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Abstract

James Allen defined a calculus of time intervals by iden-
tifying time intervals as pairs of real numbers, and con-
sidering binary relations that can hold between such pairs
[AllI83].  We call this the Interval Calculus. We consider
the system of interval time units defined in [Lad86.2] (the
TUS), which was intended for the natural representation
of real clock time on any scale. We introduce the convex
part of the TUS, and show that it may be regarded as a
canonical model of the Interval Calculus. We discuss the
consequences of this result.

1 Introduction
The Interval Calculus

The representation of time by means of intervals rather
than points has a history in philosophical studies of time
(e.g. [Ham71, vBen83, Hum78, Dow79, Rop79, New80]j).
James Allen defined a calculus of time intervals in [AU83],
by considering binary relations on pairs of real numbers
definable using only the natural ordering on the real num-
bers. He investigated the use of the calculus for repre-
senting time in the context of planning [All84, AUKau85,
PelA1186].. Allen and Pat Hayes have investigated the first-
order logical formulation of interval theories in [AllHay85,
AllHay87.1, AUHay87.2]. A modal logic using similar in-
terval concepts was introduced in [HalSho86].

Ladkin and Maddux [LadMad87.1] showed that Allen
had defined the primitives of a proper relation algebra in
the sense of Tarski [JonTar52], and showed that there is,
up to isomorphism, a unique countable representation of
this algebra. This representation is derived from the set of
pairs of rational numbers, in the same way that Allen used
the pairs of real numbers to define his calculus. We also
showed that there is a canonical translation of an arbitrary
finite relation algebra into a first-order theory, so a first-
order axiomatisation of the Interval Calculus is obtained.
This theory is complete, countably categorical (i.e. has a
unique countable model up to isomorphism), and decid-
able (by Vaught's Test) (LadMad87.1, ChaKei78].

*This work has been partially supported by U.S. Navy under con-
tract N0O0039-86-C-0221, and by Rome Air Development Center under
U.S. Government contract F30602-84-C-0109. The views and conclu-
sions expressed in this paper are those of the author and should not
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Recently, we showed in [Lad87.4] that this theory ad-
mits elimination of quantifiers (any statement in the the-
ory is equivalent to a quantifier-free statement in the same
theory), and gave an explicit decision procedure for the
theory.

We use the expression Interval Calculus to refer to
either the algebraic or the first-order formulation, and we
use the expression Interval Algebra to refer specifically to
just the relation-algebraic formulation of the calculus.

The first-order Interval Calculus theory is stronger than
the first-order axiomatisation of intervals in [AUHay85,
AUHay87.1, AllHay87.2]. The Interval Calculus entails
the density of the underlying ordering [LadMad87.1J. We
characterised precisely all the models of the Allen-Hayes
theory in [Lad87.8], as pairs of distinct, ordered points
over an arbitrary, not necessarily dense, unbounded lin-
ear order. We showed in [Lad87.4] that the Allen-Hayes
theory is decidable, but at the time of writing we do not
yet have a really practical decision procedure for it, in
contrast to the situation for the Interval Calculus (for ex-
ample, the Allen-Hayes theory does not admit quantifier
elimination).

Allen was particularly concerned with constraint sat-
isfaction techniques in the Interval Calculus, and he pre-
sented an algorithm for detecting a limited class of incon-
sistencies in [AU83]. Vilain and Kautz have shown that
constraint satisfaction in the Calculus is NP-hard in gen-
eral [VilKau86]. Ladkin and Maddux extended Allen's
constraint propagation algorithm so that it detects in-
consistencies missed by his algorithm [LadMad87.2]. The
decision procedure of [Lad87.4] combines quantifier elimi-
nation techniques with Allen's algorithm, as extended by
Ladkin-Maddux, to decide arbitrary first-order formulas.

Background to This Paper

In our work, we have considered the use of the Interval
Calculus for reasoning about all aspects of time. Two of
our major concerns are, firstly, that using intervals with-
out gaps (convex intervals) makes it hard to reason about
interruptable processes, where the more natural model
would use intervals with gaps; and, secondly, that it is of-
ten unnatural to use pairs of real numbers for representing
intervals of real time, especially when standard everyday
time units are needed, as in project management or real-
time programming.



The first concern led us to a taxonomy of binary rela-
tions on intervals that had gaps, called unions-of-convex
intervals [Lad86.1]. We refer to this system as the Ex-
tended Interval Calculus. We provided an example of
the use of the Extended Interval Calculus for the high-
level specification and synthesis of concurrent processes
in [Lad87.1). The second concern led to a system of inter-
val time units [Lad86.2], which can represent all kinds of
standard time intervals such as years, days, and picosec-
onds in a natural manner, and we introduced primitive
operations for building up arbitrary intervals, both con-
vex and non-convex, from these interval time units. We
refer to this time unit system as the TUS. Another system
for constructing time units was presented in [LeMcFo86].

We show here that the TU S contains a canonical model
for the Interval Calculus. Specifically, the definable part
of the TUS which refers to convex intervals (the convex
TUS) is a countable representation of the Interval Alge-
bra. Since there is, up to isomorphism, only one count-
able representation of the Interval Algebra (or, countable
model of the Interval Calculus), the convex TUS is canon-
ical in the following sense: if a statement in the Interval
Calculus is not a theorem of the Calculus, then there is
a counterexample to that statement in the convex TUS,
and if a statement in the language of the Interval Calculus
is true for all the intervals in the convex TUS, then it is a
theorem of the Interval Calculus. These facts follow from
theorems in [LadMad87.1].

The representation of time intervals in the TUS is
richly structured, compared with a pairs-of-points repre-
sentation. For example, there is a natural notion of dura-
tion that may be imposed [Lad86.2], which is essential for
real-time reasoning.

We present in this paper a one-to-one mapping from
time units to pairs of rational numbers, to show canon-
icality of the convex TUS. The decision procedure in
[Lad87.4] can make use of the map to provide a model
within the TUS of an arbitrary satisfiable collection of
first-order constraints in the Interval Calculus. We refer
the reader to [Lad87.4] and sequels.

The TUS and the Interval Calculus have been imple-
mented at Kestrel Institute, as part of the ongoing task of
implementing and using the Extended Interval Calculus.
The full decision procedure for the Interval Calculus has
not yet been implemented. Currently, the TUS is used
as the base for the time package in a prototype project
management system developed at Kestrel Institute.

Organisation

Section 2 introduces the time unit system from [Lad86.2],
and defines the language used for the statement of the
main result. Section 3 contains the main result, and Sec-
tion 4 is a summary.

2 The Time Unit System

The TUS was introduced in [Lad86.2] by example. There
are basic time units, which are sequences of integers of a
certain sort, and a binary operator convexify, which en-
ables us to build arbitrary convex intervals from the basic
units. The full TUS includes other structure needed for
the Extended Interval Calculus [Lad86.2], which need not
concern us here. We are concerned only with that part of
the TUS which deals with convex intervals. We introduce
this by example, and later give a more formal definition
via the language / and the associated theory J. J is the
convex part of the TUS defined by the axioms given in
[Lad86.2], or, alternatively, may be obtained from J by
using the algebraic methods in this paper.

The Convex Part of the TUS

We represent the basic time intervals in the TUS by se-
quences of integers. Each element of the sequence repre-
sents a particular year, month, day, hour, minute, second
...., The first element represents the year, the next is the
month in that year, the third is the day, etc. We illustrate
the system down to seconds, hence our sequences will have
lengths of up to six elements. The system is clearly ex-
tendable to smaller units such as microseconds and pi-
coseconds, indeed needs to be extendable to arbitrarily
small units of time in order to prove our main theorem. It
was indicated in [Lad86.2] that the system is adequate for
defining other kinds of intervals that are not basic inter-
vals such as WEEKS and CENTURIES, providing there
is some logic programming ability in the implementation
language.
Some example real-time intervals in this system are:

* [1986] representing the year 1986
* [1986,3] representing the month of March, 1986
» [1986,3,21] representing the day of 21st March, 1986

+ [1986,3,21,7] representing the hour starting at 7am
on 21st March, 1986

» [1986,3,21,7,30] representing the minute starting
at 7;30am on 21st March, 1986

* [1986,3,21,7,30,32] representing the 33rd second
of 7:30am on 21st March, 1986 (the first second
starts at 0)

In addition to the basic sequences that represent fixed
units of clock time, we need to be able to make arbi-
trary convex time intervals. The operator convexify ac-
complishes this.

convexify(iyj) = the smallest convex interval
that contains both i and j
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So, for example:

« convexify([1987],[1999]) = the interval containing all
of the years from 1987 to the end of the century

» convexify([1987,I], [1987,12]) = the interval from
January 1987 through December 1987, i.e. the year
1987.

Thus convexify([1987.,1], [1987,12]) = [1987].

» convexify([1987,3,2,8], [1987,3,2,11]) = the (Amer-
ican) working morning of Monday March 2 1986,
from 8am until noon (the hour of 11am extends up
until noon).

Axioms for convexify were given in [Lad86.2]. For the
purposes of this paper, the intuitive definition and illus-
trations given above should suffice.

3 The Main Result

In this section, we introduce the languages / and I1, and
the associated theory J', of the TUS. We thus present
the TUS as a formal theory, but of course this theory is
about time intervals. We choose this method of presenta-
tion because we wish to later map the TUS intervals into
pairs-of-rational-numbers, for the main theorem. It is eas-
iest to do this by presenting the theory as a language of
terms, with an axiomatised equality on those terms (which
we indicate first intuitively, and later give a more formal
presentation), and then defining the mapping to the set
of pairs-of-rational-numbers, by means of the language, in
a way which preserves the equality on those terms. This
is a standard technique from Universal Algebra, see e.g.
[BurSan81].

We in fact obtain our results for a more general family
of languages, G. The result for J is an instance of the
general result.

The Language J

We need to distinguish between actual convex time inter-
vals, and terms in the language for denoting time intervals.
This is because, as we saw, we can have two different terms
denoting the same time interval, e.g. convexify([1987,1],
[1987,12]) and [1987].

To be more precise, our language J for time units has
constants for some finite sequences of integers, (which we
denote by e.g. [a,b,c] for the 3-element sequence whose
first element is the integer a, whose second is the integer
6, and whose third is the integer c); contains the binary
operator symbol conv (to stand for the convexify opera-
tor); and contains a standard set of punctuation symbols
for constructing terms from these constants and the oper-
ator (which we write prefix). The terms of this language
are obtained in the standard manner from the sequence
constants and conv.

464 KNOWLEDGE REPRESENTATION

The precise collection of finite sequences that we want
to denote are just those that denote actual parts of years,
months, days, etc. The technical definition is straightfor-
ward, but detailed:

 the first item is an arbitrary (positive or negative)
integer, i.e. a member of Z, the set of integers.

» the second item is an integer between 1 and 12, in-
clusive,

« the third item depends on the first and second items,
and is always an integer between 1 and 31 (we have
to allow for 28, 29 and 30 day months).

» similarly for the hour elements, minute elements,

We shall use the convention that when we want to refer
to a term, we write it in boldface, and when we use a term
to refer to an interval, we write it in light face. For those
familiar with the use/mention distinction, this means that
we use in light face, and mention in boldface.

So convexify([1987,1], [1987,12]) is the same interval
as [1987], but conv([1987,1], [1987,12]) is not the same
term as [1987]. J contains the statement
(conv([1987,1], [1987,12]) = [1987]) as a theorem, since
the intervals denoted by these two terms are the same in-
terval.

J is just the theory in the language J which is ob-
tained by considering which terms in | refer to the same
interval. In other words, J is the theory of the equality
relation obtained from considering the equations true of
the operator convixify. This theory J was axiomatised in
[Lad86.2], p358.

The sublanguage of J which we are most interested
in is the language J' which consists of all the sequence
constants from J along with those terms of the form
conv(i,j), where i andj are sequence constants (i.e. there
are no iterated applications of conv in terms in X').

The importance of the sublanguage J' is that every
convex interval in the TUS may be represented by a term
in 1'. In other words, iterated applications of the convex’
ify operator may be replaced by a single application of
convixify to basic intervals. This fact is stated precisely
in the following lemma:

Lemma 1 For every term t € T, there is g lerm 4, € TP,
such that T coniains the statement t =1, as o theorem.

The Sets G* of Sequences

We define the set of sequences §*, where 4 is an infinite
collection of funetions fi, fa,..... and f is of arity k, for
ench k. (For simplicity, we identify the arguments to f,
with n single sequence of length k, so we shall write fi(a)
where a is a sequence of length &)

We define Gf, the set of sequences of length & in G*,
by induction.



» (8 is the empty set.
(i.e. G* does not contain the empty sequence).

« Gt ={fn:ne2)
(i.e. the sequences of length one have integer ele-
menta).

. Gi‘+1={ﬂ"“[‘r]:ﬂ€0f&7€zp}
where ~ is concatenation of sequences, p = fi(o),
and Z, is the ring of integers mod p, i.e. the set

{0,1,...,(p - 1}}.

o G* =1, G}
(i.e. the union of all the ¢}).

Intuitively, G* is a collection of sequences of the form
[@1,82, .-y Ba], where @, is an integer, [ay, a3, .....,@p-1] i5
also a sequence in §*, and a, can be any integer from ¢
to (p — 1), where the value of p depends on the values

Example: u is a collection of constant functions, say
fela) = pi for each k. Then G* is the collection of se-
quences of the form [a;, 63, ....., a,], where g, is an integer,
and a; is an integer mod py, ie. 0 < ap < py, for each
1<k <n

Example: u is the collection of functions defining the
calendar used for the time unit system, i.e. f; is the con-
stant function 12 (there are 12 months in any year);
fiila, 1)) = 31, fa(le,2]) = 28 if either a is not divisible
by 4, or a € {100,200,300}, f([2,2]) = 29 in these other
cages, f?([a! 3]) = 31, fz([ﬁ“‘]} = 30, ... ete;

fz is the constant function 24 {there are 24 hours in any
day); ... etc.

G* in this example is almost the collection of basic se-
quences in the language . The difference is that the se-
quence elements in T, after the first, start at 1 and go up
to some value, (say 1 to 31 for the days in the first month)
whereas those in G* start at 0 (and would go from 0 to 30
in the case of the first month). The two can be mapped
onto each other simply by performing the translation

[¢1,82, s8] € G% oy, (@ + 1),y (an + 1) €T

We assume that this translation is always implicitly per-
formed, and refer to the basic units in I as being an ex-
ample of a G*.

The Mapping of G* into Pairs of Rational
Numbers

In order to obtain the main result, we map G* into the set
of paits of rationel numbers

QxQ={(a,b) : a < b& abe Q) (Qis the set of
rational numbers) in a canonicel way.

We define the mapping I** : ¢ — (Q x Q) by inductien
on the length of the sequence [a;,4a;,....., 8, a8 follows:

¢ [p] (n,n41)
i.e. single-element sequences are mapped to pairs of
consecutive integers

» Suppose {ay, a3, ....., aa] — (a, b).
Let p = fallm, a2 ..., 24]).
Let §=(b—a)+p.
Then [a1! L= ZRERTEN aﬂ.O} — (0-, a4+ 6)‘
[aha?!"'"s Qn, 1] — {G + 6,0 + 26),

[e1,az,.....,an, (7~ 1)) — (e + (p—1) x &,B).

Ie. we divide the interval {a,b) into p equal parts,
and then map the sequences extending [a,, aa, ..., a,]
by one element, into the equal parts, consccutively.

By results in fLadMad87.1}, Q x Q is a Tepresentation

of the Interval Algebra, and hence & model of the Interval
Calculus, G* can inherit the interval relations from Q x Q
in the following way:
Let R be one of the interval relations, which we write
infix, Then we can define the relution R on sequences in
@* from its values on elements of Q x Q hy means of the
equivalence

(a RB)in 6" & (M(a) R T“(B))in Q x Q

We call this the structure inherited from Q x Q wma T*

This does not yet turn G* into a representation of the
Interval Algebra, since, by results in [LadMed§7.1], it is
necessary that for each relation R of the Interval Calculus,
and each object @ in the representation, there must exist
an object b such that aRb. And, it is easy to observe that
there 15 no sequence § € §* such that, under the structure
inherited from Q x Q via I'*, ([n] starts 3}, or ([n] ends 8),
or ([n] during B), for any sequence [n]. Hence we need to
extend the system G* to provide snch [ for the sequences
of length 1.

The Extension of G#

Let T* be the set of all terins of the form conv(i, j) where
i, j € G*. These terms are intended to represent the con-
verify operator on intervals represented as sequences. We
saw that many terms can represent the same convex in-
terval, so we need a way of picking just one term that
names a given convex interval. First, we define the map-
ping ¥*, which associates a pair of rational numbers with
each term in I#:

Let i — (a;, ) and j — (a3, &) under T*,
Let @ = min{a;,a;) and & = maz(b, b,).
Then
v conmv(i, j) — (a,b)
i.e. ¥* maps the term conv(i, j) to the pair (a,b)
We now use a standard technique from Universal Al-

gebra (see e.g. [BurSen&i]) in order to get the domain,
and the mepping, that we want.
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We consider the equivmlence relation =4 defined on
terms #; and ¢; in =¥ as followa:

19 E: it & ‘I’“(tl) = ‘I’”(tg)

We denote the collection of equivalence ¢lasses by (E¢/ =4).

We define
Ak = (24 =4)
A* is known as the kernel of the mapping ¥¥.
We can now factor the map ¥* through the equivalence

relation =3, in the standard way, so it becomes a map
8% : A* — Q x Q by defining, for each v € A®:

0%(y) =(a,d) & (R e EX) (W (t) = (a,b) &t EY)

Note that ©4(~) is well-defined, since for a given v, for
all t € v, ¥*(t) has the same value, by definition of the
equivalence =§.

We can now extend I'* to 2 mapping §* U A* -+ Q@ x Q
by setting T*{v} = @*(v) if v € A*. ¢* U A* inherits the
relation structure from Q x Q by the same technique we
used for G*.

The technique of factoring a mapping through its ker-
nel, while mathematically appropriate, doesn’t necessarily
give a good idea of what the kernel looks like, i.e. precisely
when it in that two terms name the same convex interval,
We have already addressed this issue for the case of 7, by
referring to the axiomatisation in [Lad86.2]. The axioms
in fact axiomatise the inherited structure as we present
it here, and can be regarded as a first-order presentation
of the same structure that we are here presenting alge-
braically.

Another wey of accomplishing the same factorisation is
just to pick a canonical representative of each equivalence
class, and let A* instead be just the collection of canonical
members. We now extend I'* by setting I'*(v) = ¥*(7)
if ¥ € A¥, to obtain the same effect as we did with the
equivalence classes. There are many ways of picking &
canonical representative of each equivalence class, and in
fact this is the technique we used in the implementation
of the time unit system at Kestrel.

We can now state the Main Theorem:

Theorem 1 §“ U A* is a countable representation of the
Interval Algebra under the structure inherited from QxQ
via ¥,

Sketch of Proof: By resultsin [LadMad87.1, JonTar52,
Mad78/, it is sufficient to show

# the two sets
I = {a: (3a € ¢* U A¥)(Fb € QXT¥(e) = (a, b))}
and

I, = {b: (3a € 0" U &*)(Fe € Q)(T*(a) = (a, b))}
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are both countable, dense, linear orderings under
the standard order, and are thus each isomorphic to
the whole of Q;

» for each relation R of the Interval Calculus, and each
a € $*UA*, there exists 8 € §*UA* such that aRb,
under the structure inherited from Q x Q via I'*.

1t is tedious but straight{orward to verify these properties,
End of Proof Sketch.

From now on, we shall use the notation G* U A* am-
biguously for both the set, and the representation of the
Interval Caleulus obtained by inheriting the structure from
Q x Q via ['*. There should be no confusion engendered
by thia systematic ambiguity.

Corollary 1 G*UA* is isomorphic 1o the pasrs-of-rationals
representalion of the Interval Caleulus

Proof: By resulta of [LadMed87.1], ell countable repre-
sentations of the Interval Algebra are isomorphic.
End of Proof.

Corollary 2 J is isemorphic 1o the pasrs-of-rationels rep-
resentation of the Mnlerval Caleulus

Proof: We use a systemnatic abuse of language in the
statement of the Corollary. 7 is technically a theory, but
may be considered as & structure by taking the equiva-
lence classes of tarms under the squality relation axioma-
tised by 7, and the inherited structure from the mapping
into Q x Q. We have noted in an earlier example that
I" is an instance of §¥ U A*, providing that the implicit
translation is made for the sequence elements of I'. Hence
the corollary foliows. End of Proof.

4 Summary

‘We have described the convex part of a time unit aystem,
TUS, which implements the Interval Caleulus introduced
by Jemes Allen fAlI8S]. We have presented a theorem
which has as a consequence that the convex part of the
TUS is & cancnical model for the Interval Caleulus, in
the sense that if a statement in the Interval Calculus is
not a theorem, then there is a counterexample to that
statement in the TUS, and any statement true of all of the
intervals in the convex part of the TUS is a theorem of the
Interval Calculus. This theorem relies heavily on results of
[LadMad87.1]. We noted that we can obtain models in the
TUS of arbitrary satisfiable first-order constraints in the
Interval Caleulus, via the decision procedure of [Lad87.4],
and the mappings constructed in this paper.
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