, and picosec­
onds in a natural manner, and we introduced primitive 
operations for building up arbitrary intervals, both con­
vex and non-convex, from these interval time units. We 
refer to this time unit system as the TUS. Another system 
for constructing time units was presented in [LeMcFo86]. 

We show here that the TUS contains a canonical model 
for the Interval Calculus. Specifically, the definable part 
of the TUS which refers to convex intervals (the convex 
TUS) is a countable representation of the Interval Alge­
bra. Since there is, up to isomorphism, only one count­
able representation of the Interval Algebra (or, countable 
model of the Interval Calculus), the convex TUS is canon­
ical in the following sense: if a statement in the Interval 
Calculus is not a theorem of the Calculus, then there is 
a counterexample to that statement in the convex TUS, 
and if a statement in the language of the Interval Calculus 
is true for all the intervals in the convex TUS, then it is a 
theorem of the Interval Calculus. These facts follow from 
theorems in [LadMad87.1]. 

The representation of time intervals in the TUS is 
richly structured, compared with a pairs-of-points repre­
sentation. For example, there is a natural notion of dura­
tion that may be imposed [Lad86.2], which is essential for 
real-time reasoning. 

We present in this paper a one-to-one mapping from 
time units to pairs of rational numbers, to show canon-
icality of the convex TUS. The decision procedure in 
[Lad87.4] can make use of the map to provide a model 
within the TUS of an arbitrary satisfiable collection of 
first-order constraints in the Interval Calculus. We refer 
the reader to [Lad87.4] and sequels. 

The TUS and the Interval Calculus have been imple­
mented at Kestrel Institute, as part of the ongoing task of 
implementing and using the Extended Interval Calculus. 
The full decision procedure for the Interval Calculus has 
not yet been implemented. Currently, the TUS is used 
as the base for the time package in a prototype project 
management system developed at Kestrel Institute. 

O r g a n i s a t i o n 

Section 2 introduces the time unit system from [Lad86.2], 
and defines the language used for the statement of the 
main result. Section 3 contains the main result, and Sec­
tion 4 is a summary. 

2 T h e T i m e U n i t S y s t e m 

The TUS was introduced in [Lad86.2] by example. There 
are basic time units, which are sequences of integers of a 
certain sort, and a binary operator convexify, which en­
ables us to build arbitrary convex intervals from the basic 
units. The full TUS includes other structure needed for 
the Extended Interval Calculus [Lad86.2], which need not 
concern us here. We are concerned only with that part of 
the TUS which deals with convex intervals. We introduce 
this by example, and later give a more formal definition 
via the language I and the associated theory J. J is the 
convex part of the TUS defined by the axioms given in 
[Lad86.2], or, alternatively, may be obtained from J by 
using the algebraic methods in this paper. 

T h e C o n v e x P a r t o f t h e T U S 

We represent the basic time intervals in the TUS by se­
quences of integers. Each element of the sequence repre­
sents a particular year, month, day, hour, minute, second 
...., The first element represents the year, the next is the 
month in that year, the third is the day, etc. We illustrate 
the system down to seconds, hence our sequences will have 
lengths of up to six elements. The system is clearly ex­
tendable to smaller units such as microseconds and pi­
coseconds, indeed needs to be extendable to arbitrarily 
small units of time in order to prove our main theorem. It 
was indicated in [Lad86.2] that the system is adequate for 
defining other kinds of intervals that are not basic inter­
vals such as WEEKS and CENTURIES, providing there 
is some logic programming ability in the implementation 
language. 

Some example real-time intervals in this system are: 

• [1986] representing the year 1986 

• [1986,3] representing the month of March, 1986 

• [1986,3,21] representing the day of 21st March, 1986 

• [1986,3,21,7] representing the hour starting at 7am 
on 21st March, 1986 

• [1986,3,21,7,30] representing the minute starting 
at 7;30am on 21st March, 1986 

• [1986,3,21,7,30,32] representing the 33rd second 
of 7:30am on 21st March, 1986 (the first second 
starts at 0) 

In addition to the basic sequences that represent fixed 
units of clock time, we need to be able to make arbi­
trary convex time intervals. The operator convexify ac­
complishes this. 

convexify(iyj) = the smallest convex interval 
that contains both i and j 
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So, for example: 

• convexify([1987],[1999]) = the interval containing all 
of the years from 1987 to the end of the century 

• convexify([1987,l], [1987,12]) = the interval from 
January 1987 through December 1987, i.e. the year 
1987. 
Thus convexify([1987,l], [1987,12]) = [1987]. 

• convexify([1987,3,2,8], [1987,3,2,11]) = the (Amer­
ican) working morning of Monday March 2 1986, 
from 8am until noon (the hour of 11am extends up 
until noon). 

Axioms for convexify were given in [Lad86.2]. For the 
purposes of this paper, the intuitive definition and illus­
trations given above should suffice. 

3 T h e M a i n R e s u l t 

In this section, we introduce the languages I and I1, and 
the associated theory J', of the TUS. We thus present 
the TUS as a formal theory, but of course this theory is 
about time intervals. We choose this method of presenta­
tion because we wish to later map the TUS intervals into 
pairs-of-rational-numbers, for the main theorem. It is eas­
iest to do this by presenting the theory as a language of 
terms, with an axiomatised equality on those terms (which 
we indicate first intuitively, and later give a more formal 
presentation), and then defining the mapping to the set 
of pairs-of-rational-numbers, by means of the language, in 
a way which preserves the equality on those terms. This 
is a standard technique from Universal Algebra, see e.g. 
[BurSan81]. 

We in fact obtain our results for a more general family 
of languages, G. The result for J is an instance of the 
general result. 

T h e L a n g u a g e J 

We need to distinguish between actual convex time inter­
vals, and terms in the language for denoting time intervals. 
This is because, as we saw, we can have two different terms 
denoting the same time interval, e.g. convexify([1987,1], 
[1987,12]) and [1987]. 

To be more precise, our language J for time units has 
constants for some finite sequences of integers, (which we 
denote by e.g. [a,b,c] for the 3-element sequence whose 
first element is the integer a, whose second is the integer 
6, and whose third is the integer c); contains the binary 
operator symbol conv (to stand for the convexify opera­
tor); and contains a standard set of punctuation symbols 
for constructing terms from these constants and the oper­
ator (which we write prefix). The terms of this language 
are obtained in the standard manner from the sequence 
constants and conv. 

The precise collection of finite sequences that we want 
to denote are just those that denote actual parts of years, 
months, days, etc. The technical definition is straightfor­
ward, but detailed: 

• the first item is an arbitrary (positive or negative) 
integer, i.e. a member of Z, the set of integers. 

• the second item is an integer between 1 and 12, in­
clusive, 

• the third item depends on the first and second items, 
and is always an integer between 1 and 31 (we have 
to allow for 28, 29 and 30 day months). 

• similarly for the hour elements, minute elements, 

We shall use the convention that when we want to refer 
to a term, we write it in boldface, and when we use a term 
to refer to an interval, we write it in light face. For those 
familiar with the use/mention distinction, this means that 
we use in light face, and mention in boldface. 

So convexify([1987,l], [1987,12]) is the same interval 
as [1987], but conv([1987,l], [1987,12]) is not the same 
term as [1987]. J contains the statement 
(conv([1987,l], [1987,12]) = [1987]) as a theorem, since 
the intervals denoted by these two terms are the same in­
terval. 

J is just the theory in the language J which is ob­
tained by considering which terms in I refer to the same 
interval. In other words, J is the theory of the equality 
relation obtained from considering the equations true of 
the operator convtxify. This theory J was axiomatised in 
[Lad86.2], p358. 

The sublanguage of J which we are most interested 
in is the language J1 which consists of all the sequence 
constants from J along with those terms of the form 
conv(i , j ) , where i and j are sequence constants (i.e. there 
are no iterated applications of conv in terms in X1). 

The importance of the sublanguage J1 is that every 
convex interval in the TUS may be represented by a term 
in I1. In other words, iterated applications of the convex' 
ify operator may be replaced by a single application of 
convtxify to basic intervals. This fact is stated precisely 
in the following lemma: 
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