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ABSTRACT 

This paper examines the relationship between probability 
theory and reasoning in uncertainty, and argues that (contra 
opposing views) probability theory does have a place in 
reasoning in uncertainty, but that its place is more restricted 
than many of its advocates claim. Two major theses are 
argued for. (1) Reasoning from probabilities works well in 
domains which permit a clear analysis in terms of events over 
outcome spaces and for which either large bodies of evidence 
or long periods of "training" are available; but such domains 
are relatively rare, and even there, care must be taken in 
interpreting probability results. (2) Some generalizations with 
which AI applications must concern themselves are not 
statistical in nature, in the sense that statistical generalizations 
neither capture their meanings nor even preserve their truth 
values. For these contexts, different models wi l l be needed. 

I INTRODUCTION 
Probability estimates have been used to aid decision 

making in AI systems for over ten years now (Shortliffe and 
Buchanan 1975; Duda, Hart, and Nilsson 1976), and have 
been under fire even longer (McCarthy and Hayes 1969). 
Recently, the increased attention devoted to common sense 
reasoning and reasoning in contexts of uncertainty has fueled 
the debate, and clearly defined battle lines have emerged. 
Supporters point to a well-developed rigorous formalism for 
dealing with uncertainty (Cheeseman 1985; Ginsberg 1985). 
Opponents continue to object that applying Bayesian methods 
to calculate probabilities requires information that is not 
generally available ("where do the numbers come from?"), and 
that, insofar as it is available, is usually tainted (Kahneman, 
Slovic, and Tversky 1982). In addition, they charge that using 
probabilites suppresses important information (Cohen and 
Grinberg 1983; Sullivan and Cohen 1985); that statistical 
analyses fai l to distinguish uncertainty from inherent 
"fuzziness" (Zadeh 1981); that judgements of typicality and 
normic generalizations underlie much reasoning from 
uncertainty and are not probabilistic (Rosch 1975; Rosch and 
Mervis 1975; Rosch, Mervis, Gray, Johnson and 
Boyes-Braem 1976; Scriven 1959; Scriven 1963; Nutter 1982); 
and so on. 

Even supporters of statistical approaches separate into 
those who prefer straightforward Bayesian analysis 
(Cheeseman 1985), those who prefer the Dempster-Shafer 
(Dempster 1968; Shafer 1976) approach (Yen 1986; Ginsberg 
1984; Ginsberg 1985; Strat 1984; Yu and Stephanou 1984); 
and those who prefer some other variant of the Bayesian 
approach (Snow 1986). Others are developing theones to 
permit logic-style inferences about probabilites, especially in 

the realm of reasoning about independence (Pearl 1986), while 
continuing to argue that probability provides an epistemically 
adequate and effective framework for the general problem of 
reasoning in uncertainty (Henrion 1986). 

Both sides present their positions forcibly and plausibly, 
but not always with attention either to their opponents' points 
or to independent substantiation. As a consequence, arguments 
on both sides of the fence have tended to produce more heat 
than light. This paper aims to lower the temperature while 
illuminating the terrain. In the end, this paper argues neither 
for nor against statistical reasoning in A I . Rather it argues that 
statistical methods do apply, but only in some cases, and that 
care must be taken to identify those cases correctly, to fulf i l l 
requirements for reliable results, and to make sure that what is 
treated as a probability is indeed probabilistic in nature. 

The body of this paper consists of three sections. The first 
describes elementary aspects of probability theory, to form a 
basis for discussion. The second characterizes some of the 
features an AI application and its domain must have for 
statistical analysis to be useful. The final section describes 
cases of uncertainty that cannot be represented as probability. 

II PRELIMINARY REMARKS 
ON PROBABILITY 

A. What arc Probabilities? 
The philosophical nature of probabilities matters less for AI 

purposes than what kinds of phenomena classical and Bayesian 
probability analyses model. However, given the vehement 
disputes on this issue, a few observations may be useful. 
Statistics begins investigating probabilities in any particular 
instance by defining (at least loosely) a space of outcomes, that 
is, mutually exclusive observations of test results. Events are 
sets of outcomes from that space. When probability theorists 
refer to probabilities, they typically mean event probabilities, 
that is, the likelihood that the outcome of a particular test wi l l 
belong to the set which defines the event. This likelihood is 
traditionally defined in terms of frequency: given a "sufficiently 
large" number of tests, what proportion of all outcomes fall in 
the event set? 

The frequency view has been attacked for centuries; a 
recent criticism can be found in (Cheeseman, 1985). Probably 
the most pursuasive argument against the frequency view from 
an AI standpoint is that on that view, each event has exactly 
one correct probability. But for AI purposes, such a 
probability is neither attainable nor in some cases even 
interesting. Rather, we are interested in the probability of an 
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hypothesis given the current evidence. Critics further object 
that the frequency theory "restricts probability to domains 
where repeated experiments (e.g. sampling) are possible, or at 
least conceivable" (Cheeseman, 1985). In addition, the 
concept of "long run frequency" has bothered people for 
centuries. How long? How do you know? Why should 
"large numbers" (how large?) have special properties? 

These objections can be met without deserting a 
frequency-based approach. The probability of any hypothesis 
on the basis of the current evidence can be - and in normal 
statistical practice is - interpreted as the conditional probability 
of the hypothesis given the conjunction of events which that 
evidence reflects. In other words, in addition to a single, 
well-defined probability for every event over the space, the 
frequency view also provides a way to represent precisely the 
relativized probabilities we are most interested in (and these are 
exactly the probabilities that statisticians investigate). 

Classical statistics texts also contain chapters on game 
theory and decision theory which describe techniques for 
estimating probabilities on the basis of very small samples (see 
e.g. Freund and Walpole 1980, Chapter 9, or almost any other 
freshman text). So not only does classical statistics recognize 
that this can be done, the theory instructs the interested in how 
to do it; only, it also warns not to place great faith in the 
accuracy of such estimates. 

The hardest question to meet is the philosophical question 
of the significance of the Law of Large Numbers: what does it 
mean to talk about "long run" frequencies? Classical statistics 
provides some tests for whether an actual sample is large 
enough; but that cannot answer the philosophical question. 
The best that can be said here is that other approaches have 
their own philosophical questions that they cannot answer, but 
none of these philosophical questions seem to affect AI. 

The classical alternative to the frequency view is the 
subjective probabilities view, which derives from the views of 
the 18th century English clergyman Thomas Bayes. On this 
approach, probabilities measure certainty levels. Two options 
here should be distinguished. The first is well-defined, and 
clearly subjective (as philosophers use the term): the probability 
of an event given the current evidence is the measure of the 
degree to which a particular specific "real live" individual 
believes that the event will occur on the basis of that evidence. 
The problem here is evident: people will believe all sorts of 
things, and different things at different times, for different 
reasons or none at all. There is no reason to suppose that one 
person's "probability" in this sense will match another's, and 
no grounds for a science of probability at all. 

It is unlikely that many supporters of subjective 
probabilities ever meant that, though they often seem to say it: 

... the following definition is put forward as one that 
withstands all previous criticisms: The (conditional) 
probability of a proposition given particular evidence is 
a real number between zero and one, that is a measure 
of an entity's belief in that proposition, given the 
evidence. 

(Cheeseman 1985; emphasis in original) 

The alternative, and the view that is actually held, is that 
probabilities measure how much an ideal rational subject ought 
to believe that an event will occur, given the evidence. This 
option makes probabilities relative (to evidence), but not really 

subjective: no actual subjects are involved any more. This 
approach has two difficulties, both as obvious and as pressing 
as the problem the frequency theory has with understanding the 
long run. First, what makes someone an ideal rational subject? 
Probability cannot be considered well-defined on this view 
until that is spelled out. Second, how other than by measured 
frequencies can we establish the degree to which such a subject 
ought to believe that a given event will occur? 

B. H t m do Probabil i t ies Behave? 

The mathematics for measuring probabilities is the same on 
both these competing definitions: Bayes's Theorem is a 
theorem of classical statistics, for example. The significant 
differences come in questions of when it is legitimate to apply 
the formulas, and what they can be taken as establishing. In 
this regard, it seems hat the frequency analysis has an 
advantage: designers of AI systems generally care less whether 
their systems "ought" to believe their answers than how often 
those answers are right. For systems whose judgements have 
practical consequences, we should measure and maximize that 
if we measure anything. But whatever philosophical view of 
probabilities we take, the mathematics always agrees with long 
run frequency expectations in all situations in which we can 
make sense of them. 

Several of the mathematical features of event probabilities 
and their measurement are counterintuitive enough to be worth 
mentioning. For example, experiments structured by 
statisticians always assume more than is known. Statistical 
experiments define a hypothesis about the likelihood of an 
event, and then compare actual observations against the 
predictions of the hypothesis. This fact has implications 
frequently overlooked in AI debates. One such implication 
relates to the controversy over the so-called assumption of 
maximum entropy: the policy of assuming all events 
independent unless a connection has been found (see 
Cheeseman 1985). Opponents claim that this practice involves 
assuming more than is known, since the events in question 
may be dependent; supporters respond that the assumption of 
maximum entropy provides "a neutral background against 
which any systematic (non-random) patterns can be 
observed.... [W]ithout this prediction, it is difficult to detect if 
the current information is incomplete, and thus to discover new 
information" (Cheeseman 1985). The truth is that any 
hypothesis provides a background for detecting deviation; and 
no experiment can be run without some hypothesis. The real 
question, then, is which hypotheses yield the best results 
without extensive "training"; this question must be answered 
by experiment. 

Another, and for AI more serious, implication is that the 
outcome of an appropriate experiment must be observable 
independent of the statistical prediction. This is a problem for 
medical expert systems, for instance. The outcomes predicted 
by a system trying to solve problems at the level of "diagnose 
infectious disease" can not be straightforwardly observed: if 
they could, we wouldn't need the systems. This has serious 
consequences concerning the "trainability" of such systems; we 
will return to this later. 

Finally, some simple properties of probabilities should be 
noted. For independent events the joint probability (probability 
that all events will occur) is the product of the probabilities of 
the events. (Events are independent provided that whether an 
outcome belongs to one does not affect how likely it is to 
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belong to another.) Since all probabilities lie between zero and 
one, the joint probability of several independent events is 
always smaller than the probability of any one of them, unless 
all but one have probability one or at least one has probability 
zero. For dependent events, the joint probability is at most the 
maximum of the individual event probabilities, and it is that 
only if the corresponding event entails all the others. This has 
important consequences which we will return to later. Notice 
that the joint probability for dependent events may be zero even 
though none of the individual probabilities is, and it will 
always be so if at least two of the events are mutually 
exclusive. More subdy, the joint probability of, say, six events 
may be zero even though no two of them are mutually 
exclusive, if, say, five of them together exclude the sixth. 

Similarly, the probability that an outcome will fall into at 
least one of several independent events is the sum of the 
probabilities of the events in question. If they are dependent, it 
is at least the maximum of the individual probabilities, and at 
most their sum. Notice that a false assumption of 
independence underestimates the probability of disjunctions 
and overestimates the probability of conjunctions. In a long 
chain of reasoning involving both, it is not at all clear that these 
offsetting errors would be easy to detect and isolate. 

I l l REQUIREMENTS FOR 
PROBABIL ITY-BASED REASONING 

Where decisions or predictions must be made on the basis 
of partial information, and where there is enough information 
to tell what outcomes are most likely given what is known, 
probability theory can be used to make these decisions and 
predictions accurately and responsibly. The mechanism is 
available, it is well-defined and well-understood, it gives good 
results, and it is the only mechanism we have with those 
properties. These facts alone show that probability has a place 
in reasoning in uncertainty, and henceforth I will take that as 
established. But probability-based reasoning takes more than 
arithmetic. This section looks at some of those needs and their 
consequences for AI systems. 

A. Where Do the Numbers Come From? 

Any application must consider where the system gets its 
data. There are two possiblities: a system may use known 
probability values and distributions, or it may begin with initial 
probability estimates that are refined in the light of further 
evidence (in Bayesian terminology, these are called "prior 
probabilities" or "priors"). The first choice gives better results, 
and is easier to implement. Unfortunately, it requires a depth 
of knowledge in the application domain that is almost never 
attainable, and so the second approach is more often taken. 

"Prior probabilities" are not probabilities: they are guesses. 
(The only interpretation under which priors qualify as 
probabilities is the extreme subjective view above, on which 
anyone's level of commitment is a fortiori a probability, but not 
an interesting one, since on this view a science of probabilities 
is impossible and in any case would have nothing to do with 
what is or is not likely to happen.) If the priors are bad 
guesses, results based on them will be bad results, even if all 
other assumptions hold. Designers can deal with this problem 
two ways: use data and experiments to start with good prior 

probability estimates, or validate or train the system to improve 
bad ones. 

Basing priors on data and experiments is straightforward 
and the most reliable course, when it can be done. Where data 
from reasonably representative samples already exist, those 
data are used. Where data dp not exist, classical experiments 
based on the outcome distribution and the predictions of a 
testable hypothesis are designed. For some AI domains, this 
procedure is feasible. The domain for PROSPECTOR, for 
instance, is small and reasonably well understood. We have 
fairly good information on the occurrence rates of different 
minerals, and it is easy to imagine, at least, what it would be 
like to have reliable estimates of joint and conditional 
probabilities over many of the relevant events. Since 
knowledge of conditional probabilities entails knowledge of 
which events are independent of each other, it also largely 
eliminates the need for assumptions like maximum entropy. 

Unfortunately, domains in which this kind of information 
is available are rare. By contrast, if we consider a medical 
domain, the number of possible outcomes is huge, their 
distributions are less well known, their interactions are 
frequently unknown, and reliable data are notoriously hard to 
come by. The number and scope of experiments needed to 
establish such data are overwhelming. In cases such as this, 
some other course must be taken. The usual approach relies on 
expert opinions elicited formally or informally from individuals 
or from panels by any of a variety of strategies. 

There are many reasons to doubt the accuracy of such 
estimates. First, people in general and trained scientists in 
particular are lousy at estimating probabilities. The classic 
studies showing this were published over a decade ago 
(Tversky and Kahneman 1971) (Tversky and Kahneman 1974) 
and many more have followed confirming and extending the 
results (Kahneman, Slovik, and Tversky 1982). Second, even 
supposing the experts on the panel avoid the most common 
kinds of error, they lack the information they would need to 
make accurate estimates. (The problem isn't that the experts 
refuse to give us this information; they don't have it cither.) 
The question is what to do about it. 

Option One: Do nothing. It is a theorem that repeated 
application of Bayesian analysis to a given event yields a 
sequence of priors which converges on the frequency 
probability, however abysmal the original guess. So if we start 
with whatever priors we have and let the system refine them as 
it goes, its results will improve in the course of nature. 

There are three problems with this, (a) The system can 
only improve its estimates if it has independent confirmation of 
the outcome. For a medical system, this independent 
information is often unavailable. (That a patient got well after 
treatment does not confirm the diagnosis, for instance, since 
many treatments help a broad range of problems, and anyhow 
most patients get well no matter what.) Without independent 
information on the outcome the system's estimates will not 
improve. Worse, they may seem confirmed because 
disconfirming instances, although present, go undetected, (b) 
Even if the system improves over time, it starts badly. If we 
care what answers we get, we may not want to tolerate this. (It 
is good if a medical expert system learns ro recommend the 
right treatment; it is less good if it learns by recommending 
wrong treatments that kill half of New York.) (c) Although the 
mathematics guarantees that estimates will converge, it doesn't 
guarantee that they will do so rapidly. As a general rule, 
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estimates converge fairly slowly, and the more inaccurate one 
there are (and the more inaccurate they are), the slower the 
convergence. If the initial priors are bad enough, it may be a 
very long time before the system's predictions get much better. 

Option One A: Do nothing, but report ignorance. Many 
researchers propose ranges instead of point probabilities to 
reflect "second order" uncertainty: wide ranges reflect shaky 
estimates, while narrow ranges reflect more solid ones. 
Dempster-Shafer theory gives way to calculate probabilities 
from these ranges. This approach has the advantage that a user 
who gets an answer with an attached probability of, say, [0.41, 
0.99] can tell that the system really doesn't know, whereas a 
one who gets the same answer with an attached probability of 
0.7 can not. But we have no more reliable guide for setting 
ranges than for setting priors; and a bad answer with a warning 
is still a bad answer. This approach can be combined with the 
steps below for improving the quality of the priors; whether 
and how much improvement will result remains to be seen. 

Option Two: Validate the system's predictions. It may not 
be possible to check a system's judgements against actual 
outcomes, they can be checked against human judgements. 
Comparison against human performance may not give results 
as good as "true" priors would, but it meets any standard that 
could reasonably be expected. But in this context as in any 
other, care must be taken to ensure that validation is not tainted. 

In particular, the system's performance should be 
compared with the performance of several experts (the more the 
better) on the same cases (not just ones that look similar). In 
addition, the experts in question should not know the system's 
design, its basic assumptions (including its priors), what 
questions it asked, what conclusions it reached, or how it 
reached them. In practice, this means that systems cannot be 
validated in the environments in which they would be used: if 
the considered opinions of several experts were routinely 
available, nobody would need the expert system. Finally, 
since the point of validation is to tune the system's priors, this 
phase must be pursued with the attitude that in case of 
disagreement, and in the absence of overwhelming evidence to 
the contrary, the experts are right and the system is wrong. 

Option Three: Train the system. If outcomes are 
independently observable, they can be used to put a system 
through a training phase. This amounts to the "do nothing" 
approach, but pursued "off-line" and with careful supervision 
until there are signs of convergence. Given observable 
outcomes, this lets the mathematics work for the designers, 
while allowing intervention if thrashing values show that a 
particular estimate was so bad that it will take a long time to 
converge. It should be noted, however, that if many factors 
are involved, or if original estimates are very bad, this course 
may require very large amounts of data before responses 
become reliable enough for the system to "go on-line". 

B. What Can the Numbers Tell You? 

The most likely hypothesis is usually not the best 
explanation. The reason for this has to do with the intuitively 
paradoxical fact that a hypothesis which covers half the 
information and ignores (is indifferent to) the rest is more 
probable than one which gives exactly the same explanation of 
the first half of the data and then goes on to explain the rest. 
Recall that the probability of a conjunction is at most equal to 
the maximum of the probabilities of its conjuncts, and only 

reaches that limit when the conjunct with the highest probability 
entails all the others. It follows that more specific hypotheses 
are mathematically guaranteed to have lower probabilities than 
any less specific hypotheses they entail: adding information to a 
hypothesis reduces its probability. Always. Ten out of ten. 

So, consider the following example, once again in the 
medical domain. Suppose (our data) that a patient has a fever, 
a sore throat, white spots on the tonsils, nausea, diarrhoea, and 
vomiting. Now consider two possible hypotheses: (A) the 
patient has strep throat; (B) the patient has strep throat and a 
gastro-intestinal virus. For the above reasons, A is necessarily 
the more probable hypothesis; but B is the better explanation. 

In many cases, we really want the best explanation. This 
means something like, we want the hypothesis that best covers 
the facts while maintaining a reasonable probability. If the 
"answer space" has more than one level of granularity, this is 
different from the most probable hypothesis, because more 
specific explanations are better than more general ones, so long 
as they do not become intolerably unlikely. This is not to say 
that a system which is looking for the best explanation cannot 
use probability-based reasoning to advantage. But it needs a 
more sophisticated answer selection mechanism than "most 
probable hypothesis": whatever else goes on, at the end of the 
calculations, some reasoning takes place - to select the best 
explanation as opposed to most likely hypothesis - which is 
not probabilistic in nature. Hence, pace Cheeseman, even in 
situations which admit of a clear statistical analysis, it takes 
more than just probabilities to reason in uncertainty. 

C. What do the Numbers Cost? 

(Ginsberg 1985) proposes to use probabilities as a limiting 
threshhold to reduce the cost of inference. In particular, he 
suggests setting a threshhold so that once a conclusion's 
probability reaches that limit, it may be taken as established. 
For the sake of argument, say that the limit in question is 0.98. 
Suppose we know the following: anything which is A has a 
probability of 0.99 of also being B: x is A; anything which is C 
has a probability of 0 of also being B; x is C. Now: is x iB1 
The answer, of course, is no. But if the system first finds the 
rule about As and the fact that x is A, giving a probability of 
0.99 that x is B, it will cut off inference there. So the argument 
that using probabilities allows early termination should be taken 
with a grain of salt. The "best" (highest hit rate) hypothesis for 
any rare event is always the hypothesis that it never happens. 
That isn't useful if we are trying to predict, detect, and reason 
about rare events. Non-numerical inference mechanisms can 
stop inference early, for instance using resource limitation (see 
e.g. Donlon 1982); only, the system may miss an answer it 
would otherwise get. Likewise a system that threshholds on 
probabilities can stop early; but it may get the wrong answer. 
For more on threshholding problems, especially with regard to 
the Dempster-Shafer approach, see (Dubois and Prade 1985). 

In addition, the training process may prove more expensive 
than it appears. (Ginsberg 1985) actually goes into detail on 
the process of getting tests to improve the quality of probability 
judgements, so the following remarks will be made in terms of 
his system's behavior. But these costs result from necessary 
steps if the system trains "on-line": any system that counts on 
this must either sacrifice accuracy or pay these prices. Each 
time an inference establishes a probability for a proposition, 
Ginsberg's system records the evidence that was used. Then 
every time new evidence changes a proposition's probability, 
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the system retraces every inference that proposition was used in 
to update the conclusion's probability. Unfortunately, while 
the number of tests is small, none of the system's probabilities 
are reliable. So for most of its early life, the system has to 
recompute the probability for virtually all its inferences every 
time it sees anything. Using cut-offs makes this worse, by the 
way, since then the system really cannot just retrace the proofs 
that went through; it should also recheck those that were 
terminated early, of which no record exists. In effect, this 
means that rather than retracing a known path, it must perform 
the entire inference again from scratch. 

In any case, AI systems rarely perform controlled statistical 
experiments, testing selected observable variables against the 
predictions of a hypothesis. Instead, they face specific 
situations, get information, and reason from it. This means 
that to get the full benefit of their "tests", systems that train 
must analyze every new piece of information to find out which 
of the events they know about this datum may fit. Consider 
such a system when it first meets Fred the Female Flamingo. 
Not only is it meeting a bird that flies, it is meeting something 
pink that flies, something over three feet tall that is pink, a 
female named Fred, and so on and on and on. The 
computational cost of extracting events from data and of 
retracing past inferences should be clear. 

I V W H E R E PROBABIL IT IES DON 'T 
BELONG 

Pace Cheescman and many, many others, not all that is not 
universal is probabilistic. For instance: if, as Cheeseman 
claims, the by now tormented example "Birds fly" really means 
"Most birds fly", then birds don't fly in the spring. In nesting 
season, baby birds outnumber adults. Baby birds don't fly. 
Hence in nesting season, "Most birds fly" is false. By the 
way, we can do even better with "Birds lay eggs," which is 
out-and-out false year round of at least half the population 
(none of the males do). So if Cheeseman is right, anyone who 
says in the spring that birds fly or at any time that birds lay 
eggs is mistaken. This is nonsense. 

"Birds fly" must be decoded with respect to typicallity. If 
typicallity can be modeled by any statistical concept, it is 
category cue validity, not probability (Rosen 1975, Rosch and 
Mervis 1975; Rosch, Mervis, Gray, Johnson, and 
Boyes-Braem 1976). "Birds lay eggs," on the other hand, is 
not statistical at all. It is shorthand for a genuine, accept-no-
substitutes universal - but not for "For all x, if x is a bird, then 
x lays eggs". Instead, it is in a class with the non-universal 
generalizations "Mammals bear young alive" (duck-billed 
platypi lay eggs) and "Reptiles and fish lay eggs" (garter 
snakes and sharks bear live young). By the way, these 
generalizations cannot be translated straightforwardly into 
probability claims counting over species instead of individuals: 
no species either bears live young or lays eggs; only (female) 
individuals belonging to species do. 

The typicality-based uncertainty involved in generalizations 
like "Birds fly" centers on whether an individual has a property 
typical of things of its kind. Another kind of uncertainty, also 
related to typicality, centers instead on the extent to which a 
given property applies to an individual. This is the issue of 
vagueness, and the kind of inferences justified on the basis of 
degree-of-applicability are different from the kinds based on 

either typicality or probability. The difference between 
measure-of-membership and typicality is subtle but real. 
Typical birds fly. But how typical a bird Tweety is does not 
measure how well Tweety flies or how even how likely Tweety 
is to fly (hummingbirds are atypical in many ways, but 
spectacularly good fliers). 

More importantly, because more often confused, 
degree-of-applicability does not work like probability. 
Consider the following two claims about Oscar the Ostrich: 

(i) Oscar is a (typical) bird at 0.6 
(ii) Oscar is male at 0.5 

Claim (i) says that Oscar is not very birdlike (ostriches aren't). 
It is the sort of claim fuzzy set theory was originally developed 
to handle; it tries to measure the extent to which an individual 
falls in the bounds established by a fuzzy concept. Claim (ii) is 
a probability claim, reflecting that the system doesn't know 
whether Oscar is male but does know that Oscar is a bird, and 
that half of all birds are male, making the chances that Oscar is 
male 50-50. That is not to say that Oscar is half male: the 
system can consistently hold (ii) and also hold that any given 
bird is either completely male or not at all. The claims look 
superficially alike, but they cannot be taken the same way: (i) 
says that Oscar is not a very typical bird; (ii) docs not say that 
Oscar is not a very typical male, (i) does not really reflect 
incomplete information at all: it reflects a fundamental fact 
about how Oscar relates to a vague concept. In case (ii), the 
information is incomplete and can be completed by a single 
experiment (look at Oscar and see). If no difference in 
representation reflects this basic difference in content, the 
system will reason incorrectly a good part of the time. 

Translations of common generalizations into probabilities 
do not preserve truth values, and translations of degree-of-
applicability claims do not preserve inferences. So neither 
preserves meaning. Hence wherever else they can be used, 
probabilities cannot be used to understand generalizations and 
expressions of uncertainty in understanding natural language or 
in any system which gets its data in natural language. Natural 
language understanding requires inference in contexts of 
uncertainty all over the place, including inference from 
previously processed non-statistical generalizations. Hence 
there are instances of inference in contexts of uncertainty which 
are not amenable to analysis as probabilities. 

v CONCLUSIONS 

Probability theory is an important tool for many AI 
applications involving uncertainty. Where outcome likelihood 
is at stake, and where the necessary data are available, it is the 
best known tool. But it is also hard. It requires a detailed 
analysis and understanding of the domain, and either a great 
deal of data or an extensive validation procedure, if the answers 
obtained are to be reliable. There are no short cuts. 

In any case, statistics cannot provide a panacea for all 
problems of uncertainty, generality, vagueness, and ignorance. 
No mathematical model however rigorous can be expected to 
give reasonable answers unless the situations to which it is 
applied conform to its underlying assumptions. The existence 
and prevalence of non-statistical generalizations shows that 
non- statistical models uncertainty must also be investigated. 
The existence of a well-defined, long-studied, clearly 
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articulated theory argues strongly for its use — but not for its 
extension, willy-nilly, into other fields. Sometimes one theory 
is developed before another because the first makes sense and 
the second doesn't; other times, as for instance with physics 
and biology, we make progress on the easier problem first. 

Ultimately, AI systems which reason in uncertainty need to 
combine these modes of uncertainty. In particular, we need to 
distinguish representations of probabilities, fuzzy membership, 
and generalizations based on typicality. One such approach 
would represent the first two as functions which take properties 
and yield either numbers or second order relations, and 
represent the third using some form of default reasoning (I 
have argued elsewhere for a simple monotonic extension to 
first order logic; see Nutter 1983). Axioms and rules can then 
make use of information when and as it is available, without 
misrepresenting that information and so making wrong 
inferences from it. Obviously this scheme is Utopian; so what 
can we do meanwhile? Some application domains are 
particularly amenable to one of these forms of inference, and 
can do without the others; in these cases, we make choices, 
hopefully understanding the limitations and trade-offs. On the 
science front, we can develop as many models as we can, with 
as close attention to the phenomena to be modeled as possible. 
And meanwhile, we can remember that given the diverse kinds 
of reasoning involved, anyone who claims to have the one and 
only key to reasoning in uncertainty is almost certainly wrong. 
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