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Abstract

Default theories are a formal means of reasoning about de-
faults: what normally is the case, in the absence of contra-
dicting information. Autoepistemic theories, on the other
hand, are meant to describe the consequences of reason-
ing about ignorance: what must be true if a certain fact
is not known. Although the motivation and formal char-
acter of these systems are different, a closer analysis shows
that they bear a common trait, which is the indexical na-
ture of certain elements in the theory. In this paper we
compare the expressive power of the two systems. First,
we give an effective translation of default theories into au-
toepistemic logic; default theories can thus be embedded
into autoepistemic logic. A more suprising result is that
the reverse translation is also possible: every set of sen-
tences in autoepistemic logic can be effectively rewritten
as a default theory. The formal equivalence of these two
differing systems is thus established. Some benefits of this
analysis are that it gives an interpretive semantics to de-
fault theories, and yields insight into the nature of defaults
in autoepistemic reasoning.

1 Introduction

Default reasoning can be informally described as jumping
to conclusions based on what is normally the case. To
say that "power corrupts,” for example, is to say that for
typical x, in typical situations, x will be corrupted by the
exercise of authority.

Default logic [9] is a formalization of default reasoning.
An agent's knowledge base (KB), its collection of facts
about the world, is taken to be a first-order theory. De-
fault reasoning is expressed by default rules of the form

which can be read as, roughly, "if a is provable from the
KB, and b is consistent with it, then assume w as a default."
Unlike ordinary first-order inference rules, default rules are
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defeasible: given KB containing just a, for example, the
rule above would allow the inference ofa;, but if -b is added
to the KB, then the default rule is no longer applicable.
Default rules are thus nonmonotonic inference rules.

In default logic, the default rules operate at a metathe-
oretic level, as they are not expressed in the language of
the KB, and are not inference rules within the KB. Rather,
they can be thought of as a means of taking a KB and
transforming it into another one by the addition of sen-
tences which are not logically derivable from the original.
The transformation is defined in terms of a fix-point op-
erator. This formulation of default reasoning leads us to
ask several questions, which do not have readily apparent
answers. The first concerns the expressiveness of the logic.
Certain simple types of defaults can be readily stated; for
example, "power corrupts” could be expressed as

Powerful __ (x) MCorrupt(x)
Corrupt(x)
But it is not clear that more complicated constructs could
be accommodated. A case in point is conditional defaults,

where a default rule is the conclusion of an implication; or
defaults whose consequent is itself a default. Because the
default rules are not part of the logical language, there is
no obvious, straightforward expression of these concepts.

The second question, related to the first, concerns the se-
mantics of default theories. Because defaults are expressed
as inference rules operating in conjunction with a fixed-
point construction, it is not clear what the meaning of
such objects as MB is. In some recent work, there have
been proposals for a semantics for a restricted class of de-
fault theories [6] and for default theories in general [1]. In
both cases, the "semantics" is a reformulation of the KB-
transformation induced by the defaults in terms of restric-
tions on the models of the KB. Although such a reformu-
lation can provide an alternative view of the construction
of default theories, it does not provide a semantics in the
sense of providing an interpretation for default rules in a
Indeed, be-
cause defaults are expressed as inference rules, they are

model structure (an interpretive semantics).

not amenable to interpretation in this fashion.

Our idea in this paper is to define default reasoning
within the theory of the KB itself, rather than as a trans-
formation of the KB. If we take the sentences of a KB to be



the knowledge or beliefs of an agent, then defaults can be
expressed by referring to what an agent doesn’t know. The
default that “power corrupts” could be stated informally
as:

If ¢ is powerful, then assume r is corrupt
if notking known conirgdicts il

(3)

It is easy to see that such reasoning is defeasible in the
presence of additional information about the integrity of r.
From a formal point of view, it is clear that to assert this
statement, the language of the KB must be augmented by
& construction that refers to the KB as a whole.

Let us call a theory containing an operator that refers
to the theory itself an indezical theory. We will use the
expression Lé within a theory to mean that the sentence
¢ is part of theory itself. Now we can rephrase the default
rule (1) in the following manner, using the operator L:

Lapa-L-fDw. (4)

The intent of a rule of this form is something like: “if «
is in the KB, and -# is not in the KB, then w is true.”
The negation sign in —f arises because we have chosen to
use provability operator L which is the dual of the consis-
tency operator M. Because L is an operator of the KB
language, we have been able to express the default within
the language of the KB itself, rather than as a metatheo-
retic construct.

Tl introduction of an indexical operator is an added
complexity, for now we allow our initial KB to contain
not only statements about the world, but also about its
own contents. Indeed, cven interpreting the modal opera-
tors of (4) is problematical. Fortunately, the mathematical
properties of indexical theories have recently been stud-
ied by Moore (8] as a formalizatien for a another type of
noamonotonic reasoning, called sutoepistemic recsoning, in
which an agent reasons about the relationship of her knowl-
edge to the world. He has derived an elegant and natural
interpretive semantics for indexical theories incorporating
the self-referential operator L. This semantics gives an in-
terpretation to the operator L based on individual model
structures.

We are naturally led to ask what relationship exists be-
tween default theories and their corresponding expression
in AE logic. Are they essentially different in the sense that
agents using each one would have widely differing sets of
beliefs? The answer, which is the main result of this pa-
per, is ne: defanlt logic and AE logic sanction the same
inferences ou corresponding initial inputs. This has several
important consequences. Since default rules are expressible
in AE logic, both default und autoepisternic reasoning can
be combined within this single formalism. Also, the formal
expression of defaults gains the benefits of an interpretive
semantics.

A second and more surprising consequence is that AE
legic is no more expressive than default logic, even though

the L operator is part of the language: there exists a trans-
lation from every set of AE logic premises into a corre-
sponding default theory, As we shall see, by translating the
appropriate AE logic statements, it is possible to construct
default theories with the effect of conditional defaults, de-
faults whose conclusion is a default, and sc on. The expres-
sion of these concepts is still much more natural in terms
of the L-operator, but the mathematical properties of the
carresponding default theories are the same.

Of independent interest are some results in the theory of
AFE logic, especially the characterization and equivalence of
strongly grounded and mintrnal extensious.

2 Autoepistemic logic

Autoepistemic {AE) logic was defined by Moore [8] as a for-
mal account of an agent reasoning about her own beliefs.
The agent's beliefs are assumed to be a set of sentences in
some logical language augmented by a modal operator L.
The intenided meaning of L¢ is that ¢ is one of the the
agent’s beliefs; thus the agent could have beliefs about her
own beliefs. For exmmple, cousider a space shuttle flight
director who believes that it is safe to launch not because
of any positive information. but by reasoning that if some-
thing were wreng, she would know about it from her engi-
neers. This beliel can be expressed using sentences of the
augmented language. If P stands for “it is safe to launch
the shuttle.” then

~L-P>P (5)

expresses the flight director’s self-knowledge. Equation (5)
1s u logical constraint between u belief state (L~P) and a
condition on the world { P).

The primary focus of AE logic is a normative one: given
an initial {or base) set of beliefs A about the world, what
final set T should an ideal reflective agent settle on? If
we restrict ourselves for the moment to languages without
the self-belief operator, then clearly an ideal agent should
believe all of the logical conseguences of her base beliefs, a
condition sometimes referred to as logical amniscience [2].
More formally, let the expression T = ¢ mean that the
sentence ¢ is logically implied by the set of sentences I
Then, if the hase set is A, the belief set T of an ideal agent
is given by:

T={¢|AF ¢} (6)

The presence of a self-belief operator complicates mat-
ters. Because the intended meaning of L¢ depends on the
belief set of the agent, the defimtion of the belief set itself
becomes circular, which necessitates the use of a fixed-point
equation to define T. In this section we will present this
definition and give several alternative formulations that will
prove useful,
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2.1 Logical preliminaries

We begin with a language £ for expressing self-belief, and
intreduce valuations of £. The treatment generally follows
and extends Moore [8], but differs in two ways. First, the
base language is first-order rather than propositional; but
this is a minor change. because no quantifying-in is permit-
ted. Second, ideal belief sets are defined with a fixed-point
equation over valuations of the language. This definition
is equivalent to Moore's original one, but leads to different
insights on the nature of the ideal belief set, simpler proofs
of many results, and several natural extensions. Because
of space limitations, no proofs are included; they may be
found in the fuller version of the paper (Konolige [4]).

Let £y be a first-order language with functional terms.
The normal formation rules for formulas of first-order lan-
guages hold. A sentence of Ly is a formula with no free
variables; an etom is a sentence of the form P(t,,---,ta).
We extend £; by adding a unary modal operator L; the ex-
tended language is called £. £ can be defined recursively as
containing all the formation rules of Lo, plus the following:

If ¢ is a sentence of £, then so is L. (7)

An expression Lo is a modal atom. Sentences and atoms
of Ly are called ordinary. Note that nestings such as LL¢
are modal atoms (and hence sentences) of £. A sentence
has a modal depth n if its modal operators are nested to a
depth of n, e.g., L{FP v LP) has a modal depth of 2. We
use the abbreviation £, for the set of all sentences of modal
depth n or less. Because the argument of a modal operator
never contains free variables, there is no quantifying into
the scope of a modal atom, e.g., 3z LPz is not allowed.

From the point of view of first-order valuations, the
modal atoms L¢ are simply nilary predicates. Qur intended
* interpretation of these atoms is that ¢ is an element of the
belief set of the agent. So we will consider valuations of £
to be standard first-order valuations, with the addition of a
belief set T'. The atoms Lg are interpreted as true or false
depending on whether ¢ is in T

The interaction of the interpretation of L with first-order
valuations is often a delicate matter in this paper, and so
a perspicucus terminology for talking about valuations is
necessary. In particular, it is often useful to decouple the
interpretation of modal and ordinary atoms. First-order
valuations are built upon the truthvalues of atoms: for or-
dinary atoms, this is given by a structure (U, p, R}, where
@ is a mapping from terms to elements of the universe [/,
and R is a set of relations over I/, one for each predicate.
We will refer to any such structure as an ordinary indez,
and denote it with the symbol /. Modal atoms are given a
truthvalue by a belief set I", which is called a modal indez.

The truthvalue of any sentence in £ can be determined
by the normal ruies for first-order valuations, given an or-
dinary and modal index. We write ;1 ¢ if a valuation
{I,T'} satisfies ¢. The valuation rule for model atoms can
be written aa:
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=;r L¢ ifandonlyif ¢eTl (8)

A waluation which makes every member of & set of sen-
tences true is called a model of the set. A sentence which
is true in every member of a class of valuations is called
valid with respect to the class. The following classes of
valuations are useful:

Fr  valuations with modal index T’
E  all valuations (9
Lk modelsof T

A sentence ¢ is & first-order consegquence (FOC) of a set of
sentences I if it is true in all modela of £, I is closed under
firat-order conaecquence if it containe all sentences that are

true in all of ita models.

2.2 Autoepistemic extensions

Now we return to the original question of what an ideal
reflective agent should believe. Obviously, we want to use
equation (6), with an appropriate choice for logical impli-
cation. Given that the intended meaning of L is self-belief,
it becomes obvious that we should consider all models in
which the interpretation of L is the belief set of the agent
itself, that is, the valuations we consider all have a modal
index which is the belief set of the agent. Following Moore,
we call such valuations auleepistemic (or AE), and define
the concept of an extension of a base set of beliefs.

Definition 2.1 Any set of seniences T which satisfies the
equation

T={¢|AEré}

is an autoepistemic extension of A.

Thie is & fixed-point equation for the belief set T of a
reflective agent, given premises A.! It is similar to the belief
set definition for a nonreflactive agent (equation 6) in that
it contains A and is closed under first-order consequence,
AFE extensions are candidates for the belief sets of ideal
reflective agents; however, as we will show in section 2.4
below, there is an additional restriction which such sets
should obey.

Example 2.1 A base set A may give rise to one, no, or
severel AE extensions. As we show below, any set of or-
dinary sentences has exactly one extension. The extension
for the base set A = {P} contains all the first-order conse-
quencea of P, but no other ordinary formulas. It contains
modal atoms of the form L¢, where ¢ is a FOC of A, and
«Lip, where + is not a FOC of A.

The base set A = {LP} has no extensions. For suppose
T in such an extension; either P € Tor P ¢ T. Clenrly
the latter cannot be the case, for then for any sentence §,

‘“Moore (8] originally defined the concepts of soundness and com-

pletoness of & balief set relative to & base set, wing AE veluations. AE
exiensions are an squivalent definition; see Konolige [4].




A =1 ¢ (because =+ A is false for any I). Now suppose
P € T. In this case, we can construct an interpretation
which eatisfies A but falsifies P, namely one in which J
makes P false. Therefore it cannot be that A =7 P, and
so P is not in T, & contradiction.

The base set {LP O P} has two extensions, one of which
contains P, and the other of which does not.

The base set {~LP 3 Q, ~L@ > P} has two extensions;
in one of them, LP is true and LQ is not, and in the other
the reverse.

Suppose an agent has only ordinary sentences in her base
set A. This base set can be used to construct a belief set
in an iterative fashion, starting with ordinary formulas and
continually adding sentences with deeper nestings of modal
operators.

Proposition 2.2 (Marek) If A is o set of ordinery sen-
tences, then it has exactly one AE extension T. Ty in the
firat-order closure of A.

We now turn our attention to an alternative characteri-
zation of AE extensions. Essentially, we seek to remove the
self-referential index T in the implication operator of Defi-
nition 2.1. To do this, we introduce and analyze a special
type of belief set, the stable set.

2.3 Stable sets

Following Stalnaker [10], we call a belief set I' stable if it
satisfies the following three properties:

1. T is closed under first-order consequence.?
2. If¢ €T, then LopeT.
3. If4gT, then ~Lo €T,

The connection between stable sets and AE extensions
is the foliowing:

Proposition 2.3 (Moore) Every AE extension of A is ¢
stable sel coniaining A.

The strict converse of this proposition is not true, since
there can be stable sets containing A which are not AE
extensions of A. The simplest example is A = {LP}, which
hes no AE extension (seet example 2.1). Yet there are many
stable sets which contain LP.

A partial converse is available if we consider stable sets
as AE extensions of their own ordinary sentences.

Proposition 2.4 Everp stable set T is an AE extension of
To.

3Stalnaker considered propositional languages and so used tauto-
logical consequence.

Stable sets are thus AE extensions of their ordinary sen-
tences. From proposition 2.2, we know that every such
AE extension is unique; hence every stable set is uniquely
determined by its ordinary sentences.

Proposition 2.5 (Moore) Iftwo stable sets agree on or-
dinary formulas, they are equal.

The set of ordinary formulas contained in a stable set
is closed under first-order consequence. Different stable
sets thus have different sets of FO-closed ordinary formulas.
We now show that stable sets cover the sets of FO-closed
ordinary formulas, that is, every such FO-closed set is the
ordinary part of some stable set.

Proposition 2.6 Let W be a set of ordinary formulas
closed under first-order consequence. There is a unique sta-
ble set T such thatJo= W. W is called the kernel of the
stable set.

We are now ready to give a second semantic character-
ization of AE extensions. Since AE extensions are stable,
let us consider restricting the range of modal indices on the
logical implication operator to just stable sets; we indicate
this by l=ss. From proposition 2.5, we know that the or-
dinary formulas of a stable set uniquely determine it. As
usual, let Tp be the set of ordinary formulas of T, and T,
the set of ordinary formulas notin T. Then, if T is stable, it
must be the case that b7 is equivalent to LTyU-LT =55,
because LT, and ~LT, specify only those models in which
the rmodal index is the unique stable set containing exactly
the ordinary formulas Ty, This suggests how we can replace
=7 in the definition of AE extensions.

Proposition 2.7 T is an AE extension of A if and only
if it satisfies the equation

T={¢| AULTU~LT kss ¢} .

By using a stronger type of implication (=ss over stable
sets), we have been able to eliminate all self-referential as-
sumptions except for those involving the ordinary formulas
of T. This proposition also hints that the nesting of L-
operators gives no extra expressive power to the language,
since only ordinary formulas are important in character-
izing the fixed point. This is indeed so, and we have the
following proposition.

Proposition 2.8 Every sentence in £ is equivalent (under
=ss) to a sentence whose modal atoms are of the form Lo,
with ¢ € Lo.
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2.4 Strongly grounded extensions

One way of looking at the equation of proposition (2.7)
is to see what type of reasoning it sanctions for reflective
agents. An agent is justified in believing at least the conse-
quences (under |=gg) of her base set A, together with the
assumptions LTo and ~LTs. Moore has called belief sets
defined in this way grounded in A, because they are derived
from A and assumptions about self-belief.> However, this
notion of groundedness is a fairly weak one, and we may
wish to strengthen it. Consider, for example, the base set
A= {LP > P}. A has two AE extensions, which we call T
and T' (see example 2.1). T contains P and LP, while V
does not contain P, but has =L F. The difference between
these is precisely whether LP is introduced as an assump-
tion in the fixed-point equation (2.7). For the belief set T,
the agent's belief in P is grounded in her assumption that
she believes P. If she chooses to believe P, she is justified
in believing it precisely because she made it one of her be-
liefs. This certainly seems to be an anomolous situation,
since the agent can, simply by choosing to assume that a
fact about the world is true, be justified in that assumption
without any objective information.

We would like to define a stronger notion of groundedness
to eliminate this circularity of justifications. Now consider
the belief set definition'given in proposition 2.7:

T={¢|AULToU-LTy =55 ¢} .

The set of ordinary sentences in the belief set is To. LTO
is the assumption that the agent believes all of these sen-
tences. There would be no circular justifications if we re-
place LTo by LA in the fixed-point definition: we are as-
sured that the derivation of facts about the world does not
depend on the assumption of belief in those facts. The
inclusion of LA is necessary because an ideally reflective
agent should at least believe that her base beliefs are be-
liefs.

From this discussion, we define the following notion of
strongly grounded.

Definition 2.2 A set of sentences T is strongly grounded
in A if it obeys the constraint:

TC{¢|AULAU-LT, =ss ¢} .

A certain natural class of AE extensions is strongly
grounded, as we will shorty show. But not every AE ex-
tension is strongly grounded.

Example 2.9 The base set 4 = {LP > P} has two exten-
sions, only one of which is strongly grounded. The exten-
sion containing P cannot be strongly grounded, because P

cannot be derived without the assumption of LP.

*Moore actually used a different but equivalent definition of ground-
edness; in his version, a set T is grounded in A if it satisfies:

PFC{#lAULTU-LT =4 .
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A more complicated case is the base set A = {LP 2
Q, LQ D P}. Again there are two extensions, one con-
taining the ordinary formulas P and Q, and one without
them. For the former, LP and LQ must be assumed to-
gether in order to justify P and Q. Because they cannot
be derived without this assumption, this extension is not
strongly grounded.

The extension of a set of ordinary formulas A is strongly
grounded, because every ¢ € T is in the first-order closure
of A, and so in the stable set containing LA.

Strongly grounded extensions are conservative in what
they assume about the world, given the base beliefs. As
shown in example 2.9, the base set {LP > P} has only one
strongly grounded extension, for which P is not a belief. In
fact, strong groundedness is closely related to another con-
cept, the minimality of ordinary sentences in an extension.

Definition 2.3 An AE extension T of A is minimal for A
if there is no other extension T¥ of A such that TV C To.

Minimal extensions always exist for a base set A that has
extensions. Note that there can be more than one minimal
extension for a given base set, e.g., 4 = {~LP > Q, L@ D
P} has two extensions, both of which are minimal for A.
The base set 4 = {LP 2 P} has a single minimal exten-
sion, the one which doesn't contain P. Minimal extensions
have a natural appeal as candidates for ideal reflective be-
lief sets, because they limit the assumptions an agent makes
about the world.

We now prove that, in fact, the minimal AE extensions of
A are exactly the extensions strongly grounded in A. Thus
we have two independent motivations for choosing these
extensions as ideal belief sets.

Proposition 2.10 An AE extension of A is strongly
grounded in A if and only if it is minimal. Strongly-
grounded extensions obey the equation:

T={¢|AVLAU-LT, |=ss ¢} .

2.5 Normal form

The base sentences A of an AE extension can be put into
a normal form that will be useful in the next section. We
will use the following two facts about sentences of C in
establishing a normal form.

1. Every AE sentence is equivalent to a sentence contain-
ing modal atoms only of the form Lo or -Lo, where
¢ is an ordinary sentence.

2. Lo A Ly is equivalent to L{¢ A ¢},

These equivalences hold when considering interpretations
whose modal indices are stable sets; see Konolige [4].



The first of these facts enables us to consider only base
sets A with no nesting of modal operators. As we hinted in
the last section, the nesting of L-operators lends no extra
expressive power to the language.

In deriving a normal form for a set of sentences A, we first
convert A to an equivalent set without nesting of modal op-
erators, and then, using first-order valid operations, extract
all modal atoms from the scope of quantifiers.

Proposition 2.11 Every set of L-scntcnces is equivalent
(under [=gs) to a set in which each sentence is of the form:

-LavIifv---vIL8, Vuw, (10)

with a, #;, and w all being ordinary sentences. Any of the
disjunct®, except for w, may be absent.

3 Default and AE extensions

In this section we briefly review default theories, and then
present an effective syntactic translation of an arbitrary de-
fault theory W into a set of sentences W of AE logic. The
main results of this paper are: (1) every default theory has
a corresponding AE logic base set A whose minimal exten-
sions are exactly the extensions of the default theory; and
(2) every AE logic base set A has a corresponding default
theory whose extensions are the minimal AE extensions of
A. The translation between the two systems is effective and
local, that is, each sentence or default rule is translated in
isolation from the others.*

3.1 Default extensions

As defined by Reiter [9], a default theory is a pair (TV, D),
where TV is a set of first-order sentences, and D is a set of
defaults, each of which has the form:
a: Mp,MBs, ... MB,
w

A default d is satisfied by a set of sentences T if either (1)
a is not in T or some —f; is in T (the premisses of the
rule are not satisfied), or (2) w is in T (the conclusion is
satisfied). A default extension of (TV, .D), informally, is a
minimal set of sentences containing TV, closed under first-
order consequence, and satisfying all the defaults D.

If none of &, &, orwontain free variables, then the
default is called closed. An open default is treated as a
schema for the set of closed defaults that are its substitution
instances. We thus need only consider closed defaults, as
long as we allow default theories to contain a denumberably
infinite set of them.

Default extensions have many of the same properties as
AE extensions. There may be one, no, or many extensions
of a default theory. The following examples are analogous
to the AE extensions in example 2.1.

“Imielinski [3] defines the weaker notion of a moduiar translation:
the defaults and first-order parts must be translated independently.
Obviously, any local translation is modular.

Example 3.1 The default extension for the theory
({P},8} (no defaults) is exactly the first-order conse-
quences of P.

The theory {8, P : /P) has one extension, the set of all first-
order valid sentences. P is not an element of this extension.
This differs from the case of AE extensions for {LFP 2 P};
there is an extension which contains P.

The theory {8, {M~-P/Q, M-Q/P})} has two extensions;
in one of them, P is true and Q is not, and in the other the
reverse.

These examples are instructive by comparison to AE ex-
tensions. If the theory (W,D) contains no defaults (D
empty), then there is exactly one extension, which is the
first-order part of the AE extension of W. In general, a
default of the form o : M#3/w corresponds to the AE sen-
tence La A oL~ 2 w; thus, in the third default theory of
the example, there are two default extensions, correspond-
ing to the first-order parts of the two AE extensions of
{-~LP D @, ~LQ DO P}. However, note the difference in
the case of the second default theory of this example. The
default P : /P has only one extension, in which P does
not appear. The AE set {LP > P} has two extensions; the
one in which P appears arises from the ability of AE exten-
sions to support circular justifications (assuming LP, the
sentence LP = P gives a derivation of P). So although it
appears that default extensions have corresponding AE ex-
tensions for a suitable transformation of the defaults, not all
AE extensions will have corresponding default extensions.
In fact, as we show below, default extensions correspond to
minimal AE extensions.

3.2 Defaults as self-belief

We now define a simple transformation from a default the-

ory (TV, D) to a set of AE sentences A, such that the default

extensions of (TV, D) are exactly the kernels (the first-order

part) of the minimal AE extensions of A. Thus (as we

prove), there is an exact correspondence between default

extensions for (TV, D) and minimal AE extensions for A.
The transformation is:

a:MpB ... MB,
[
As we mentioned in the introduction, this is the natural
interpretation of defaults in terms of introspective knowl-
edge. A paraphrase of the AE sentence for agent would be
something like the following: "If | know that a is true, and
| have no knowledge that any of the 3; are false, then w
must be true." The key phrase has been emphasized; it is
in reasoning about what is not known that the nonmono-
tonic character of AE logic appears. However, the role of
the other parts of the sentence (La and w) also deserves
closer scrutiny; for example, why does w appear as the
consequent, and not Lw? As it stands, this is the trans-
formation that yields the correspondence between default

—  {LaA-L-FA - A=L-8,) D w{11)
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and AE extensions. We will comment more extensively on
the form transformation later, after the basic results are
presented.

In a default, we allow either & or any of the M#8; to
be missing; the corresponding AE sentence just deletes the
appropriate conjunct in the antecedent. The conclusion
of the default must always be present (defaults with no
conclusion are senseless). Let I¥ be the set of sentences
formed by taking the transforms of defaults P; we call the
set {W,D'} the AE transform of(W,D).

Default extensions are the fixed points of an operator
r(V). This operator is meant to formalize the informal
criteria given above for the extensions of (W, D), namely, it
should contain W, be closed under first-order consequence,
and satisfy all of D. Let V be an arbitrary set of first-
order sentences. Then T(V) is the smallest set satisfying
the following properties:

DI. W CI(V)
D2. T(V) is closed under first-order consequence.’

D3. Ifa - MB/we D, ae (V) and -3 €V, thenw €
T(V).

Extensions are fixed-points of T, i.e., any set E satisfying
E — T(E). As a fixed-point definition, it is similar to the
fixed-point account of minimal AE extensions (proposition
2.10). The parameter of T( V) essentially fills the role of the
assumptions ~LTg, since -B must not be present in order
for the default to be satisfied. Minimality is part of the
definition of T(V) (the least set satisfying the conditions
D1-D3); if it were excluded, then default extensions corre-
sponding to non-minimal AE extensions would be present.

Now consider a particular default theory (W, D} and an
associated extension E = T(E). E is closed under first-
order consequence, and hence is the kernel of a unique sta-
ble set. This stable set is closely related to the AE trans-
form of (W,D): it is a minimal stable set containing the
AE transform. We prove this result as the following propo-
sition.

Proposition 3.2 Let (W,D) be a default theory, with A =
{W, D'} its AE transform. Suppose E is an extension of
the default theory. Then E is the kernel of a minimal stable
set containing A and ~LE.

Using this result, we can show that a default theory and
its AE transform have the same extensions.

Theorem 3.3 Let A be the AE transform of a default the-
ory A. A set E is a default extension of A if and only if it
is the kernel of a minimal AE extension of A.

*In the original definition, this is stated in terms of deduction rather
than logical consequence.
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3.3 Semantics

The semantics of AE sentences is an interpretive seman-
tics, in the sense that a sentence ¢ is true or false in an
interpretation =pr. The interpretation of modal atoms is
given by the modal index T according to equation 8. The
interpretations themselves are straightforward augmenta-
tions of standard first-order interpretations. The problem-
atic characteristics of AE logic, from semantical point of
view, occur in the fixed-point definition of extensions (2.1),
in which only interpretations containing a certain modal
index are considered. So, although it is hard to construct
and analyze extensions, all of our ordinary intuitions about
the meaning of the language £, its semantics with respect
to individual interpretations, is still available.

To give an example of this sort: consider the difference
between the two default sentences

LBird{Tweety) A ~L-Fly{Tweety) D Fly(Tweety)(12)
and
Bird(Tweety) A ~L—-Fly(Tweety} O Fly{ Tweety} (13}

The first of these states that in any interpretation in which
Bird(Tweety) is a belief, and -Fly( Tweety) is not a belief,
Fly( Tweety) will be true. The antecedent of the second de-
fault is less strict: it states only that Bird(Tweety) must be
true. The second default permits case analysis of a type not
sanctioned by the first. For example, suppose it is known
that either Tweety is a bird, or that Tweety is housebro-
ken (Houseb(Tweety)). In every interpretation in which
-Fly(Tweety) is not a belief, and the second default sen-
tence is true, Houseb( Tweety) v Fly (Tweety) is true. On
the other hand, nothing can be concluded by assuming the
first default sentence is true, because Bird(Tweety) may
not be a belief. As Etherington [1, p. 34] has noted, the
second sentence seems more in accord with our intuitions
about the way defaults should work.

Another example of the utility of interpretive semantics
is in the concepts of equivalence and substitution. Two for-
mulas ¢ and ¢’ of £ are equivalent if they have the same
truthvalue in all models. Because the definition of AE ex-
tensions is framed in terms of the interpretive semantics,
¢’ can be substituted anywhere ¢ occurs in a base set A,
without changing the AE extensions of A. We used this fact
extensively in arriving at the normal form for AE sentences
in section 2.5.

3.4 Expressiveness

The question of expressiveness can be phrased as follows: Is
it the case that default sentences of the type (13), or per-
haps other AE sentences involving complicated construc-
tions such as embedded L-operators, have no counterpart
in default theories? On the face of it this would seem a
plausible conjecture, since the L-operator is part of the
language, while default rules are not. However, it turns



out that AE logic is no more expressive than default logic:
there is an effective transformation of any base set of AE
sentences into a default theory, such that the default exten-
sions are exactly the kernels of the minimal AE extensions.
To show this, we rely on the fact (see proposition 2.11) that
every set of sentences of C has an equivalent normal form
in which every sentence looks like:

~LaVIAhV VI Vw, (14)

where all of &, B;, and w are ordinary sentences, w is always
present, and any of the modal atoms may be missing,.

Given any set of L-sentences A in normal form, it is pos-
sible to effectively construct a corresponding default theory
(W, D), in the following way. Any w that appears without
other disjuncts is put into W. All other sentences are trans-
formed into defaults, in the manner indicated by equation
11. It is easy to see that A is the AE transform of {W, D);
by theorem 3.3, these two have essentially the same exten-
sions. More precisely, we have proven the following theo-
rem:

Theorem 3.4 For any set of sentences A of C, there is
an effectively constructable default theory (W, D) such that
E is a default extension of (W, D) if and only if it is the
kernel of a minimal extension of A.

So, suprisingly, default theories have precisely the same
expressiveness as AE logic over the modal language C.
However, two caveats should be noted.

The first is that the expression of various statements
about defaults or autoepistemic reasoning may be much
more natural in L, because the form of sentences is much
less constrained than that of the default inference rules.
For example, the second type of default (equation 13) is
translated into the default rule:

MPFiy( Tweety)
Bird{ Tweety) D Fly(Tweety)}

The atom Bird(Tweety) does not appear in the antecedent
of the default, but somewhat unnaturally in the consequent.
The second caveat is that, if we extend C by allowing
quantifying-in (i.e., expressions such as 3z.L¢(z}), in all
likelihood theorem 3.4 will no longer hold. There are a
number of reasons to think this; perhaps the most com-
pelling is Levesque's observation [5] that in the presence of
quantifying-in, there are sentences with nested belief oper-
ators that cannot be reduced to sentences without them.

(15)

4 Conclusion

Given the current proliferation of nonmonotonic for-
malisms, it seems wise to establish comparisons among
them, especially regarding expressiveness. The results pre-
sented here show that there is an exact correspondence be-
tween AE logic over C and default theories. There is an

effective, local translation between the two that preserves
theoremhood, in that the default extensions are the first-
order part of the minimal AE extensions.
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