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ABSTRACT 
Designed for an operational prospect, the C H A R A D E system 

automatically learns consistent rule systems from a description language, a 
set of axioms reflecting the language semantics and a set of examples. The 
technique advocated below is based on a "generate and test" mechanism 
where the description space is explored from the more general to the more 
specific descriptions. Rules and properties to be obtained are translated into 
exploration procedure constraints thanks to formalization of the learning set 
wi th two Boolean lattices.The underlying theoretical framework allows to 
both just i fy the heuristics conventionnaly used similarity based-learning and 
to introduce global properties to be satisfied by a rule system during its 
construction. 

1. INTRODUCTION 
In a pragmatic prospect, that of knowledge base 

construction and maintenance, the global properties of the rule 
system play a central part. They will assist the specialists at the 
time of transfer of expertise to prevent errors and possibly 
correct them. Yet there is a major gap between individual rule 
juxtaposition and a complete and efficient usable rule system. 
CHARADE proposes to bridge that gap. It has been designed to 
detect logical or statistical regularities existing in a set of 
examples and generate production rule systems which, 
reflecting such regularities, can operate on commercial inference 
engines. The method presented is related to the "generate and 
test" techniques developed by Buchanan (1) and Michalski (3), 
the description space being explored from the more general to 
the more specific descriptions. However, instead of considering 
only one ordering relation, as it is usually the case in learning, 
we shall distinguish two ordering relations, the first being 
linked to the inclusions of subsets of the learning set, the other 
to the logical implications on the description space. In fact, these 
are two aspects of the generalisation notion, and even if they are 
complementary and indissociably linked together, they cannot 
be reduced to one another. Each can be formalised with a 
Boolean lattice. Taking simultaneously into account these two 
aspects allows to translate the properties of rules and rule 
systems to be constructed into constraints for the exploration 
procedure, which considerably limits the number of vertices to 
be explored. Such a formalisation of learning with two Boolean 
lattices establishes a theoretical base for the learning heuristics 
used in classical systems and still allows the introduction of new 
properties. Amongst such properties, it is possible to translate 
the rule system semantic characteristics, as structuration and 
nature of rules - logical or approximate - as well as the relative 
relevance of descriptors. Last, completeness, consistency and 
minimality of the rule systems obtained can be proved. After a 
precise demonstration of all that differenciates a rule system 
from a conglomerate of individual rules, we shall study the 
detail of techniques used to generate rule systems and see how 
the rule system properties can be translated into this formalism. 

2. RULE SYSTEMS 
Modularity of production rule systems must not be 

deceptive. It is not enough for the rules, individually to make 
sense, they must also, as a whole, meet operational criteria as 
lack of redundancy and cycle, consistency, completeness, etc. 
To insure that such criteria are verified knowledge acquisition 
assistance tools are built and it is to be able to rid from such 
verifications that we hope to create systems to learn rules from 
examples. However, in most cases rule learning systems are 
limited to the acquisition of concept description from examples 
and counter-examples. To be convinced of it let us study 
classical similarity based learning system procedure: being a set 
of examples, E(c l )= {e l ,e2 , . . . ,en) and a set of 
counter-examples, CE(e1 )= {ce 1 ,ce2,... ,cep) of a concept cl a 
generalization is looked for: gl of el,e2,...,en discriminating 
cel,ce2,.. .,cep . When gl has been found, the rule gl —► cl 
is generated. 

In spite of the difficulty to introduce a disjunction in the gl 
generalization, the same operation must be done for all the 
concepts to be learnt. Moreover, once defined concepts cl and 
c2, to define a concept c3 so that cl&c2 —► c3 , descriptors cl 
and c2 must be introduced in the example descriptions, which 
means that rule chainings can be learnt only if they are 
predetermined and fixed. Thus, rules are isolated from one 
another during acquisition. 

Reversely, CHARADE does not refer to the notion of 
example or counter-example for separated concepts; it considers 
globally the set of examples, each of them being described by a 
logical formula, and explores the space of the elementary 
descriptors present in the examples conjunctions. Be 
d1 &d 2 &- . & d n one of those, CHARADE looks for descriptors 
f1, f2,••, fp, correlated to the set of examples covered by 

d 1 &d 2 &. -&d n , then it generates rule d 1 & d 2 & . . . & d n - » f q , 
..., f m , eliminating amongst f ] , f2, ..., fp descriptors f i, 
already derived from d 1 &d 2 &. -&d n through the rule system. 

3. DETECTION OF REGULARITIES 
It wi l l be considered that from now on, an example is 

described by a descriptor conjunction. With an example E, we 
shall call d(E) description of E: d(E) = d 1 &d 2 &. . .& dn 

Each descriptor di wi l l be originally assumed to be either 
an atomic proposition or the negation of an atomic proposition. 
The latter restriction may be removed (Cf. (2)) and it may be 
then poss ib le to process any f o r m of 
(<attribute><selectorxvalue>) representation, integrating the 
semantical properties of attributes and selectors in the learning 
process. 

With the restrictive assumptions made above, it is now 
easy to carry out the elementary operation in the field of 
learning, that is generalization: E1 and E2 are two examples 
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with d(E1) = a 1 &a 2 &. . .& an and d(E2) = b 1 &b 2 &. . .& b m . 
Let us call gen(E1, E2) the least generalization of E1 and E2 . If 
semantic relations between atomic descriptors present in these 
descriptions are not known, gen(E1, E2) consists of the 
conjunction of common descriptors of E1 and E2.More formally 

gen(E1,E2) = &d such that de 
Example: let us assume that: 
d(E|) = blue eyes & tall & fa i r hair, 
d(E2) = blue eyes & short & red hair 
It is then easy to calculate gen(E 1 , E2) = blue eyes 
If now the learning set is represented by a function TR 

associating to each descriptor d the set of examples containing d 
in their description, to say that blue eyes is a generalisation of 
E 1 and E2 is easily translated, it means thats {E 1 ,E2} (blue 
eyes). The inclusion relation introduced here translates the 
subsumption of a set of examples under a concept, this can be 
expressed by a function SUB : SUB(E) = {d such that 
EcTR(d)}. The two functions TR and SUB allow to go from 
the description space to the learning set and from the learning set 
to the description space. Now, combining the two functions one 
can associate to a description D the set of descriptors 
TR(SUB(D)) = such a s a n d 
thus, generate directly a production rule. The method that we 
advocate is based on this principle. As it does not refer to a 
preferential set of examples, the notion of example and 
counter-example become void of sense, the category of an 
example is only one descriptor among others. Moreover, this 
method generates all the logical correlations and thus allows to 
detect rule chainings. However, among those correlations, some 
are useless, others are accidental, the rest of this paper deals 
with the description of an exploration procedure limited to 
descriptions D likely to generate an interesting rule. 

As the following statements might be very abstract, we 
shall illustrate them with an example drawn from (4) and 
modified to meet the requirements of this presentation. This 
example only intends to give an intuitive content to our 
presentation; it consists of the description of 9 individuals 
described by 5 attributes each: Size, Hair colour, Eye colour, 
Complexion and Class: 
el= (size=sh<tt)&(haii*fair)&(eyes=bto 
c2=(sizc= l̂)&(hair=fair)&(eycs=brown)&(cx)mplexion«matt)&(class«-) 
e3= (size=taU)&(hair*red)&(eyes«M 
©4=(si2c=short)&(hair=brown)&(cyes=bluc)&(complcxion=matt)&(class=-) 
c5= (size = tall)&(hair*brown)&(eycs=bhie)&(complcxion=pale)&(class»-) 
e6=(sizes4aU)&(haii*fair)&(eyes=blue)&(c^ 
e7=(size=tall)&(haii^brown)&(eye^ 
e8=(size=short)&(haiî fair)&(cycs=brown)&(complcxion=maa)& 
e9= (size=tall)&(hair=fair)&(^ 

The learning set can easily be represented by function TR: 
TR((size=tall))«(e2 c3 c5 e6 c7 c9), TR((size=short))=(el c4 c8), 
TR((hair=brown)=(e4 e5 e7), TR((hair=fair)Mel e2 e6 e8 e9), etc. 

Thanks to this representation the set of training instances 
covered by a conjunction of descriptors, for instance 
(size=short)&(hain=fair), is automatically given by the intersection of 
the set of training instances covered by each term of the 
conjunction. Also, for disjunction, the union of sets are 
sufficient. So we obtain TR((size=short)&(hair=fair)=(el e8) and 
TR((size=short)v(hair=fair))«(cl c2 e4 e6 e8 c9) 

Once function TR has been defined, it is very simple to 
obtain function SUB: SUB(E) = {d such that 

In our example it becomes: SUB((el e4 e8))={(size»short)}, 
SUB((e4e5e7))={(hair=brown),(class«-)} etc... 

In accordance with what we had announced above, we 
should generate, among others the following rules: 

sizeshort -> size=short, hair=brown - hair=brown & classe=, and 
hair-brown & eyes=blue -► hair=brown & eyes«blue & class=-. 

However such rules comprise many redundancies which 
must be eliminated. To do so the Boolean lattice structure of the 
set of subsets of the descriptors set is used and function IMP is 
created to describe the set of non trivial implications derived 
from a descriptor: 

IMP(D) -SUB(TR(D)) -

We have then IMP((hair=brown)&(eyes=bIue)) = 
SUP(TR((hairssbrown)))* {(hair=brown), (class=-)},and, 
SUP(TR((cycs»bluc)))« {(eyes=blue)}. 
We can also obtain: IMP((hair=brown)>={(class=-)} and 

IMP((eyes=blue))-0. 
The mathematical properties of Boolean lattices allow to 

simplify this formula into : 
IMP(D) - SUB(TR(D)) -

Therefore we could construct rules on the pattern S 
IMP(S). However, redundancies would remain. To be 
convinced of it let us note that 
IMP((hair=fair)&(eyes-blue))= ((complexion=pale),(class=+)}, and 
IMP((size=short)&(complexion=pale))= {(hair=fair),(eyes«blue),(class=+)} 
so we ought to have simultaneously the two following rules: 
(hair=fair)&(eyes=blue) -► (complexion=pale)&(class*+) 
(size=short)&(complexion«pale) -> (hain=fair)&(eyes=blue)&(class=+) 

Now this second rule is obviously redundant, as when it is 
trigered the first one must be trigered too. Such redundancies 
come from the implication transitivity. We free ourselves from it 
with a transformation x which demonstrably maintains all the 
properties of the rule system (Cf. (2)). In our example 
transformation x would tranform the second rule into: 

(size=short)&(complexion=fair) - (hair=fair)&(eyes*blue) 
After the transformation it is possible to generate, for each 

description, rules of the type S -> x(IMP(S)). The rule system 
so established reflects all the logical relations between 
descriptors. In that way it is complete. Moreover, one can prove 
that it is minimal (Cf. (2)). Each rule plays a part and, if 
eliminated, it diminishes the deductive power of the rule system. 
For instance, a few rules obtained with the last example are 
shown below : 
If hair = red Then class = +, eyes = blue, size = tall. 
If hair = fair, eyes = blue Then class = +, complexion = pale. 
If size = short, eyes * brown Then complexion = matt, hair = fair. 
If size = short, complexion = pale Then hair = fair, eyes = blue. 
If eyes = blue, size = tall Then complexion = pale. 
If hair = brown Then class = -. 
If eyes = brown Then class = -. 
If complexion - matt Then class = -. 

The function x o IMP, that we shall name RU, is able to 
constitue a set of rules, this remains to be built and so for all the 
description space. This is the subject of the next sub-section. 

4. RULE CONSTRUCTION 
The first way to build RU would be to explore completely 

all the description space. Yet a procedure based on this principle 
would be cumbersome, as the calculation time would be 
proportional to the number of possible descriptions. But as 
descriptions for which function RU is not nil are the only ones 
of interest as being the only ones to lead to rules, it is sufficient 
to determine a-priori nullity criteria for that function to curb the 
exploration procedure. 

First of all, one can note that it is enough to limit oneself to 
the conjunctions of descriptors, in fact: if and 
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only if and as is equivalent 

to and now as all the rules are generated, if the 

rule D1vD2->d was to be present, the rules and 

would be present too and this would make the rule 
useless. The study of all descriptions is then the study of the 
descriptors conjunctions. As the set of descriptors conjunctions 
is isomorphic to the set of parts of the set of descriptors, it can 
be represented by a Boolean lattice which properties are used to 
prove theorems predicting the uselessness of a description D, 
that is the nullity of RU(D). 

More precisely, the description space is explored from the 
more general to the more specific. Thus, if there are three 
descriptors, d1, d2 and d3, the description space wi l l be 
explored in the following order : {0, d1, d2, d3, d1&d2» 
d 1 & d 3 , d 2 & d 3 , d1&d2&d3}. To avoid examining all the 
conjunctions of descriptors, the useless descriptions are 
characterized : We shall say that a description D is useless if 
RU(D) is nil and if all descriptions D' more specific than D 
verify also If a description verifies such a property 
neither this description, nor the more specific descriptions 
derived from it wi l l be explored; it wil l then be possible to 
considerably reduce the space to study. Now, one can formally 
demonstrate that the properties of rules and rule systems allow 
to characterize the useless descriptions. To make the 
presentation more simple, let us define a predicate US to 
characterize the uselessness of a description: US(D) D is 
useless. As regards the proof of these properties refer to (2). 

4 .1 . Properties of rules 
Let us give first, the translation of some rule properties: 
Theorem 1: For all descriptions D1 and D2. 

and (D,&D2) D{ US(D,&D2) 
Intuitively, this means that when the descriptor d is 

logically derived from description D1 that is when then 
it is not necessary to study the description D2 = D,&d&.. as 

Theorem 2: For all descriptions D1 , D2 and D3, 
TR(D1&D2) TR(D1&D3) US(D1&D2&D3) 
In other words, this theorem stipulates that if the set of 

examples covered by the description D&d1 is included in the set 
of examples covered by D&d2 then it is not necessary to study 
the descriptions D&d 1 &d 2 &. . as they wil l not tell anything 
new. 

4.2. Rules systems 
These theorems are fundamental. They insure the technique 

feasability, but they are not alone. Other theorems are related to 
the properties of the rule system. Here, as an example, are a few 
of the characteristic properties of a rule system as they may be 
introduced in CHARADE to define the exploration procedure 
parameters: 

- Goal of the rule system: disease diagnosis, determination 
of remedy etc. 

- Structure of the rule system: rules that go from the 
symptom to the disease, from the disease to the type of 
problem, the remedy and the potential danger. 

- Minimum number of examples to be covered by a rule 
premise. Thanks to this coefficient it is possible to control the 
ill-effects due to noise: a rule that would be verified by a single 
example could not be generated. Thus, a parameter v is 
introduced so that any description D covering a number of 

examples smaller than v, that is such as be 
a-priori nil for RU, and so no rule could be generated. 

- Maximum number of descriptors present in a rule 
premise. 

- Descriptor relevance: this characteristic allows, 
heuristically, to eliminate a-priori rules which do not make 
sense. In fact, there are descriptors which, per se, have no 
meaning but which, in conjunction with symptom descriptors, 
l imit their field. Thus, considering an expert system in 
agronomy, the optimum temperature or the level of humidity 
cannot lead by themselves to a conclusion. This would be 
absurd. Nevertheless, in conjunction with other descriptors, 
such as the colour of spots on the leaves, they can be favorably 
introduced in the rules. 

- Example coverage: this is the generalisation of a heuristic 
used by Michalski (3). It consists in stopping the exploration as 
soon as a number N of rules cover the examples and conclude 
as to the final condition. 

- Class partition: in the same spirit, it is possible to 
determine the minimal proportion of examples in the learning set 
covered by a class d and a rule This allows to introduce 
disjunctions in the rules and at the same time to avoid having too 
specific rules covering one example only. 

- etc. 
Al l these properties give rise to a set of parameters which 

characterize the rule system taken as a whole and give a formal 
base to the various deletions made in the process of exploring 
the description space. Actually, one should note that all the 
heuristics are parameterized by the user and that the adjusment 
of such parameters depends as much on the properties of the 
system of rules to be generated as on those of the learning set. 
Thus, if a classification system must be created and that the 
number of examples is large, a high coefficient v wi l l be 
introduced whereas if there is only one proptotypical example in 
each class, we shall necessarily have v=0. 

5. CONCLUSION 
CHARADE has been implemented on Macintosh Plus. 

Programmed in Le„Lisp, it was tested in several fields, from 
tomato pathology to first call at bridge, classification of 
archaeological objects and galaxy recognition. Running time is 
reasonable (approximately 45 minutes in the interpreted version 
for 43 examples and 116 Boolean descriptors) and the space 
explored is sufficiently limited to leave room for expectations. 
Moreover, as regards classification, the system returns the 
examples that it has not been able to classify, which allows a 
feed back on the description language. Also, the rule 
construction technique allows to take into account noise in data 
to generate approximate rules using certainty factors (Cf. (2)). 
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