
Network Learning on the Connection Machine 

Guy Blelloch 
M.I.T Artificial Intelligence Laboratory 

545 Technology Square 
Cambridge, Massachusetts 02139 

Abstract 
Connectionist networks are powerful techniques, inspired by 

the parallel architecture of the brain, for discovering intrinsic 
structures in data. However, they are not well suited for im­
plementation on serial computers. In this paper, we discuss the 
first implementation of a connectionist learning algorithm, error 
back-propagation, on a fine-grained parallel computer, the Con­
nection Machine. As an example of how the system can be used, 
we present a parallel implementation of NETtalk, a connectionist 
network that learns the mapping from English text to the pro­
nunciation of that text. Currently, networks containing up to 
16 million links can be simulated on the Connection Machine at 
speeds nearly twice that of the Cray-2. We found the major im­
pediment to further speed-up to be the communications between 
processors, and not processor speed per se. We believe that the 
advantage for parallel computers will become even clearer as de­
velopments in parallel computing continue. 

1 Introduction 
Massively parallel, connectionist networks have undergone a re­
discovery in artificial intelligence and cognitive science, and have 
already lead to broad application in many areas of artificial in­
telligence and cognitive simulation, including knowledge repre-
sentation in semantic networks [8], speech recognition [4,17], di­
mensionality reduction [12,18], and backgammon [16]. However, 
connectionist networks are computationally intensive, and days or 
weeks are often required to train even moderate-sized networks 
using the fastest serial computers; The exploration of large net­
works consisting of more than a million links or connections is 
barely feasible given current technology. 

One option being explored is the development of special-purpose 
hardware using VLSI technology [15,5,1]. Initial estimates of 
these so-called neuromorphic systems indicate that tremendous 
speed-up may be achievable, perhaps up to five to six orders of 
magnitude over a VAX780 implementation. However, one prob­
lem with special purpose hardware is that it does not allow one 
to explore different patterns of connectivity and different learning 
algorithms. Although neuromorphic systems will certainly have 
an important impact on the field, they may be limited as research 
tools. 

A more flexible alternative is seen in the development of gen­
eral purpose, fine-grained, parallel computers. The Connection 
Machine (CM) is a massively parallel computer consisting of up 
to 65,536 (216) one-bit processors arranged in a hypercube ar­
chitecture [7]. In this paper we discuss the implementation of a 
connectionist network learning algorithm, back-propagation [11], 

1This research was supported by Thinking Machines Corporation, Cam­
bridge, Mass. The authors wish to thank Terry Sejnowski, David Walts, and 
Craig Stan fill for their assistance. 

Charles R. Rosenberg 
Cognitive Science Laboratory 

Princeton University 
Princeton, New Jersey 08542 

on the Connection Machine. Currently, the Connection Machine 
offers a factor of 500 speedup over a previous implementation on 
a VAX780 and a factor of two speed-up over an implementation 
of a similar network on a Cray-2. Considering that parallel com­
puting is only in it's infancy, we expect the speed-up to be much 
greater in the near future. Finally, we present an application in 
the domain of speech synthesis, called NETtalk [14], that uses our 
implementation of back-propagation on the Connection Machine. 

2 Error Back-Propagation 
Connectionist network models are dynamic systems composed of 
a large number of simple processing units connected via weighted 
links, where the state of any unit in the network depends on the 
states of the units to which this unit connects. The values of 
the links or connections determine how one unit affects another; 
The overall behavior of the system is modified by adjusting the 
values of these connections through the repeated application of a 
learning rule. 

The back-propagation learning algorithm is an error-correcting 
learning procedure for multilayered network architectures. Infor­
mation flows forward through the network from the input layer, 
through the intermediate, or hidden layer(s), to the output layer. 
The value of a unit is determined by first computing the weighted 
sum of the values of the units connected to this unit and then ap­
plying the logistic function, 1/1+e-z to the result. This forward 
propagation rule is recursively applied to successively determine 
the unit values for each layer. 

The goal of the learning procedure is to minimize the aver­
age squared error between the values of the output units and the 
correct pattern provided by a teacher. This is accomplished by 
first computing the error gradient for each unit on the output 
layer, which is proportional to the difference between the target 
value and the current output value. The error gradient is then 
recursively determined for layers from the output layer to the in­
put, by computing the weighted sum of the errors at the previous 
layer. These error gradients, or deltas, are then used to update 
the weights2. 

Computationally the forward and backward propagation steps 
are very similar. Forward propagation consists of four basic steps: 
distributing the activation values of the units to their respective 
fan-out weights, multiplying the activations by the weight val­
ues, summing these values from the weights into the next layer of 
units, and applying the logistic function to this value. The back­
ward propagation of error consists of four similar steps: distribut­
ing the error values of the units to their respective fan-in weights, 
multiplying the error by the weight values, summing these values 
from the weights into the previous layer of units, and evaluating 
the derivative of the logistic function. In addition to forward and 

2The original source should be consulted for the details of back-
propagation. 

Blelloch and Rosenberg 323 



Figure 2: The Layout of Weights and Units of a Simple Network 
on the Connection Machine. (A) A simple two layer network. (B) 
The layout of the network on the processors of the Connection 
Machine. 

backward propagation, the inputs and outputs must be clamped 
to the appropriate values. In the next section, we will show how 
each of these steps is executed on the Connection Machine. 

3 T h e C o n n e c t i o n M a c h i n e 

The Connection Machine is a highly parallel computer with be­
tween 16,384 and 65,536 processors. Each processor has two 
single-bit arithmetic logic units (ALUs), and some local mem­
ory - currently 64K bits. In addition, every 32 processors shares 
a floating point unit. All the processors are controlled by a sin­
gle instruction stream (SIMD) broadcast from a microcontroller. 
Figure 1 shows a block diagram of the Connection Machine. Pro­
cessors can communicate using a few different techniques - the 
only two of concern in this paper are the router and the scan 
operations. The router operations allow any processor to write 
into the memory or read from the memory of any other processor. 
The Sean operations allow a quick8 summation of many values 
from different processors into a single processor, or the copying 
of a single value to many processors [3]. 

In the implementation of back-propagation, we allocate one 

'Usually fatter than a router cycle. 

processor for each unit and two processors for each weight4. The 
processor for each unit is immediately followed by all the pro­
cessors for it's outgoing, or fan-out, weights, and immediately 
preceded by all of it's incoming, or fan-in, weights (see Figure 2). 
The beginning and ending of these contiguous segments of pro­
cessors are marked by flags. A $can operation called segmented 
copy-scan is used to quickly copy a value from the beginning or 
end of a segment of contiguous processors to all the other proces­
sors in the segment and an operation called segmented plus-scan 
is used to quickly sum all the values in a segment of processors 
and leave the result in either the first or last processor of the 
segment. Thus our layout enables us to use the scan operations 
to distribute the unit values from the units to their output links 
and to sum the values from their input links. 

The forward propagation step proceeds as follows. First, the 
activations of the input units are clamped according to the in­
put text. The algorithm then distributes the activations to the 
weights using a copy-scan operation (step A in Figure 3), and 
then all weights multiply their weight by these activations. The 
result is sent from the output weights to the input weights of the 
unit in the next layer (step B) using the router. A plus-scan then 
sums these input values into the next layer of units (step C), and 
the logistic function is applied to the result at all the unit proces­
sors to determine the unit activations. This forward propagation 
step must be applied once for each layer of links in the network. 

Once forward-propagation is completed, we determined the 
error at the output layer, and propagate this error backward. This 
error back-propagation consists of running copy-scan backwards, 
copying the deltas from the output units into their input weights, 
then sending the deltas from the input weights to the output 
weights of the units at the previous layer. The deltas can then 
be multiplied by the weight values, and summed in the reverse 
direction into the units at the previous layer. The derivative of 
the logistic function is then evaluated to determine the error of 
units at the previous layer. As in forward propagation, this step 
must be applied once for each layer of links. 

The algorithm as described so far uses the processors ineffi­
ciently for two reasons. Firstly, we use two processors for each 
weight when only one of them is busy at a time, and secondly, 
when we are running one layer, the processors for all the other 
layers are idle. To overcome the first inefficiency and use one pro-

4Later in this paper we will show how the processors can be ahared between 
unite and weights, requiring only one processor per weight. 

324 KNOWLEDGE ACQUISITION 



cessor per weight, we overlap the input and output weights. We 
also overlap the units with the weights. To overcome the second 
problem and keep the processors for each layer busy we pipeline 
the layers as follows. Given a set of n input vectors Vi (0 < i < n), 
and m layers /j, pipelining consists of propagating the iih input 
vector across the first layer, while propagating the previous input 
vector (vi-1) across the second layer, vi_3 across the third layer, 
... , and Vi-m across the last layer. We also interleave the back-
propagation with the forward-propagation so that immediately 
after presenting vi, to the input, we start back-propagation vi_m 
backward from the output. The depth of the whole pipe for m 
layers is 2m. 

This implementation has some important advantages over other 
possible implementations. Firstly, with pipelining, the implemen­
tation unwraps all the potential concurrency.5 Since it is possible 
to simulate a concurrent computer with a serial computer but 
the opposite is not true, our method can be used efficiently on 
any machine ranging from a completely serial computer to a very 
fine grained parallel computer. If we did not expose all the con­
currency, we would not utilize as many processors in a very fine 
grained computer. Secondly, the implementation works well with 
sparse connectivity. Methods based on dense matrix multiplies, 
such as some of the serial implementations, although faster for 
dense connectivity, are extremely inefficient with sparse connec­
tivity. Thirdly, in our implementation, all processors are kept 
active even if different units have different fan-ins. This would 
not be true if we used one processor per unit and serially looped 
over the fan-ins of each unit — as one might be tempted to do in 
a more coarse grained parallel computer. Lastly, the time taken 
by each step is independent of the largest fan-in. 

Networks with more links than physical processors can be 
simulated in the Connection Machine using an abstraction called 
the virtual processor (VP) [7]. A virtual processor is a slice of 
memory within a physical processor. Many such VPs can exist 
within each physical processor. Looping over the VPs in general 
causes a linear slow-down. 

Similar layouts of static networks have been used to imple­
ment a rule based system [2], a SPICE circuit simulator and a 
maximum-flow algorithm. 

4 C M - N E T t a l k 

NETtalk is a connectionist network that uses back-propagation to 
learn the pronunciations of English words. We have implemented 
NETtalk on the Connection Machine, and present the results of 
our implementation here6. 

NETtalk is is composed of three layers of units, an input layer, 
an output layer, and an intermediate or hidden layer. Each unit in 
each layer is connected to each unit in the layer immediately above 
and/or below it. The representations at the input and output 
layers are fixed to be representations of letters and phonemes 
respectively. The representation at the hidden layer, on the other 
hand, is constructed automatically by back-propagation. 

NETtalk uses a fixed-size input window of seven letters to 
allow the textual context of three letters on either side of the 
current letter to be taken account in the determination of that 
letter's pronunciation (see Figure 4). This window is progres­
sively stepped through the text. At each step, the output of the 
network generates its guess for the pronunciation of the middle, 

5This is not strictly true sinca we could get another factor of 3 by running 
the forward and backward propagation concurrently. 6interested readers should consult the original sources for details. 

or fourth, letter of the sequence of letters currently within the 
input window. This guess is compared to the correct pronuncia­
tion, and the values of the weights are iteratively adjusted using 
back-propagation to minimize this difference. Good pronuncia­
tions (95% of the phonemes correct) of a thousand-word corpus 
of high-frequency words are typically achieved after ten passes 
through the corpus. 

We have experimented with a network consisting of 203 input 
units (7 letters with 29 units each), 60 hidden units and 26 output 
units. This required a total of 13826 links (processors) - 12180 in 
the first layer, 1560 in the second layer and 76 to the true units7. 
The learning rate was approximately the same as that achieved 
by a C implementation on various serial machines. 

In the current implementation, using a 16,384 processor ma­
chine, the time required for each letter during the learning stage 
was 5 milliseconds. This includes the forward propagation, the 
backward propagation, the time necessary to clamp the input and 
output, and the time required to calculate the error. The time is 
broken up by the type of operation as follows: 

• Scanning 30% - This includes two segmented plus-scans and 
two segmented copy-scans. 

• Routing 40% - This includes two routing cycles. 

• Arithmetic 20% - This includes seven multiplies and several 
additions, subtractions and comparisons. 

• Clamping 5% - This is the time needed to get the characters 
to the input units and the expected phonemes to the output 
units. 

• Other 5% - Mostly for moving values around. 

With improvements in the coding of the implementation and in 
microcode, we expect that this time could be improved by a factor 
of three or more. 

Table 5 shows comparative running times of the error back-
propagation algorithm for several machines. On an existing im­
plementation of back-propagation on a VAX 780, the same net­
work required 650 microseconds per letter. This represents a 130 
to 1 improvement in speed. On a 64K machine and larger net­
works, we could get a 500 to 1 improvement. This is about twice 
the speed of an implementation of the algorithm on a Cray-2, yet 
a Connection Machine costs a quarter of the price. Fanty [6] has 

7True units are units that are always kept iIn the active state. Their 
function is to allow the thresholds of the other units in the network to be 
modified in a simple way. 

Blelloch and Rosenberg 325 



Figure 5: Comparison of Running Times for Various Machines. 
MLPS stands for Millions of Links Per Second. Some of these 
times are from [10,9,13]. 

implemented a connectionist network using the BBN Butterfly, a 
coarse grained parallel computer with up to 128 processors, but 
because the type of networks he used were considerably different, 
we cannot compare the performances. 

Using virtual processors, on the Connection Machine it is pos­
sible to simulate up to 16 million links in physical memory. With 
software currently being developed to use the Connection Ma­
chine's disks, the CM will be able to simulate many more than 
this. 

5 C o n c l u s i o n s 

We have discussed the first implementation of a connectionist 
learning network on a fine-grained parallel machine. Our ex­
periments indicate that the Connection Machine can currently 
simulate rather large networks of over 65 thousand connections 
at speed over twice as fast as the most powerful serial machines 
such as the Cray-2. The method outlined here should general­
ize to any highly concurrent computer with a routing network 
and, with small modifications, can be used with many variations 
of connectionist network. Unlike neuromorphic, hardware-based 
systems, our method places no restrictions on the computations 
performed at the links or the units, nor on the topology of the 
network. 

In our implementation we were able to keep all of the pro­
cessors busy most of the time using a single instruction stream; 
multiple instruction streams do not seem to be necessary. Rather, 
communication was the bottleneck - at least on the current Con­
nection Machine. Effort needs to be spent designing faster routing 
networks. 

The lack of computational power was a major factor in the 
dissolution of the first wave of connectionism in the 1950's and 
60's. Alternative, symbolic techniques were more successful in 
part because they better fit the computational resource available 
at the time. With the advent of fine-grained parallel computers, 
this situation is beginning to change; the exploration of large-scale 
connectionist networks is starting to become computationally fea­
sible. 

Re fe rences 

[1] Joshua Alspector and Robert B. Allen. A Neuromorphic 
VLSI Learning System. Technical Report, Bell Communica­
tions Research, 1987. 

[2] Guy E. Blelloch. AFL-1: A Programming Language for Mas-
sively Concurrent Computers. Technical Report 918, Mas­

sachusetts Institute of Technology, November 1986. 

[3] Guy E. Blelloch. The scan model of parallel computation. 
Proceedings Int. Conf. on Parallel Processing, August 1987. 

[4] J. L. Ellman and D. Zipser. Learning the Hidden Structure 
of Speech. Technical Report ICS Report 8701, University 
of California at San Diego, Institute for Cognitive Science, 
1987. 

[5] H. P. Graf et al. VLSI implementation of a neural network 
memory with several hundreds of neurons. In Proceedings of 
the Neural Networks for Computing Conference, Snowbird, 
UT, 1986. 

[6] M. Fanty. A Connectionist Simulator for the BBN Butterfly 
Multiprocessor. Technical Report Butterfly Project Report 
2, University of Rochester, Comp. Sci. Dept., January 1986. 

[7] William D. Hillis. The Connection Machine. MIT Press, 
Cambridge, Mass., 1985. 

[8] G. E. Hinton. Learning distributed representations of con­
cepts. In Proceedings of the Cognitive Science Society, 
pages 1-12, Erlbaum, 1986. 

[9] K. Kukich. Private Communication, 1986. Bell Communi­
cations Research Corporation. 

[10] James L. McClelland and Kevin Lang. Personal Communi­
cation, 1987. Carnegie-Mellon University. 

[11] David E. Rumelhart, Geoffrey E. Hinton, and R. J. Williams. 
Learning internal representations by error propagation. In 
Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition. Vol. 1: Foundations, pages 318-
362, MIT Press, Cambridge, Mass., 1986. 

[12] E. Saund. Abstraction and representation of continuous vari­
ables in connectionist networks. In Proceedings of the Fifth 
National Conference on Artificial Intelligence, pages 638-
644, Morgan Kauffmann, 1986. 

[13] Terrence J. Sejnowski. Personal Communication, 1987. John 
Hopkins University. 

[14] Terrence J. Sejnowski and Charles R. Rosenberg. Parallel 
networks that learn to pronounce English text. Complex 
Systems, 1:145-168, 1987. 

[15] M. Silviotti, M. Emerling, and C. Mead. A novel associative 
memory implemented using collective computation. In Pro­
ceedings of the 1985 Chapel Hill Conference on Very Large 
Scale Integration, page 329, 1985. 

[16] G. Tesauro and T. J. Sejnowski. A parallel network that 
learns to play backgammon. 1987. in preparation. 

' [17] R. L. Watrous, L. Shastri, and A. H. Waibel. Learned pho­
netic discrimination using connectionist networks. Technical 
Report, University of Pennsylvania Department of Electrical 
Engineering and Computer Science, 1986. 

[18] D. Zipser. Programming networks to compute spatial func­
tions. Technical Report, University of California at San 
Diego, Institute for Cognitive Science, 1986. 

326 KNOWLEDGE ACQUISITION 


