
FROM APPLICATION SHELL TO KNOWLEDGE ACQUISITION SYSTEM 

Gary S. Kahn 
Carnegie Group Inc. 
Pittsburgh, Pa. 15219 

ABSTRACT 

The TEST (Troubleshooting Expert System Tool) 
architecture greatly aided the development of TDE 
(TEST Development Environment). In particular, the 
choice of a schematic as opposed to rule-based 
representation led to a knowledge base characterized 
by the use of domain-familiar concepts, and sufficient 
conceptual structure to facilitate several TDE features, 
including knowledge base development through both 
directecfinterviews and the direct manipulation of icons; 
multiple knowledge-based browsing strategies; heuristic 
error analysis; and easily-unaerstooa debugging 
techniques. 

1. Introduction 

TEST1 (Troubleshooting Expert System Tool) is an 
application shell, providing a domain-independent 
diagnostic problem-solver together with a library of 
schematic prototypes. These prototypes constitute the 
object types and the structure required by each domain-
specific TEST knowledge base. Several TEST 
applications, including those aimed at diagnosing 
engine problems, VAX/VMS performance, and factory 
floor machine failures are currently in development or 
field test. 

Application shells allow developers to focus on 
knowledge acquisition, rather than on knowledge base 
design and problem-solving control issues of typically 
greater complexity. However, it is still a time-consuming 
process to interview experts and code a knowledge 
base. For this reason, several systems, including 
ROGET [1], ETS [21, and more recently, MORE [4], and 
SALT [6], nave looked at ways to interrogate experts 
under the assumption that a chosen underlying 
architecture can solve the problems of interest. 

TDE (TEST Development Environment) similarly 
enables knowledge engineers and trained domain 
experts to interactively build knowledge bases that can 
be used by TEST. TDE provides several advantages in 
comparison to MORE. In particular, it uses a problem-
solving strategy that is more comprehensible to 
troubleshooting technicians in the manufacturing and 
customer service domains. It also addresses the need 
for knowledge acquisition systems to conform to the 
domain expert's desire to provide information as it 
comes to mind. Lacking this capability, MORE struck 
users as rigid and tedious in its interrogation technique. 

1TEST is an internal name used at Carnegie Group Inc. TEST is 
implemented in Knowledge Crafttm 

TDE knowledge bases represent the causal 
consequences of component and functional failures 
(failure-modes), in a manner similar to Heracles [3], as 
well as diagnostic methods, including the effective 
ordering of diagnostic tests. TDE acquires knowledge 
through automated interviews with domain domain 
experts. However, as a mixed-initiative workbench, TDE 
enables developers to provide information as they wish, 
while at the same time offering guidance and direction 
as it is needed. A number of other tools that aid in 
knowledge base development and modification are 
provided 

The following sections examine three facets of 
TDE: first, core concepts and the way they are used to 
build a knowledge base; second, knowledge-base 
modification; and finally debugging support. Each 
section shows how TDE design ana development was 
facilitated by features of the TEST architecture. 

2. Core Concepts 

Knowledge acquisition is largely a matter of 
mapping the Knowledge which supports expert decision 
making into the representations required by a problem-
solving system. When there is a conceptual 
correspondence between these representational units 
and the terms with which experts understand their task 
and domain, mapping becomes a straightforward 
operation. In addition, conceptual correspondence 
makes direct-manipulation techniques readily available, 
and permits the system to easily guide users engaged 
in knowledge base development. 

In the following, it is shown that TEST concepts, as 
well as conceptual relations, are familiar within the 
troubleshooting domain, and, as a result, 
communication between TEST and system developers 
is facilitated. 

2 .1 . TEST Concepts 

Unlike rule-based diagnostic systems that have 
evolved from the Mycin perspective, TEST uses a 
semantic network of schematic objects, or frames, to 
represent its key concepts. An attempt has been made 
to match these concepts to the ones operative for most 
troubleshooting technicians and many design 
engineers. Most critical is the failure-mode. A failure-
mode represents a deviation of the unit under test from 
its standard of correct performance. Failure-modes are 
arranged in a hierarchy. At the top of the hierarchy are 
observable failures of the entire unit, e.g. hot air out of 

Kahn 355 



an air conditioner. At the bottom of the hierarchy are 
failure-modes of individual components, e.g. a broken 
cooling unit. Intermediate failure-modes typically 
represent functional failures which are causal 
consequences of component failures. Many levels of 
intermediate failure-modes are common. 

Failure-modes can be confirmed or rejected based 
on particular outcomes of tests. Tests are distinct 
nodes in the network. Other conceptual objects within 
TEST are decision-points, test-procedures, repair-
procedures, rules, and parts, among others. [5] Each 
of these concepts has an obvious mapping into the 
troubleshooting domain. Rules in TEST represent a 
variety of contingent actions rather than evidence/belief 
propositions alone, as is typical in Mycin-like diagnostic 
systems. 

2.2. Using Direct Manipulation 

TDE provides a straightforward mechanism for 
creating knowledge bases. Within a workbench 
environment, icons representing TESTs domain-familiar 
objects are easily moved into a representation of the 
knowledge base. A failure-mode icon, for instance, may 
be manually linked to another indicating that it is a 
cause of the latter problem. 

Networks built in this way may also be edited as 
copy, move, and delete operations are available. Icon 
placement invokes prompts from TDE for information 
that requires keyboard entry, such as failure-modes 
names. Icons representing failure-modes and other key 
objects are located along the right edge of editing 
windows [see figure 2-1 1 through which the knowledge 
base may be viewed. While experienced users tend to 
use direct manipulation of graphic items as the 
preferred method, novice users of TDE rely heavily on 
system-directed interrogation techniques, described 
further below. Developers may move freely between 
system- and user-directed modes of operation. 

Since the mapping between information provided 
and the underlying representation is direct, the system 
avoids the difficult problem of interpreting user intent 
when a mapping is required between inputs and internal 
representations. As the objects manipulated are the 
very objects that will appear in the knowledge base, 
there is similarly no issue of the developer being 
mystified as to the results of providing information to 

A key problem for direct-manipulation techniques is 
that of determining and displaying relevant objects and 
object relations in a manner that s focused around the 
needs of the users task. Within TDE, TEST provides a 
natural tripartite representational structure for 
constraining the display and manipulation of the 
knowledge base. 

Figure 2-1: Screen Layout for TDE 

356 KNOWLEDGE ACQUISITION 



Primary, secondary, and tertiary information can be 
distinguished within a TEST knowledge base. The 
primary core of a TEST knowledge base is a failure-
mode tree, as described above. Other secondary 
information in the knowledge base - including tests, 
repairs, and rules associated with the selected failure-
mode - is clustered around each failure-mode. At the 
tertiary level, each of these objects has itself numerous 
attributes providing further descriptive and control 
information. 

TDE takes advantage of this tripartite division. A 
global view or window provides a filtered perspective of 
the knowledge base. Here failure-modes and the 
causal relations between them are displayed. A second 
window gives the user a local perspective into the 
secondary nodes clustered around a selected failure-
mode. Finally, objects selected within these windows 
can be displayed with their full attributive detail in a third 
window. (See figure 2-1) 

Figure 2-1 shows three views into a knowledge 
base regarding air condition failures. In the global view, 
the failure-mode hierarchy is displayed. The hot-air 
failure-mode is shown to be due-to low-freon or a 
broken-cooling-unit. The hot-air failure-mode has been 
selected for further examination. Consequently, 
secondary information local to it is displayed in the 
lower right. It is shown to have an associated test. If 
other secondary information, such as repairs or rules, 
had been associated with the failure-mode they would 
be displayed here as well. All attributes of the selected 
object are displayed in a structured text-editing window 
to the lower left. The knowledge base is extended 
simply by moving more icons into the appropriate 
window and/or by responding to prompts associated 
with attribute fields displayed in the text-editing object 
window. 

2.3. Guiding Novice Users 

TDE also exploits the inherent tripartite structure of 
a TEST knowledge base to provide guidance to 
developers. Each perspective delineates a natural line 
of interrogation. Before asking detailed questions, TDE 
will first flesh out the overall structure of the knowledge 
base as reflected in the global window. It will then seek 
to fill in detail at the level reflected in the local view. 
Finally, as necessary, TDE will cycle through the 
attribute slots of each object, completing the full picture. 
For example, TDE would have asked first about 
potentially observable air conditioner problems that 
would signify some kind of malfunction. For each of 
these, it would attempt to find out their possible causes, 
as they would be considered by a technician engaged in 
troubleshooting the initial concern. For each of these 
failure-modes TDE would inquire about associated 
diagnostic tests and repairs. It would then attempt to 
get additional attributive information on the reported 
failure-modes, repairs, and tests, as required. 

As information is provided in response to prompts, 
TDE represents it graphically. Thus, the user can both 
see the system's interpretation of the information 
provided and follow the developing context in which 
further questions are asked. 

3. Knowledge-Base Modification 

In addition to facilities for building up a knowledge 
base, as described above, TDE offers further editing 
support. As developers make enhancements to pre-
existing systems, they need special tools to help avoid 
errors which frequently lead to flawed knowledge bases. 
Typical errors include redundancy, incompleteness, and 
inconsistency. TDE helps by providing the user with the 
ability to browse quickly for information already in the 
knowledge base, and by detecting certain kinds of hard 
or suspected errors. 

The explicit representation of causal and 
classificatory information in TEST enables approaches 
that would be precluded by classical rule-based 
diagnostic systems. 

3.1. Browsing 

Object classification, relational networks, and the 
maintenance of back-pointers within TEST enables 
multiple search techniques as well as efficient retrieval. 
As a result, TDE can offer developers string search, 
network browsing, and schematic pattern matching. 
Browsing facilities, such as these, are required when 
the user wants to confirm that a new (to be added) 
failure-mode is not already in the knowledge base, find 
a similar failure-mode which can be copied and edited 
to create the new object, or simply understand the 
content of what is already there. In a large knowledge 
base, it is impractical to browse without a means of 
directing attention to relevant segments of data. 

Within TDE, string search is used to match against 
the names of knowledge base objects. Search of this 
kind is constrained by allowing the user to specify the 
type (class) of object (failure-mode, test, etc.). Network 
browsing is used to examine objects within the 
knowledge base that are in a specified relation to a 
specified object (e.g. 'has-test Voltage-meter). Pattern 
matching is used to find objects with attribute values 
specified in the search template. In addition, inverse 
links maintained in the knowledge base enable TDE to 
quickly point users to parts of the knowledge base that 
may be impacted by their modifications. 

3.2. Error Warnings 

When developing a knowledge base, the user may 
unknowingly duplicate a failure-mode by using a 
different name to refer to one already known. While this 
can't be entirely prevented, the availability of richly 
structured information in a TEST knowledge base 
enables TDE to use heuristics to identify suspects. 
TDE, for instance, monitors for failure-modes which 
have similar causes and consequents, or those that 
share the same test and repair procedure. Isomorphic 
nodes within the knowledge-base network are typically 
unexpected and thus constitute grounds for suspicion. 

TDE monitors for several other kinds of errors, as 
well. Of particular interest are objects that are not 
properly linked into the knowledge base. In addition, 
failure-modes without causal, test, or repair information 
are noticed. Violations of type restrictions associated 
with the attribute slots of each TEST object are also 
flagged. 

Kahn 357 



4. Debugging Support 

The TEST knowledge base is used directly by the 
diagnostic problem-solver (the TEST interpreter). As a 
result, debugging is facilitated. For one, it is easy to 
move between editing and execution, as it is 
unnecessary to compile the knowledge base into a 
special form. Secondly, it is easier to step, trace, 
modify and explain the program in respect to the use of 
the knowledge base than it would be if compilation into 
a runtime representation had been required. 

In order to ease debugging by non-programmers, 
the TEST problem-solver is designed to use the 
knowledge base in much the way an informed 
technician would proceed with fault-isolation. This 
again is made possible by structuring problem-solving 
around the high-order concepts represented in the 
knowledge base. The troubleshooting task proceeds by 
focusing on an observed or suspected failure-mode. An 
attempt is made to determine whether the failure-mode 
has occurred in the unit under test. If the failure-mode 
has occurred, or if its status remains unknown, then the 
possible causes of the failure-mode are investigated to 
see if they have occurred. The search process is 
guided by an underlying representation of the order in 
which diagnostic experts explore possible causes for 
identified failure-modes. Heuristic rules may be inserted 
in the knowledge base to modify search behavior as 
runtime information is acquired. 

4 .1 . Debugging Techniques 

In debugging knowledge-based systems, it is 
desirable to have access dunng execution to everything 
the system has already concluded or come to know, as 
well as to its current hypotheses, planned tests, and 
queries. This allows the developer to notice when the 
system failed to conclude inferable information, is 
preparing to determine needless information, or acted 
incorrectly on known information. The TEST interpreter 
can provide this information on demand as the entire 
knowledge base is at its disposal. 

In order to get at information at the right time, it is 
necessary to allow breakpoints at conceptually relevant 
junctures. Within the TDE environment, it is desirable to 
pause as particular failure-modes become the focus of 
attention. Since the problem-solver uses the knowledge 
base directly, developers can set breakpoints simply By 
toggling desired failure-modes. 

5. Conclusion 

The TEST architecture greatly aided the 
development of TDE. In particular, the choice of a 
schematic as opposed to rule-based representation led 
to a knowledge base characterized by the use of 
domain-familiar concepts, and sufficient conceptual 
structure to facilitate several TDE features. While much 
of TDE has been implemented, there is still much to do. 
During its continued development, users will be 
evaluating evolving prototypes. Because knowledge-
engineering needs cannot be fully predicted, we expect 
to learn of many new requirements for TDE and 
perhaps TEST. 

6. Acknowledgments 

Edwin H. Breaux, Peter DeKlerk, Robert L. Joseph, 
Al Kepner, and Jeff Pepper contributed to the 
development of ideas presented in this paper. Many 
others have also been involved in the implementation of 
TEST and TDE. 

REFERENCES 

1- Bennett, James S. "Roget: A Knowledge-Based 
System for Acquiring the Conceptual Structure of a 
Diagnostic Expert System". Journal of Automated 
Reasoning 1(1) (1985). 

2. Boose, J. Personal Construct Theory and the 
Transfer of Human Expertise. Proceedings of the 
National Conference on Artificial Intelligence, Austin, 
Texas, 1984. 

3. Clancey, William J. "From Guidon to Neomycin and 
Heracles in Twenty Short Lessons". Al Magazine 7(3) 
(Summer 1986). 

4. Kahn, G.S., Nowlan, S., McDermott, J. MORE: An 
Intelligent Knowledge Acquisition Tool. Proceedings of 
International Joint Conference on Artificial Intelligence, 
1985. 

5. Kahn, G.S. TEST: A Model-Driven Application Shell. 
Proceedings of AAAI-87,1987. 

6. Marcus, S., McDermott, J., Wang, J. Knowledge 
Acquisition for Constructive Systems. Proceedings of 
International Joint Conference on Artificial Intelligence, 
1985. 

358 KNOWLEDGE ACQUISITION 


