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ABSTRACT 

The area of default reasoning may be considered as consist­
ing of two separate but closely related subareas. The first deals 
w i t h representing default in format ion, and addresses issues such 
as reasoning about default statements or determining the con­
sistency of a set of defaults. The second addresses reasoning 
about the defaul t properties of an ind iv idual , given a set of 
default statements. Most extant work in default reasoning has 
concentrated on the second area. This paper addresses the first 
area on ly , as an in i t ia l investigation into the area of default rea­
soning. The approach is based on adding a "variable conditional" 
operator to first-order logic. This operator is used to express 
prototypical , rather than str ict, relations between entities and 
properties. A possible wor lds semantics is provided for the logic 
along w i t h a proof theory; soundness and completeness results 
are also provided. It is argued that the variable conditional in 
the logic captures common intuit ions concerning defaults and 
prototypical properties. 

1. I n t r o d u c t i o n 

Many general statements concerning the real wor ld are not 
by themselves true, but rather appear to rely on a collection of 
tacit background assumptions. Thus for example, "birds fly" 
seems to be a reasonable assertion, even though it isn't the case 
that all birds fly. Birds w i th broken wings don't fly; tethered 
birds don't fly; and even whole species of birds, such as penguins 
and ostriches, don't fly Rather "birds fly" seems to have the 
force of "normal ly birds fly" or perhaps "ignoring exceptional 
conditions, birds fly". 

There are two main approaches in Art i f ic ia l Intelligence 

( A I ) for dealing w i t h statments such as "birds fly": default rea­

soning and prototype theory. In the first case, "birds fly" is inter­

preted, roughly , as saying that if an object is known to be a b i rd . 

and it is consistent to believe that it flies, then conclude that it 

flies. In the second case, the statement is generally interpreted as 

being descriptive or predictive, and may be taken as meaning. 

again roughly , "most birds fly". 

In this paper, a th i rd alternative is introduced The general 
idea is that a variable conditional operator =► is introduced into 
standard first-order logic (FOL). where the statement A=>B is 
interpreted as "in the normal course of events, if A then B". So. 
for example. (Vx)(Bird(x)=> Fly(x)) wou ld have the intended 
interpretat ion " for every object x. in the normal course of events 
if that object is a b i rd , then it fl ies" In tu i t i ve ly , the connection 

between the antecedent and consequent of these conditionals 
may be thought of as a relationship in a scientific theory. Birds 
fly. but only if some set of presumed "additional assumptions" is 
satisfied: the bird isn't tethered, isn't a penguin, etc. This 
approach is intended then to be applicable to terms standing for 
natural ly occurring kinds or natural kinds, such as "raven", 
"lemon", etc. More generally, the approach is intended to also be 
applicable to general statements of typ ica l i ty , and so we can use 
this connective to represent statements such as " typ ica l ly Quak­
ers are pacifists" or " typical ly adults are employed". 

Since the intended interpretation of A=>B is "in the normal 
course of events, if A then B". the semantics of => w i l l rest on 
the notion of other courses of events and. in part icular, other 
more normal or less exceptional courses of events. In extending 
the semantics of FOL to account for => then I adopt a possible 
worlds approach, where the t ru th of A=>B at a wor ld w relies 
not on the wor ld w. but on other "less exceptional" wor lds: 
A=>B is true if B is true in the "least exceptional" wor lds where 
A is true. Roughly then this says that birds fly. if we "factor 
out" exceptional circumstances such as being featherless, being 
tethered, being a penguin, etc. A major issue then is the choice of 
a suitable metric for "less exceptional than" between possible 
worlds. Clearly the bounds placed on this metric w i l l constrain 
the semantics of the => operator. The formal system we obtain 
is a conditional logic, of a class of logics that have been 
developed for representing counterfactual condit ionals, condi­
tional obligation, and other related notions. 

The next section reviews related w o r k in A I . whi le the 

th i rd section introduces conditional logics. Section 4 in fo rma l ly 

introduces the underly ing semantic theory of the logic for 

representing default informat ion. Section 5 develops a formal 

semantics for the logic, whi le section 6 presents a proof theory. 

Section 7 discusses what we have gained f rom this approach, 

whi le the last section provides a conclusion. Proofs of theorems 

may be found in [Delgrande 86b); an earlier version of this work 

was presented in [Delgrande 86a]. 

2. Related W o r k 

There has been extensive work in AI in extending or aug­
menting classical first-order logic to deal w i t h default and proto­
typical properties. Most of these approaches can be termed 
"consistency-based", in that a default conclusion is typ ica l ly 
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warranted in part by being consistent with some given set of 
beliefs. For example, in Reiter's augmentation of first-order 
logic [Reiter 80]. "birds fly" would be represented by the default 
rule: 

This can be read, roughly, as "if. for some object, you can prove 
that that object is a bird, and it is consistent that it flies, then 
infer that it flies' [McCarthy 80]. [McDermott and Doyle 80]. 
and [Moore 83] describe other consistency-based approaches. 

A general limitation with such approaches is that one can­
not reason about defaults. Thus if we had default rules 
corresponding to "ravens are normally black" and "albino ravens 
are normally not black", there is no means within the system of 
drawing the conclusion "non-albino ravens are normally black . 
Similarly, in most systems the assertions "ravens are birds" and 
"typically ravens aren't birds" can co-exist peacefully — in 
Reiter's system the default rule is simply never applied, and in 
McDermott and Doyle's no problems arise because there is no 
semantic connection between a statement A and the statement 
MA (i.e. "consistent A"). Yet it seems that such a pair of sen-
tences should be inconsistent: if every raven must necessarily be 
a bird, then it seems unreasonable to assert that typically ravens 
aren't birds. 

A second difficulty with these approaches arises from the 
fact that their semantics rests on a notion of consistency with a 
set of beliefs. Thus, paraphrasing the first example, a bird may 
be believed to fly. if this does not conflict with prior beliefs. 
However, the relationship between birds and flight, whatever it 
may be. is clearly a relation just between birds and the property 
of flight; it does not. in particular, rely on any set of beliefs or 
any particular believer. Thus, such consistency-based 
approaches seem useful for telling us how to appropriately 
extend a belief set. The goal here, on the other hand, is to 
attempt to represent the relation between, say. birds and flight 

A second approach in AI for dealing with default and pro­
totypical properties is prototype theory [Rosch 78]. In this case 
membership in the extension of a term is a graded affair and is a 
matter of similarity to a representative member or prototype. 
Thus one might say that birds fly but only with some given cer­
tainty. A difficulty with these approaches is that there is no 
clear agreement as to what is meant by "certainty", nor how one 
may combine and work effectively with such certainties 
[Thompson 85]. However the problems appear to run deeper 
than this. Prototype theory seems concerned generally with 
descriptions of individuals, or predicting properties of individu­
als. Thus generally there is no way of distinguishing the force 
of a statement such as "birds fly" from "students like pizza". 
This though is too weak for our purposes. We would want to be 
able to attribute the property of flight, in some absolute sense, to 
the class of birds, and leave the connection between students and 
pizzas as holding contingently in the state of affairs in which 
we're interested. In sum. notions of typicality and resemblance 
to a prototype appear too weak to be useful for our purposes. 

Insofar as representing defaults is concerned, a related 
problem in the area of linguistic semantics is the treatment of 
generic statements. Examples of generic statements include 
"birds fly", "the dodo is extinct", and "John walks to work". In 
these examples, "birds", "dodo" and "walks" are used generically 
Perhaps the best-known work with respect to these statements is 
that of Gregory Carlson [Carlson 80], [Carlson 82], who uses the 
framework of Montague semantics for their treatment. Carlson 
argues against any quantificational treatment of generics and 
instead proposes that kinds be treated as individuals. For exam­
ple, the term "dogs" in "dogs bark" is treated as a proper name 
and the statement is true, roughly, if the kind "dogs" has the 
property of occasionally or normally barking. This approach 
appears to address a wide class of recalcitrant problems associ­
ated with the generic in linguistics. However it appears to not 
directly address our concerns. There is no indication as to what 
it means to be a "normal" property of a kind, nor how such pro­
perties interrelate, nor how one could reason about such proper­
ties. In addition the approach requires an increased ontology of 
kinds and stages (roughly space/time instantiations of kinds or 
individuals). 

3. Conditional Logics 
Consider the following passage, taken from [Lewis 73]: 
"If Otto had come, it would have been a lively party; 
but if both Otto and Anna had come, it would have 
been a dreary party: but if Waldo had come as well, it 
would have been lively; but ". 

These statements represent counterfactual conditionals: the 
antecedent of each statement is false, but each statement could 
be either true or false. These statements also exhibit a curious 
pattern: as the antecedent is strengthened, the consequent 
changes to its negation. It is apparent then that the standard 
material conditional is inadequate for representing counterfac­
tual statements: since the antecedents of the above statements 
are false, the statements formed using a material conditional 
would have to come out true. However, clearly we would want 
to retain the option of having a counterfactual statement come 
out false — after all. it is conceivable that if Otto had come to 
the party, it would have been a boring affair. 

David Lewis, in [Lewis 73] and building on [Stalnaker 68], 
proposes using a variably strict conditional, or simply variable 
conditional, to represent counterfactual statements. The formal 
systems that employ such a connective are called conditional log­
ics. If we use to represent this conditional, then the general 
idea is that the truth value of relative to a world, 
depends on a subset of those worlds in which A is true. Thus 
for example in Lewis's approach. is true if the closest set 
of worlds (or sphere) most like our own that have A true also. 
for those worlds, have B true, and for no world in the sphere is 
A B false. 

The counterfactual conditional also differs from the 
material conditional, in that it does not necessarily support tran-
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sitivity. Consider the following example, taken from [Stalnaker 
68]: 

"If Carter had been born in Russia, he would be a 
communist. If Carter were a communist, he would be 
sending American defense secrets to the Kremlin. 
Therefore, if Carter had been born in Russia, he 
would be sending American defense secrets to the 
Kremlin." 

The conclusion is clearly dubious, and so a logic for a counter-
factual conditional must also allow for failure of the transi­
tivity of the conditional. 

Related approaches for reasoning with counterfactuals and 
subjunctives, and reasoning about conditional obligation are 
described in [Nute 75] and [van Fraassen 72], while [Chellas 75] 
and [Nute 80] provide general discussions. The underlying 
semantic theory for such approaches is typically expressed using 
a possible worlds formulation, generally along the lines of 
Lewis'. 

Consider now the case of default and prototypical proper­
ties. It is fairly easy to come up with patterns of reasoning that 
are quite similar to those cited for counterfactual reasoning. So. 
for example, it seems reasonable to say that ravens are black, 
but albino ravens are not black. In a similar fashion, perhaps 
there is some disease X that turns albino ravens black again, and 
so we would also want to be able to assert that albino ravens 
with disease X are black. Hence we should allow that a 
strengthening of an antecedent may reverse the truth value of a 
consequent. Failure of transitivity is also easy to show. Thus, 
every penguin is necessarily a bird: birds normally fly: yet 
penguins normally don't fly. In addition perhaps. Quakers are 
normally pacifists; pacifists are normally vegetarians; yet Quak-
ers are not normally vegetarians. 

There are major differences though between representing 
counterfactual knowledge and representing default knowledge. 
Most significantly, counterfactual reasoning treats conditionals 
where the antecedent is false but the conditional as a whole may 
be either true or false. For default knowledge, we are interested 
in the case where the antecedent of the conditional is true. Thus, 
for example, when we assert that ravens are black and albino 
ravens are not black, we expect that there are in fact ravens and 
albinos. So it appears that what we require is a conditional logic, 
but one where the properties of the logic are "tailored" to the 
problem at hand. Such a logic then would have the same rela­
tion to conditional logics in general as particular epistemic logics 
of belief have to modal logics in general: each would constitute a 
particular system formulated in response to a particular need. 

4. Initial Considerations 
A statement such as "ravens are black" is to be interpreted 

as "normally ravens are black". The approach taken is to say. 
roughly, that a raven is black, or would be black, if we "factor 
out" exceptional circumstances such as being an albino, being 
painted, being in a strong red light, or whatever. Similarly we 
would want to say that an albino raven is not black if we again 

"factor out" exceptional circumstances such as having some 
disease that turns individuals black, being painted, etc. Thus, 
roughly, if everything else was equal, a raven would be black, 
and an albino raven would be non-black. A key point is that in 
general there will be an arbitrarily large set of exceptional cir­
cumstances and so we will not be able to specify all possible 
exceptional conditions. 

Since the truth of "ravens are black" involves ignoring 
exceptional circumstances, this means that we are considering, in 
some sense, less exceptional states of affairs in order to determine 
the truth of this statement. So we can say that "ravens are 
black" is true if in the least exceptional states of affairs in which 
there are ravens, ravens are black. Similarly, in the least excep­
tional states of affairs in which there are albino ravens, albino 
ravens are black. (From this it follows that the least exceptional 
states of affairs in which there are albino ravens are more excep­
tional that the least states in which there are ravens.) This then 
is the way statements such as "ravens are black", "albino ravens 
are non-black", and so on are informally interpreted: we consider 
not the state of affairs being modelled, but other "less excep­
tional" states of affairs. 

The semantics for the formal system to be presented then is 
based on a possible worlds formulation (where a "possible 
world" corresponds to a "possible state of affairs"). The accessi­
bility relation E between worlds is interpreted so that Ew1w2 

holds between worlds W1 and w2 just when w2 is at least as uni-
form, or at least as unexceptional, as w1. From this. A=> B is 
true at a world just when the least exceptional worlds in which 
A is true also have B true. The notion of "at least as exceptional 
as" between possible worlds is. to be sure, a rather imprecise one. 
Yet. arguably, one uses just such a metric when asserting that 
"birds fly" or "ravens are black", or any other commonsense state­
ment. Moreover, there are some conditions that can be placed on 
such a metric, and. arguably, these conditions yield a system 
that conforms to common intuitions concerning default asser­
tions. 

In [Delgrande 86b], the following conditions were argued to 
be required for the accessibility relation E: 

Reflexive: Eww for all worlds w. 
Transitive: If Ew1w2 and Ew2w3 then Ew1w3. 
Forward Connected. If EW1W2 and Ew1w3 then either 
Ew2w3 or Ew3w2. 

Clearly the notion of "at least as unexceptional as" between 
worlds should be reflexive and transitive; the third condition 
states that any worlds accessible from some world are them­
selves comparable. A given world w then "sees" a succession of 
disjoint sets of worlds arranged in a strict ordering, wherein all 
the worlds in a set are equivalent with respect to "unexceptional-
ness The modal logic corresponding to this accessibility rela­
tion is the standard temporal logic S4.3 [Hughes and Cresswell 
68]; it subsumes S4 but does not subsume S5. 
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Most conditional logics, including all that have been cited 
here, however do not base their semantics on an accessibility 
relation E. but rather employ a "world selection" function /. 
This function, given a proposition and a world, has as value the 
sei of least exceptional worlds in which the proposition is true. 
This means that A B is true at world w just when the set of 
worlds picked out by /. applied to w and the proposition 
expressed by A. is contained in the set of worlds in which B is 
true. Clearly then, given an accessibility relation E. it is possible 
to obtain a world selection function /: in [Delgrande 86b], the 
converse is also shown to hold for the system at hand. 

In the interests of bringing the present work into line with 
this previous work in conditional logic, the formal semantics is 
in fact formulated in terms of such a function. In addition, this 
reformulation has the advantage of being, in the end. simpler. 
For the remainder of this paper then I consider a semantic treat­
ment in terms of a function /; conditions for this function are 
given in the next section. 

As a final point in our informal interpretation of "nor­
mally*, note that there is no statistical connotation in "ravens are 
normally black". In fact, it is quite possible that no raven is 
black in some state of affairs, yet "ravens are normally black" is 
still true. One can imagine, for example, some new disease that 
turns ravens white: in this case it is quite reasonable to say 
something like "ravens are normally black (but will probably 
remain white until an antidote can be found)". This seems to be 
a slightly more general reading that that usually adopted in 
other systems of default reasoning, where "ravens are black" is 
generally interpreted as "ravens are typically black". This last 
reading seems a little unusual in the above example, which 
involves no raven (contingently) being black. 

5. A Formal Semantics 

The language L for the variable conditional consists of the 
language of FOL. augmented with a connective for the variable 
conditional. The language has the following primitive symbols: 
a denumerably infinite set of individual variables x.y.z. • • ; a 
denumerably infinite set of individual constants a.b.c. • • • ; for 
each a denumerably infinite set of n-place predicate sym­
bols. P.Q.R. ; together with the symbols and V. 
and parentheses and commas for punctuation. The symbols 
A.B.C. will stand for arbitrary well-formed formulae of 
L. The set of individual variables and constants will make up 
the set of terms. Where no confusion arises, lower-case words 
may be used to stand for constants and capitalised words may be 
used to stand for predicate symbols. 
Definition: The well-formed formulae (wffs) of L constitute the 

least set such that: 

(i) If P is a n-place predicate symbol and t1,... ,tn are 
terms, then P(t1, . . . , t n ) is a wff. 

(ii) If A. B are wffs and x is an individual variable, then 

As usual, conjunction (A), disjunction (V), biconditionality 

and the existential quantifier are introduced by definition. 
Parenthesis may be omitted where no confusion arises. Also the 
standard notions of scope and of free and bound variables are 
assumed. A(x) will be used to indicate that A may have x as a 
free variable: A(t) is the result of uniformly substituting term t 
for all free occurrences of x 

Sentences of L are interpreted in terms of a model 
M = <W.f.D.V> where W is a set. / is a function from 
Wx (W) to (HO. D is a domain of individuals, and V is a func­
tion on terms and predicate symbols so that 
1. for term t. 
2. for any n-place predicate symbol P. V(P) is a set of (n+1)-

tuples <t1 t„ w> where each and 
For wff A. the symbolism will be used to stand for the set 
of worlds in M in which A is true. If we identify propositions 
with possible worlds, then stands for the proposition 
expressed by A. Informally W is a set of possible worlds and / 
picks out a set of possible worlds for each possible 
world w and proposition V maps atomic sentences onto 
those worlds where the sentence is true, and predicate symbols 
onto relations in worlds. The symbolism is used to express 
that A is true in the model hi at world w (or simply true, if some 
M and w are understood). We write in the case that A is 
true at every world in every model, and say that A is valid. A is 
satisfiable if and only if is not valid. Given a model 
M= <W.f. D. V>. truth at a world w is given by: 
Definition: 

These conditions are shown in [Delgrande 86b] to yield a seman­
tics equivalent to a reflexive, transitive, forward connected 
accessibility relation E with respect to some given world. 

Finally, the conditional operator can be tied to the more 
familiar modal notions of necessity, or truth in all alternative 
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However, the key result here is that the proof theory is 
sound and complete with respect to the semantics given in the 
previous section. We obtain: 
Theorem: 

Soundness is proven by a straightforward inductive argu­
ment. Completeness is proven by showing that there is a N-
model. called the canonical model, in which every non-theorem 
of N is invalid. This proof is an adaptation of the method of 
canonical models in first-order modal logics [Hughes and Cress-
well 84]. but modified to accommodate the variable conditional 
operator. 

Finally, by a standard result concerning a type of derived 
model called a filtration [Chellas 75] we obtain: 
Theorem: The quantifier-free fragment of N is decidable. 

7. Discussion 
The previous sections gave a formal specification of the 

logic N. It remains to be shown that the logic, and in particular 
the variable conditional, captures common intuitions regarding 
prototypical and default properties. To begin with, the various 
difficulties encountered with the material conditional for 
representing default information do not arise with the variable 
conditional. So. for example, the following set of sentences is 
satisfiable: 

Moreover the sentences are satisfiable while having Raven(x) and 
Albino(x) true at a world. Hence, as required, we can strengthen 
the antecedent of a variable conditional, and reverse the truth of 
the consequent, without falling into inconsistency. This pattern 
of strengthening the antecedent to reverse the truth value of the 
consequent may be extended arbitrarily. 

In addition, 

is satisfiable. and satisfiable with true antecedents, in each of the 
conditionals. Also the following set of statements is similarly 
satisfiable: 

So, as required, we lose transitivity of the variable conditional. 
Thirdly, we can consistently assert universal conditional 

statements, together with statements about "exceptional" indivi­
duals. Thus for example the following set of sentences is 
satisfiable: 

1 In the interests of readability I have omitted universal quantifiers. Clearly 
universally quantified versions follow easily and trivially by universal generali 
sation. 
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However, we do obtain weakened forms of strengthening 
the antecedent and transitivity for the variable conditional. 
Axiom CV provides such a weakened form for strengthening the 
antecedent: 

Thus if ravens are normally black, but it isn't the case that 
ravens are normally albino, then we can conclude that ravens 
that aren't albino are normally black. 

A consequence of axiom provides another restricted 
form of strengthening the antecedent: 

Hence if we have some conditional relation then, for any pro­
perty, the consequent follows conditionally from the antecedent 
conjoined either with the property or its negation. So. if ravens 
are normally black, then it is either the case that albino ravens 
are normally black, or that non-albino ravens are normally 
black. 

A rule of inference that follows from RCM provides a res-
tricted form of transitivity: 

That is. if ravens are normally black and black things are not 
white then ravens are normally not white. We also have res-
tricted transitivity from axiom RT: 

Thus if ravens are normally black and ravens that are black nor­
mally have dark eye pigment, then ravens normally have dark 
eye pigment. If the second occurrence of Raven(x) were dropped 
from the above, then we would of course have full transitivity. 

In addition, we do not have a law of the excluded middle 
consequents of the variable conditional. Hence if a kind does not 
normally have a particular attribute, we are not bound to attri­
bute to it the negation, unlike the material conditional. This is a 
consequence of the fact that the following sentence is satisfiable: 

Thus perhaps residing in North America is irrelevant with 
respect to ravenhood. and we would not want to say either that 
ravens normally live in North America or that they normally do 
not live there. 

Also, we cannot have conflicting variable conditionals. A 
theorem of N is: 

So if be true (unless A is 
necessarily false). 

The logic N differs from conditional logics for counterfac-
tual reasoning primarily in that logics for representing counter-

factual assertions generally allow some sort of connection 
between contingent truths and variable conditionals. For exam­
ple, many systems contain the following theorem: 
MP 
Thus, given a "counterfactual" where the antecedent is true, the 
consequent is also taken as true. An example perhaps is 

"If Otto had come, a would have been a lively party." 
"But Ouo did come." 
"Hence, it must have been a lively party." 

However, in N we obtain an unsurprising relation between 
implication and the variable conditional: 
RCE 
and so. if we were to add MP to N. we would obtain: 

and the variable conditional would collapse into entailment. 
Another formula that appears occasionally is the following: 

CS 
CS requires that if the antecedent and consequent happen to be 
true at a world. then that world is a member of the least excep­
tional worlds with respect to the antecedent. This would have 
the undesirable consequence of tying our notion of "normally", 
which heretofore had rested on the notion of alternative stales of 
affairs, to contingent truths. Neither MP nor CS then is 
appropriate for our concerns, wherein contingent truths at a 
world should play no part in the truth of a variable conditional. 

Conditional logics of obligation [van Fraassen 72] similarly 
differ in detail from N. most notably in rejecting the axiom ID. 

ft. Conclusion 
This paper has presented a logical system N for represent­

ing statements of default and prototypical properties. The 
language of the system consists of that of first-order logic, aug-
mented with a variable conditional The intended interpreta­
tion of is "all other things being equal, if A then C" or "if 
A then normally C". The semantics of the system is based on a 
possible worlds formulation, wherein is true if in the 
least exceptional worlds in which A is true. C is also true. This 
allows the statements and to be jointly 
satisfiable. and with contingently true antecedents, simply by 
having the least exceptional worlds in which is true differ 
from the least exceptional worlds in which A is true. In a simi­
lar fashion, transitivity of the variable conditional is blocked, 
and so the statements and are jointly 
satisfiable with true antecedents. Similarly, it is possible to 
assert a variable conditional along with statements that would 
conflict with the corresponding material conditional. Hence 

A. and are jointly satisfiable. We can then, via 
universal generalisation, assert general statements concerning 
"normal" properties without inconsistency. Hence, for example, 
we can assert that every bird normally flies, every penguin is 

3 See {Lewis 73] and (Nute 80] for taxonomies of such systems. 
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necessarily a bird, yet every penguin normally does not fly. In 
addition we can assert that Tweety is a bird that does not fly. 

On the other hand, the variable conditional is strong 
enough to permit reasonable and intuitive relations between sen­
tences. In particular we obtain restricted versions of strengthen­
ing the antecedent and of transitivity of the variable conditional. 
Thus, as an example of restricted transitivity, we have a derived 
rule that lets us state that if it is true that every bird normally 
flies, and that if everything that flies has the ability to become 
airborne, then it follows that every bird normally has the abil­
ity to become airborne. In addition we have restrictions such 
that A=>C and A=>-C are jointly satisfiable only if A is neces­
sarily false. 

The key point here then is that the logic allows one to 
represent statements of default and prototypical properties, and 
to reason about such statements. Thus it makes sense in the sys­
tem to talk of one default statement being derivable in the logic 
from a set of others. In addition, the logic seems more appropri­
ate for representing information about prototypical properties 
than extant default or non-monotonic logics, in that its seman­
tics does not rest on the notion of consistency with a given set of 
assertions. Thus the relation between birds and flight is phrased 
independently of any particular believer or believers. Finally, 
the quantifier-free fragment of the logic is decidable. and so 
there exist complete mechanical procedures for reasoning about 
the default properties of, for example, a single individual. One 
such procedure, based on the method of semantic tableaux, is 
described in [Groeneboer 87]. 

However, the work presented here contains one rather 
obvious omission, the logic contains no mechanism for reasoning 
"in the absence of other information". Thus for example if we 
know that A and that A=>C. we have no mechanism for con­
cluding something like "in the normal course of events. C". This, 
from the semantic end of things is quite reasonable, in that the 
truth conditions for A and C are independent of the conditions 
for A=>C. Yet. on the other hand, it also seems reasonable that 
if we knew that birds normally fly and that Tweety is a bird, 
then we should be able to conclude "by default" that Tweety flies. 
The difficulty of course is that if we allowed modus ponens as a 
rule of inference, we would run into problems with strengthen­
ing the antecedent. 

One solution is to use the model theory of the logic to sug­
gest conclusions about individuals. Consider, for example, 
where we know only that ravens are normally black, and that 
albino ravens are normally not black, and that individual opus is 
a raven. This gives us some information concerning the world at 
hand, but not enough to conclude that opus is (or is not) black. 
However, if we pragmatically and a priori decide that the world 
at hand is one of the least exceptional worlds consistent with 
what's known then, we would have also that opus is black. That 
is. since in the simplest worlds in which there are ravens, ravens 
are black, if the world at hand is among these worlds then 
ravens clearly are black at that world. If we were to subse­
quently add the information that opus was an albino, then we 

could no longer obtain such a result. The reason for this is that 
in the simplest worlds in which there are albino ravens, such 
ravens are not black, and so we would draw the alternative 
conclusion that opus was not black. This approach is developed 
and put on a formal footing in [Delgrande 87]. 
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