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A B S T R A C T 

Winner-take-all (WTA) structures are currently 
used in massively parallel (connectionist) networks to 
represent competitive behavior among sets of alternative 
hypotheses. However, this form of competition might be 
too rigid and not be appropriate for certain applications. 
For example, applications that involve noisy and errone­
ous inputs might mislead W T A structures into selecting 
a wrong outcome. In addition, for networks that con­
tinuously process input data, the outcome must dynami­
cally change wi th changing inputs; W T A structures 
might " lock- in " on a previous outcome. This paper 
offers an alternative competition model for these applica­
tions. The model is based upon a meta-network 
representation scheme called network regions that are 
analogous to net spaces in partitioned semantic networks. 
Network regions can be used in many ways to clarify the 
representational structure in massively parallel networks. 
This paper focuses on how they are used to provide a 
flexible and adaptive competition model. Regions can be 
considered as representational units that represent the 
conceptual abstraction of a collection of nodes (or 
hypotheses). Through this higher-level abstraction, 
regions can better influence the collective behavior of 
nodes wi th in the region. Several AI applications were 
used to test and evaluate this model. 

I . I N T R O D U C T I O N 

Winner-take-all (WTA) structures [ l ] represent 
competitive behavior among sets of alternative 
hypotheses in massively parallel networks [2, 3, 4). These 
networks consist of large numbers of simple processing 
elements that give rise to emergent collective properties. 
The behavior of such networks has been shown to closely 
match human cognition in many tasks, such as natural 
language understanding and parsing, learning, speech 
perception and recognition, speech generation, physical 
skil l modeling, vision and others. 

In a W T A structure, whenever there is any activa­
t ion, the structure forces only the node (which may 
represent a hypothesis) wi th the highest output level to 
remain activated, while the other nodes die out. This 
mechanism allows one to define "decision points" that 

Figure 1. WTA structure that represents competing weak fricatives. 

In the example, the l ink weights for inhibit ion and 
activation links are arbitrari ly set to be —0.6 and 0.33 
respectively and the decay factors are set to 0.3. Figure 
1 is the final state after the inputs —voiced, 4- labial , 
and - f f r i ca t i ve were activated and the network was 
relaxed. As the figure shows, the W T A structure enabled 
/(/ to compete and suppress the other candidates. 
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output suppress nodes with lower output. There are two 
parameters that influence this competitive behavior — 
the inhibition link weights and the nodes' decay factor. 
The link weights define the degree of competition. 
Lower link weights represent a milder, slower form of 
competition. Higher link weights represent stronger, 
quicker competition. The decay factor, on the other 
hand, controls how well a network retains the decision 
made by the WTA structure and allows the network to 
reset itself in the absence of inputs. In this paper, these 
two parameters are assumed to be uniform. 

n . I S S U E S 

Although WTA structures have been used success­
fully in many AI applications, this model of competition 
might not always be appropriate. For example, applica­
tions that involve noisy and erroneous inputs might 
mislead WTA structures into forming a wrong decision. 
In addition, for networks which continuously process 
input data, the network must be able to dynamically 
change decisions based upon changing inputs. WTA 
structures might "lock-in" on a particular decision. The 
following outlines the key problems when WTA struc­
tures are used in these applications. 

Overly rigid competition — Since the mutual inhi­
bition link weights are fixed, the degree of competition is 
also fixed. If the input data is not at a consistent activa­
tion level or if new hypotheses are encoded into the 
structure, the competition may be too weak or too 
strong. Competition that is too weak may result in mul­
tiple activations or decisions, some of which may be con­
flicting. Excessive competition may result in a structure 
that is very sensitive to the output levels of the nodes. 
This may mislead a WTA structure into prematurely 
forming an incorrect decision. 

Decisions are not flexible — Once a WTA structure 
"locks-in" on one interpretation, it is difficult to shift to 
another interpretation as the input changes. In other 
words, newly activated nodes will have little chance of 
competing with the current "winner". Flexible decision 
making is essential for dynamic systems where the net­
work continuously processes different inputs. The decay 
factor does alleviate the "lock-in" effect by allowing the 
winning node to gradually decay, but may not be in time 
to accommodate changes in the input. 

No likelihood information — The output level of a 
node may sometimes be considered a "likelihood" or 
"certainty" measure [5]. WTA structures, by definition, 
allow only one "winner", thus the output levels of other 
nodes are suppressed and this "likelihood" information is 
lost. In certain applications, it is more desirable to have 
several outcomes with varying output levels to reflect the 
likelihood of these outcomes. 

In general, WTA structures are useful in applica­
tions where only one outcome is desired and where the 
input data is not noisy and can be clearly categorized. In 
these well-defined applications, some of the above men­
tioned problems can be solved by using building blocks 
or combination rules in constructing the WTA structure 
[l]. However, for applications involving real world data 
with large variance, a more flexible and adaptive com­
petition is needed. This paper presents an alternative 
model of competition for these applications. 

H I . N E T W O R K R E G I O N S 

Network region is a meta-network structure that 
represents the conceptual abstraction of a collection of 
nodes or hypotheses. Intuitively, it represents a "chunk" 
of network where well-behaved properties can be defined. 
Graphically, a region is displayed as a solid-lined rec­
tangular box around the collection of nodes it represents. 

The following figure shows the previous WTA 
structure enclosed in a network region, labeled WF, 
which represents the category of weak fricatives. 

Figure 2. A region representing the category of weak fricatives. 

Conceptually, there are similarities between net­
work regions and partitioned semantic networks [6]. In 
semantic networks, nodes and arcs are partitioned into 
net spaces, while in our massively parallel networks, 
nodes and arcs are partitioned into network regions. The 
net spaces are used mainly to delimit the scopes of quan­
tified variables. In this paper, network regions are used 
to delimit sets of competing hypotheses. In addition, 
besides being conceptual units, network regions are com­
putational entities just as nodes and links are. Network 
regions can also activate or inhibit other nodes or 
regions, similar to spaces that can be linked to other 
parts of a semantic network. 

Regions are in effect higher-order nodes with inter­
nal parameters, that have node counterparts (i.e. poten­
tial level, output level, and inputs) where: 

S - sum of all the nodes' output within region. 
P - average potential of activated nodes in region. 
V - average output of activated nodes in region. 
Ir - average input level activated nodes in region. 

These parameters act as indicators of the collective state 
of the nodes within a region and are updated during each 
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relaxation cycle. This provides an abstract view of a set 
of nodes that can be used either to influence the network 
system outside the region, or to better control the collec­
tive behavior of nodes within the region. 

In terms of influencing the network system outside 
a given region, regions can be used to encode partition of 
concerns [7]. In the above example, even though the net­
work may still be determining the correct weak fricative, 
the state of the WF region (or more precisely, the value 
of Vr) can immediately provide information to other net­
work structures which may only need to know that a 
weak fricative is present and not necessarily which par­
ticular weak fricative. This allows phonological rules, 
that apply to all weak fricatives, to trigger whenever 
there is any activity in the WF region. 

Regions also simplify the task of knowledge encod­
ing by permitting knowledge to be encoded at appropri­
ate levels of abstraction. In speech recognition, phono­
logical rules are used at various levels of abstraction. 
Through the use of regions, rules can be encoded into 
connectionist networks at the same level they are 
expressed. An example rule is: if a final voiced fricative 
is actually voiced, then the following sound is voiced. 
This may be encoded with a region that represents the 
set of all voiced fricatives. If this region is active and is 
followed by a silence, then the system should expect a 
+voiced sound to follow. Without the regions represen­
tation, this knowledge has to be encoded for each voiced 
fricative separately. With regions, knowledge is 
expressed at a more appropriate level of abstraction, that 
allows networks to be more modular and comprehensible. 

The interaction of regions with other network 
structures is discussed in (Bookman and Chun, 1987). 
The current paper focuses on the use of network regions 
to influence the collective competitive behavior of nodes 
within a region. 

A. N-REGION 

The N-REGION (normalizing region) provides 
activation stability for competing hypotheses. In addi­
tion this mechanism allows "likelihood" information to 
be maintained and permits competition that is more 
tolerant to variations in input levels. 

In certain applications, it is useful to have more 
than one outcome from a set of alternative hypotheses. 
In these cases, the output level of a node may be con­
sidered as a "likelihood" or "certainty" of a particular 
hypothesis [5]. Since WTA structures only allow one 
"winner", the output levels of the other nodes are 
suppressed and the "likelihood" information is lost. The 
N-REGION, without the mutual inhibition links, main­
tains this likelihood information within a set of alterna­
tive hypotheses. If we consider a hypothesis by itself, the 
output level would indicate the "likelihood" of this 

hypothesis as determined by the current low-level inputs. 
For example, if only half of the inputs to a particular 
hypothesis are activated, the hypothesis may have an 
output level of 0.5. This information is only useful if we 
are considering how well a particular hypothesis matches 
the current input. However, when hypotheses are in 
competition, it is more informative to have the output 
level indicate the likelihood of a particular hypothesis 
among all other competing hypotheses. 

The N-REGION accomplishes this by a normalizing 
computation that limits the maximum total output 
within a region (the value of Sr of the N-REGION) to 
1.0. In other words, the total "likelihood" within the N-
REGION will not exceed 1.0. The general idea of nor­
malization is of course not new, however with network 
regions the normalization is integrated into the relaxa­
tion process itself. Figure 3 and Table 1 shows the out­
put levels of the four weak fricatives with and without 
the N-REGION, after the inputs —voiced, - lab ia l and 
+fricative were activated for 1 cycle. 

The output level of / v / with the WTA structure 
indicates that there is a 0.66 likelihood that / v / is 
matched just by considering only the inputs (only two-
thirds of the features for / v / were activated) . This out­
put level is misleading, since /f/, / v / and /o/ are all 
highly activated. This would misinform other network 
structures that all three were closely matched. However, 
with the N-REGION, the output level of / v / is adjusted 
to 0.25, indicating the likelihood of /v / among the four 
alternatives is only 0.25. This mechanism puts a 
hypothesis in perspective among all the other competing 
hypotheses. 

This approach is similar to the UB (upper-bound) 
parameter proposed in (Feldman and Ballard, 1982). 

In our example, the activation link weighty are uniformly set to 0.33. In evi­dential reasoning systems, this weight would be E ( hypothesis 1 input). However, the utility of the N-REGION is the same. 
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However, instead of inhibiting all the nodes equally, the 
N-REGION proportionally adjusts the nodes output level 
to maintain the "likelihood" information. 

The virtual lateral inhibition proposed by (Reggia, 
1985) also maintains a normalized activation in each 
layer when only a single input node is activated at a 
time. Since the effect of this competition model is simi­
lar to WTA structures, the network might also "lock-in" 
on a premature outcome. 

Since there are no inhibition links between compet­
ing nodes in the N-REGION, it does not encode active 
competition or contour enhancement [10] (filter out noise 
by suppressing nodes with low output level). However, 
there is implicit competition through the conservation of 
activation within the N-REGION. In addition, by this 
lack of active competition, N-REGIONs will not "lock-
in " on a particular decision. If active competition is 
required, the N-REGION can be used in conjunction 
with a WTA structure. 

The amount of competitive inhibition received by a 
node in a WTA structure varies with the total output 
level in the structure. After the WTA structure is fine-
tuned for a particular input activation level, the perfor­
mance varies when the input level increases or decreases. 
When N-REGIONs are used on top of WTA structures, 
the N-REGIONs maintain the total output level to be 
constant. Hence, a more uniform competition results 
since the total amount of competition will not vary with 
input levels. This also eliminates the problem of too 
weak a competition where several hypotheses get fully 
activated. With N-REGIONs, the activation of these 
hypotheses will be normalized. 

To summarize, the most significant advantages of 
N-REGIONs are that they maintain "likelihood" infor­
mation, permit uniform competition, eliminate excessive 
competition, allow multiple outcomes, and will not 
"lock-in" on a single "winner". 

B. C-REGION 

The C-REGION (competitive region) provides an 
adaptive and flexible competition that permits graceful 
shifting of decisions made when inputs change. 

The WTA competition is rigid because the weights 
on the inhibition links are fixed. When input levels are 
not consistent, as in the case of noisy data, competition 
may either be too weak or too strong. For example, in 
speech recognition, the clarity in which certain phonemes 
are spoken varies greatly within each word. The C-
REGION avoids this problem by having the inhibition 
link weights be sensitive to the current inputs to the 
region (i.e. the value of Ir in the region). As the C-
REGION relaxes, the inhibition link weights are adjusted 
to adapt to the current input level. 

Competition in the C-REGION is defined as: 
competition. = kI lr wI E vi [i = j] 

where kJ is a constant, indicating the sensitivity to the 
input. In contrast to the original WTA competition, the 
"effective inhibition weight" is now (kI Ir wI.). The 
parameter kI is set so that the "effective inhibition 
weight" for the expected input levels is the same as the 
original WTA inhibition weight. 

The following experiments show how the C-
REGION adapts to varying input levels. In the exam­
ples, the activation link weights from the inputs are 0.33. 
The inhibition link weights in both the WTA structure 
and the C-REGION are -0.6. The proportionality con­
stant kJ is set to 1.5 so that the "effective inhibition 
weight of the C-REGION is approximately equal to the 
inhibition weight (i.e. —0.6) of the WTA structure when 
inputs nodes are fully activated. 

In experiment 1, when the input nodes were fully 
activated, the outcome ("winner") will shift when inputs 
change for both the WTA and C-REGION. However, 
when the average input level, /, drops to 0.4, the WTA 
structure "locks in" on the previous outcome, while the 
C-REGION will shift to the correct decision. Table 2 
shows that the WTA locked onto /$/, while the C-
REGION correctly shifted to /S/. Figure 4 shows the 
final state of the network at the end of 45 cycles. 

In experiment 2 (see Table 3), the average input 
level, /, for the first 15 cycles was lower than expected 
(only 0.4). However, both network structures still settled 
on the correct outcome of /f/. In the previous experi­
ment, the WTA structure failed because it "locked in" 
on a previous outcome. Here, there is no previous out­
come to lock onto. However, when the input was 
changed and the average input level dropped further to 
0.26, the WTA structure failed while the C-REGION still 
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The main advantage of the C-REGION Is that it 
provides a flexible competition which adapts to the 
current input level. The decision made by the structure 
is less dependent on previous decisions (i.e. will not "lock 
in " on previous results). This ability to graceful change 
decisions is crucial in networks which continuously pro­
cess different inputs at varying levels. When the input 
level is higher than the expected value, the competition 
in both the WTA structure and C-REGION might be too 
strong. Consequently, more negative competition activa­
tion will be spread. If this activation is higher than the 
nodes1 output level, nodes in both structures may toggle 
between active and inactive states. The CN-REGION 
eliminates this problem. 

C. CN-REGION 

CN-REGIONs, used on top of WTA structures, 
combine the advantages of both C-REGIONs and N-
REGIONs. The N-REGION maintains uniform competi­
tion with possibly multiple outcomes, while the C-
REGION adapts competition to varying input levels. 
When average input levels are lower than expected, the 
C-REGION can still permit the inputs to influence the 
competition. When average input levels are higher than 
expected, the N-REGION prevents excessive competition. 
The net effect of combining these two is that competition 
is highly flexible and uniform. The possibility of too 
strong or too weak competition is greatly reduced. 

The effects of the CN-REGION are similar to the 
competition in Grossberg's on-center off-surround net­
work [10]. Groasberg's network uses a quenching thres­
hold to limit which nodes will be activated. In essence, 
the adaptive competition in the CN-REGION is similar 
to a self-adjusting quenching threshold that changes with 
the current input level. 

I V . A P P L I C A T I O N S 

The network region model of competition was 
tested in three AI applications — high-level vision, iso­
lated word recognition, and microfeature-based natural 
language understanding. These examples illustrate the 
effectiveness of WTA structures and network regions in 
different classes of applications. The input to the label­
ing problem of high-level vision is well-defined without 

noise, whereas the input to the word recognition example 
is highly noisy and ambiguous. The natural language 
example shows the importance of flexible decision mak­
ing. All examples were implemented using the AlNET-2 
system [11] (a massively parallel network simulator and 
development environment) which runs on Symbolics Lisp 
machines. 

A . HIGH-LEVEL VISION 

This section investigates the line drawing labeling 
problem [12] of high-level vision. In our line drawing 
labeling system, each junction in an object is represented 
by a WTA structure with nodes that represent the possi­
ble labels for that junction. The label of a junction is 
rigidly constrained; it must agree with the labels of adja­
cent junctions. These constraints are represented as 
activation links between adjacent junctions. This 
method of constraint propagation by spreading activa­
tion mimics the effects of the Waltz filtering algorithm. 

An example object and its correct labeling is shown 
in Figure 5. The three types of junctions that occur in 
this object are the L's, forks, and arrows (see Figure 6). 

All nodes were initially active, to indicate all labels 
are equally possible. As the network relaxed, nodes 
which did not satisfy the defined constraints died out. 
Eventually, the network converges to the correct labeling 
as shown by the darkened nodes in Figure 7. 

In our experiments, networks performed correctly 
as long as there was a balance between the inhibition and 
activation link weights. Both excessive inhibition and 
weak activation caused the network to converge 
incorrectly. Weak inhibition and excessive activation 
resulted in multiple labels being selected at some of the 
junctions. 
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This labeling system was also tested with N-
REGIONs at each junction, in addition to the WTA 
structures. This resulted in a slightly greater range of 
possible inhibition and activation link weights in which 
the network would still converge to the correct labeling. 
In addition, the network tended to degrade gracefully 
when link weights varied beyond this range. Without 
N-REGIONs there was a sharp threshold after which the 
network performed improperly. This improvement in 
network behavior can be attributed to the uniform com­
petition provided by N-REGION. Similar results were 
observed for the CN-REGION. 

Figure 7. Network with WTA structures to perform labeling. 

WTA structures are effective for the line drawing 
labeling problem and other domains where constraints 
are rigidly defined. The problem of "locking in " on a 
decision is not relevant here since evidence for a particu­
lar hypothesis (label) cannot vary with time. However, 
as we shall see in the following sections, this problem 
becomes more significant in applications where evidence 
for a hypothesis can vary with time. 

B. ISOLATED WORD RECOGNIT ION 

An isolated word recognition system, called SECO 
[13, 14], was used as an application with highly noisy and 
inconsistent inputs. This system recognizes spoken 
letter-names and digits. It partially evolved from a mas­
sively parallel model of word perception called COHORT 
[15]. The structure of SECO is similar to COHORT with 
the addition of a temporal constraint layer. 

The word recognition network consists of five 
layers — phonetic feature (e.g. vowels, stops, etc.) layer 
that is activated by an LPC-based front-end processor, 
phonetic segment (e.g. /f/, / v / , etc.) layer, phonetic seg­
ment token layer, temporal constraint layer, and a word 
layer which is the output of this system. Nodes in the 

Word recognition involves evidence gathering (in 
the form of phonetic segments matched) over a period of 
time. An observation from the experiments is that a 
WTA structure might converge to a decision based on 
the initial data and "lock-in" on an incorrect word (very 
often the initial part of an utterance is noisy). In this 
case, the initial noise may gradually dominate the com­
petition. In addition, during the recognition process, the 
correct phonetic segment may not always be the most 
highly activated segment. This would easily mislead a 
WTA structure, whereas a CN-REGION would be more 
capable of accommodating this type of noisy and errone­
ous data. The adaptive competition capability of CN-
REGION would permit later inputs to be able to posi­
tively influence the network. Figure 10 illustrates how 
the WTA structure misinterpreted the utterance "six" to 
be "seven" based on initial data. Figure 11 is the result 
from using a CN-REGION on the same utterance. 
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When a word is spoken, the duration of the speech 
varies with the speaker and the current context. This 
variation in the duration of input data causes problems 
for WTA structures. If an utterance is longer than 
expected, word level nodes will be highly activated before 
the utterance is complete and prematurely settle on a 
''winner." The normalizing effect of the CN-REGION 
prevents this "premature" recognition by adjusting the 
output levels to represent the current "likelihood" of a 
word at any point during the recognition process. 

When competition is too weak, the WTA structure 
may fully activate more than one word node. The out­
comes may also be activated before utterances is com­
pleted. With CN-REGION, normalization reduces the 
nodes' output to better indicate their "likelihoods." Fig­
ure 12 shows an example where the input utterance is 
"three." This particular utterance is somewhat noisy 
and the network confuses this with "four" while slightly 
favoring "three". The plot shows the WTA structure 
activates both "three" and "four." This would misin­
form other network structures that both words were 
recognized. In the case of CN-REGION (Figure 13), 
"three" and "four" are only partially activated. 

The top layer is a "local" connectionist model, the bot­
tom layer, a distributed layer of "microfeatures." The 
microfeatures are used as a basis for defining nodes (i.e. 
concepts, hypotheses) in the top layer, at least partially, 
and to associate the node with others that share its 
microfeatures. Each node in the top layer, is connected 
via bi-directional links to only those microfeatures that 
describe it. Conceptually related nodes have common 
microfeatures. 

The following is one of the sentences used to con­
trast the competition found in WTA structures with 
CN-REGIONs. 

"John went driving with five bucks in his truck." 
The network that models this sentence is shown in Fig­
ure 14 (only the top layer is shown). The rectangular 
nodes in the center of the figure represent the input 
words. The structure above this is the syntactic parse 
tree for the sentence. The elliptical nodes below the 
input words represent the competing word senses. In 
addition, semantic constraints associated with the inputs, 
are encoded but not displayed. There is also a micro-
feature memory system that represents the currently 
active and inactive microfeatures (these are not shown in 
the figure). 

Figure 14. Network used to process the example sentence. 

The example sentence is ambiguous, for it can 
either mean: he went driving with five dollars in his 
truck, or he went driving with five deer in his truck. In 
WTA-1 (Figure 14) two problems occur. Initially prim­
ing the WEEKEND and GAMBLING context, causes the 
system to settle on the dollar interpretation of bucks, 
while priming it with HUNTING causes it to settle on 
the deer interpretation of bucks. In both cases the com­
petition is too strong and there really should not be a 
total winner in this case. Instead there should be some 
overlap, as the features shared by both senses of the sen­
tence are shared by both priming contexts. Using CN-
REGIONs, this is exactly what happens. Priming 
WEEKEND and GAMBLING causes the dollar sense to 
be higher than the deer sense, while priming HUNTING 
causes the deer sense to be higher than the dollar sense, 
yet neither totally win out, thus reflecting the ambiguity 
in the data. 
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In WTA-2, the correct sense of truck is not chosen. 
Here, initially the input driving activates the transport 
sense of truck, but later inputs activate the vehicle sense 
of the word. However, they are too late to enter com­
petition. This was not the case with the CN-REGION, 
which correctly shifted to the vehicle sense of the word. 

Results from our experiments indicate several prob­
lems that WTA structures pose for natural language pro­
cessing. First, the semantic knowledge of the network 
and its microfeatures varies with one's experience. There 
is no one correct set. Thus, slight variations in the 
network's microfeature set will cause problems for WTA 
networks which are sensitive to transiently higher input. 
This can lead to premature stabilization of activation. 
On the other hand, the CN-REGIONs allow smooth com­
petitions among the microfeatures, the syntactic struc­
tures, the semantic constraints, and the input words, 
thus enabling subtle differences in meaning to exist. 
Secondly, the processing of a sentence is sequential over 
time. As a result, one's understanding of the sentence 
and the sentences that follow are gradually refined as one 
processes the inputs. A WTA may prematurely "lock 
in" on a word sense and ignore later information. 
Whereas, CN-REGION permits a dynamic flexibility in 
shifting from one interpretation to another. In addition, 
WTA does not provide a good representation for ambigu­
ous meanings, it always choose the one that is transiently 
higher. CN-REGION allows multiple outcomes each 
associated with a ''likelihood" measure. 

V . R E S E A R C H D I R E C T I O N S 

The research documented here represents the first 
step in utilizing network regions to provide higher-level 
representation in massively parallel networks. As regions 
can provide a means of creating hierarchies, as well as 
shared structures, it may be possible to use current learn­
ing techniques to create networks that can generalize 
from existing concepts to form new regions that 
represent these generalized concepts. This is a topic for 
future research. Currently we are investigating the 
effects of interaction among regions [8], that is, the com­
putational mechanisms needed to represent the interac­
tion of higher-order concepts. 
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