
A Formal Approach to Learning from Examples 

James P. Delgrande 

School of Computing Science. 
Simon Fraser University. 

Burnaby. B.C., 
Canada V5A 1S6 

Abstract 
This paper presents a formal, foundational approach to 

learning from examples in machine learning. It is assumed that a 
learning system is presented with a stream of facts describing a 
domain of application. The task of the system is to form and 
modify hypotheses characterising the relations in the domain, 
based on this information. Presumably the set of hypotheses 
that may be so formed wil l require continual revision as further 
information is received. 

The emphasis in this paper is to characterise those 
hypotheses that may potentially be formed, rather than to 
specify the subset of the hypotheses that, for whatever reason, 
should be held. To this end. formal systems are derived from 
which the set of potential hypotheses that may be formed is pre­
cisely specified. A procedure is also derived for restoring the 
consistency of a set of hypotheses after conflicting evidence is 
encountered. In addition, this work is extended to where a 
learning system may be "told" arbitrary sentences concerning a 
domain The approach is intended to provide a basic framework 
lor the development of systems that learn from examples, as 
well as a neutral point from which such systems may be viewed 
and compared. 

1. Introduction 
Learning from examples is an important yet basic subarea 

of machine learning. For this approach, a learning system 
receives information concerning a domain of application in the 
form of facts, or ground atomic formulae. On the basis of this 
information the learning system induces general statements 
characterising the domain, and hence hypothesises relations 
among the known relations in the domain. These hypotheses are 
phrased independently of any particular individuals. Further 
facts may enable other hypotheses to be formed while falsifying 
existing hypotheses. Thus the consistency of the set of 
hypothesised statements must continually be maintained as new 
information is discovered, and the question arises as to how a set 
of hypotheses may be modified as falsifying instances are 
encountered. 

The early work of Patrick Winston [Winston 75] provides 
a good example of such an approach. In Winston's system, 
descriptions of concepts are formed from a set of carefully 
chosen examples of the concept and "near misses". A near miss is 
an example that is quite similar to an instance of the concept. 
but differs in a small number of significant details. Relevant 
features that the concept (presumably) must have are extracted 
from the positive examples, while negative information is 
extracted from the near misses. Thus from positive examples 
the program might infer that an arch must have two supports, 
while from a negative example it might infer that the supports 
must not be touching. As examples are received, the definition of 

a concept passes through successive refinements, presumably 
converging to some acceptable definition. 

In this paper a formal, foundational approach to learning 
from examples is presented. The overall aim is to investigate the 
underlying formal aspects of such learning. In contrast to previ­
ous work, pragmatic concerns dealing with notions of evidence. 
confirmation and justification of hypotheses are ignored insofar 
as is possible. The goal of this paper then is to characterise the 
hypotheses that may potentially be formed. The question of 
what hypotheses may Justifiably be formed is not addressed. 
Thus for example if we have a set of black ravens and know of 
no non-black ravens, we could hypothesise that ravens are black. 
However the approach at hand gives no indication as to when 
such a hypothesis should be formed or what constitutes adequate 
evidence for such an assertion. So the goal is to determine for­
mal criteria which prescribe the set of potential conjectures, 
rather than to determine pragmatic criteria whereby an accept­
able set of conjectures may be formed. A similar distinction can 
be made in a deductive system, where an underlying logic 
specifies what could be derived, but not what should be derived. 

The remainder of this section expands on these ideas and 
surveys related work. In the second section, a language for 
expressing conjectures is introduced, and formal systems are 
developed for guiding the formation of conjectures. These sys­
tems lead immediately to a procedure for restoring the con­
sistency of a set of conjectures Extensions to the approach are 
briefly described in the third and fourth sections, and in the fifth 
section the approach is compared with representative AI systems 
for learning from examples. Further details, proofs of theorems, 
etc. may be found in [Delgrande 85]. 

1.1. The Approach 
The domain of application is assumed to be describable as a 

collection of individuals and relations on these individuals. 
Further, it is assumed that some portion of the domain, 
described by a finite set of ground atomic formulae (or. infor­
mally, "facts"), is known by the learning system. As time 
progresses the learning system' wi l l presumably encounter new 
information, and so the set of known ground atomic formulae 
wil l monotonically increase. Initially I assume that this 
(increasing) set of ground formulae is all that is known about 
the domain. 

Hypotheses are proposed and modified on the basis of this 
finite, monotonically increasing set of ground instances. The 
hypotheses are expressed in a language. HL. that is a simple vari­
ant of the language of elementary algebra. The criteria for pro­
posing a hypothesis are straightforward: there is a reason to do 
so (i.e. some notion of evidence is satisfied) and the hypothesis is 
not known to be false. These criteria though are far too simplis­
tic, and in general the resultant set of hypotheses wi l l be incon­
sistent. 
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These difficulties are circumvented in the following 
manner. With each term in a sentence of HL we can associate 
two subsets of the ground instances, consisting of those known 
to satisfy the term and those known to not. Thus to the term 
"black raven" we can associate the set of individuals known to be 
black and a raven, and the set known to be either non-black or 
non-raven. These (pairs of) sets interrelate in various ways: for­
mal systems are developed to precisely characterise relations 
between terms in HL by means of these sets. From these sys­
tems, ground instances whose truth values are unknown can be 
iteratively located so that determining their truth value leads to 
a convergence of the hypothesis set to consistency. These "know-
able but unknown ground instances" arc composed of constants 
and predicates symbols that occur in the set of known ground 
atomic formulae. Informally they correspond to unknown but 
potentially knowable "facts" in the domain. The capability of 
testing individuals for membership in a relation, where both 
individuals and relation have been encountered in the set of 
known ground atomic formulae, proves essential for restoring 
consistency in a set of hypotheses. 

The approach is clearly a restriction of the general problem 
of induction. However, induction, as such, plays a relatively 
minor role; it is used to suggest an initial (and usually incon­
sistent) set of hypotheses, which then are modified using strictly 
deductive techniques. The set of hypotheses that may be formed 
is shown to be perhaps surprisingly general and in fact (with 
respect to expressiveness) subsumes a number of existent sys­
tems for learning from examples. 

In summary, I initially assume that: 
1. the domain is describable as a set of ground atomic formu­

lae. 
2. some finite subset of the ground atomic formulae is known; 
3. the set of known ground atomic formulae is correct and 

error-free; 
4. the set of known ground atomic formulae grows monotoni-

cally with time: 
5. known individuals may be tested for membership in a 

known relation. 
The first assumption is somewhat restrictive, and in section 

4 is relaxed so that a learning system may be "told" arbitrary 
sentences. Also in the third section, the second assumption is 
relaxed to allow relations in the domain whose membership is 
completely known. 

The third assumption is clearly unrealistic for any practical 
learning system. However, arguably the issue of how to deal 
with erroneous data is a pragmatic one. and is not relevant to 
our concerns here. Consider, as illustration, where we have some 
conjecture (say. "ravens are black") and encounter an albino. If 
we don't want to totally abandon our original hypothesis, then 
there seems to be two ways we can discharge the exception. 
First, we could amend the conjecture to something like "nor­
mally ravens are black", and perhaps also introduce "normally 
albino ravens are white". That is. one way or another, the excep­
tion is "excused". Second we could determine, or simply declare, 
that the observation is erroneous. However, this procedure of 
determining that an observation is incorrect, or otherwise excus­
ing it. is a pragmatic concern, and is distinct from our concern of 
what hypotheses "follow" potentially from a given set of ground 
atomic formulae. 

1.2. Related Work 
There has been much work in AI addressing the problem of 

learning from examples, including [Brown 73]. [Buntine 86], 
[Hayes-Roth 78]. [Mitchell 77]. [Shapiro 81]. [Solway and Rise-

man 77]. [Vere 78] and [Winston 75]. [Michalski 83] is a partic­
ularly detailed approach to learning from examples. An exten­
sive survey of AI learning systems is given in [Dietterich et el 
82]. while [Smith et al 77] describes a proposed model for learn 
ing from examples and [Dietterich and Michalski 83] compares 
four particular generalisation programs. Typically such work is 
concerned with proposing and refining a description of a concept, 
and many of the above approaches detail particular rules or stra­
tegies for forming a general concept from a set of instances. 
Most of this work also assumes that the only information 
regarding a domain is in the form of examples, or instances. In 
contrast, the work at hand deals with characterising the 
hypotheses formable under a set of (arguably) minimal assump­
tions and hence is concerned with exploring intrinsic properties 
and limitations of such approaches. In addition, an extension of 
learning from examples to include learning by being told is 
addressed. 

The work presented in [Morik 86] employs assumptions 
similar to those used here, in that very little is assumed about 
the domain of application. However, in this case the author is 
interested in the problem of acquiring an initial model of a 
domain, but presupposes an agent and learning algorithms to 
help in this initial investigation. Thus this work addresses the 
first step of a number of steps in a technique-specific approach to 
learning. 

Most formal approaches to learning from examples have 
been concerned with inducing instances of a given type of formal 
language. The area of learning theory [Gold 67] studies systems 
that implement functions from evidential states to languages. A 
survey of such approaches is presented in [Angluin and Smith 
82], while [Osherson et el 83] gives recent results in this area. 
The key difference between such approaches and the present 
work is that no underlying formal grammar is assumed here, 
beyond that for elementary set theory. 

2. Introducing Conjectural Information 

2.1. Initial Considerations 
The domain of application is assumed to be describable as a 

presumably infinite set of ground atomic formulae, formed from 
presumably infinite sets of individuals and predicates. At any 
point in time, the truth values of some subset of the ground 
atomic formulae are assumed to be known. Given a particular 
predicate then, all that can be known of it is a subset of those 
individuals (or tuples) which satisfy it and a subset of those 
individuals which do not. A predicate will be referred to as 
known if its truth value on a given individual (tuple) is known 
or can be determined. An individual will be referred to as 
known, if it is known to be or not be part of the extension of a 
known predicate. Informally, a known individual or predicate is 
one "encountered" by a learning system. The sets of tuples 
known to belong to the extension of a predicate and known to 
not belong to the extension are referred to as the known exten­
sion and the known antiextension respectively. So for a known 
n-place predicate P and known individuals a,, . . . ,an there are 
three possibilities: 
1. Piax, . . . , a„) is known to be true. 
2. -P(a1 . . . , an) is known to be true. 
3. Neither P(a1 a„) nor -P(a1 ,an) are known to be 

true. 
Definition: For each known predicate symbol P define sets P+ 

and P_ by: 
P+ = {<a1 . . . ,an> | P(a1 a„) is known to be true). 
P_ = {<a1 a„> | -P(a1 an) is known to be 
true}. 
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for a set of known individuals I. The pair of elements in an ele­
ment of H corresponds to a possible known 
extension/antiextension pair. Upper and lower bounds of H are 
given by: 

we obtain the weaker "Kleene" postulate P10. However we 
retain postulates governing universal bounds (P7) and involution 
(P8) as well as De Morgan's laws (P9). The weakened comple­
ment arises from the fact that the known extension and antiex-
tension of a predicate typically do not together constitute the set 
of known individuals 1. This algebra has been investigated 
under the names of normal involution lattices [Kalman 58] and 
Kleene algebras [Kleene 52]. 

To further characterise the conjectures, the propositional 
logic corresponding to HLA is derived in [Delgrande 85], and 
soundness and completeness results are obtained. An alterna­
tive, three-valued semantics for the logic is also provided This 
development is not repeated here. However, it is worth noting 
that, unsurprisingly, negation in the logic. HLL. is weaker than 
in classical propositional logic: we lose reductio ad absurdum as a 
method of proof: also we lose the law of the excluded middle. 
Finally, it may be noted that HLL appears in [Rescher 69] as the 
system S3. However this system is mentioned only in passing, 
and no results concerning it are provided. 

23. Restoring the Consistency of Hypotheses 
This section examines how the consistency of a set of con­

jectures can be enforced and maintained in the face of conflicting 
ground instances. The maintenance of consistency relies of the 
relationship between the naive criteria for forming conjectures in 
HL and conditions for equality of expressions of HLA. Consider 
for example the criteria for hypothesised equality: 

and contrast it with strict equality: 

For hypothesised equality we are not guaranteed, for example, 
transitivity of equality. So if we have P=hQ and Q=hR we are 
not guaranteed For strict equality we of course have 
transitivity. 

Now. in order to have asserted P=hQ. there must have been 
some set of individuals e which provided evidence for this 
hypothesis. Clearly, these instances will either also provide evi­
dence for P=hR (i.e. will satisfy the naive criteria), or if not. 
will refute both P=hR and Q=hR, and so. in any case, consistency 
can be restored. We can use a similar procedure for restoring the 
consistency of any set of hypotheses which should imply a cer­
tain conclusion in HLA but. for a particular case, do not. We 
obtain: 
Theorem: Let a} an.a € HL and assume a l t . . . ,a„ have 

been hypothesised according to our naive criteria, and a is 
derivable from a1 an in HLA. Then ground instances 
can be determined from the set of confirming instances for 
a1, . . . ,an that will either 

1. refute one of a1 . . . , an or 
2. allow a to be hypothesised. 
3. allow some a to be hypothesised where o' 

implies a in HLA. 

then we can locate individuals and predicates that will, via our 
criteria for evidence, allow the conclusion AQhD to be 
hypothesised, or else will refute one of the premisses. 

The proof of the theorem is constructive, and leads 
immediately to a procedure which will either locate evidence for 
a conjecture a that follows from supported premisses 
O1, . . . ,an. or else will refute one of a1, . . . ,an. In the third 
alternative for the theorem, a specific sentence a of HLA which 
implies a is identified. The procedure is linear in the length of 
the proof of a. Since the evidence required for the naive criteria 
for forming conjectures is drawn from finite sets of individuals 
and relations, consistency can thus be restored in a set of conjec­
tures by repeatedly applying this procedure. Moreover, if we 
begin solely with a set of ground instances we will, by repeated 
application of our naive criteria for forming conjectures together 
with this procedure, arrive at a set of consistent conjectures. 

This resolves the three questions posed at the end of section 
2.1 First, the procedure derived from the above theorem shows 
how instances can be located for the restoration of consistency. 
Second, the conjectures to which the procedure can be applied are 
those that are governed by the postulates of HLA. Thirdly, 
then, the conjectures to which the procedure may be applied 
correspond precisely to the sentences of elementary algebra 
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(including composition, the converse, and the image), except that 
we do not have a universal complement. Moreover, this limita­
tion is unavoidable in this approach (or any approach based on 
the five assumptions listed in the introduction). However, we do 
retain involution. De Morgans laws, laws concerning universal 
bounds, and the "Kleene" postulate. 

3. HLA, Boolean Algebra, and Naive Set Theory 
This section describes an extension to the approach wherein 

entities in the domain whose extensions are completely known 
are also considered. So far 1 have assumed that for a particular 
predicate in the domain, such as Red. only part of the extension 
and part of the complement of the extension can be known. The 
set of all red things (i.e. the extension of Red) cannot wholly be 
known by a learning system. While this seems reasonable for 
things such as Red, Bird, and Left_of. in other cases it is unrea­
sonable. For example. I may know that a particular suck of 
blocks is composed of the blocks {S1 sK } In this case we 
could perhaps name this set slack Stack1 and so 
Stackl = {S1 sk). The crucial point here, of course, is that 
all the members of Stackl are known, in contrast to the 
membership of Red. which cannot be completely known. Sets 
such as Stackl, whose extension is known. I will refer to as 
reducible. Sets such as Red. whose extension cannot be wholly 
known. 1 will refer to as irreducible. Reducible sets, clearly, 
correspond exactly with the familiar notion of "set". In this 
paper though I will be concerned only with sets with a finite 
extension. 

So there are two questions of interest: 
1. How can we formally characterise the irreducible sets? 
2. How do the reducible and irreducible sets interrelate? 
These questions are addressed by giving a set of axioms to 
characterise the set of allowable reducible and irreducible sets. 
For both reducible and irreducible sets, the axioms developed 
parallel those in the system of Zermelo-Fraenkel [Fraenkel et al 
73]. We obtain: 

Set Axioms: 

The axioms for irreducible sets are derived from intuitions 
similar to those motivating the axioms for the reducible sets. 
For extensionality, for example, we would want to say that two 
irreducible sets are equal just when their known extension and 
antiextension coincide. For the power set axiom, for every 
irreducible set A we know that the power set of A must contain 
the power set of A+; moreover, this is all that can be known to 
be in the power set. On the other hand, any set of elements not 
contained in A+ cannot be in the power set. and hence are in the 
antiextension. [Delgrande 85) contains an informal discussion 
and development of the other set axioms. 

The axiomatisation then provides a set of constraints that 
bound the irreducible sets and. moreover, specifies how they may 
interrelate. As well it provides a primitive basis for defining and 
justifying the hypothetical operations of the previous section. 
For example, it is easily shown using the axioms of separation 
and extensionality that: 

Lastly, we can consider an extension of the language HL 
where predicates that apply to sets of objects can be related to 
those that apply to only single (pairs of) objects. For example, 
the notion of hypothesised transitive closure is introduced into 
HLA in [Delgrande 85]. The system augmented by the transitive 
closure is general enough to allow for the expression of (the oft-
cited example of) an arch. Thus we can express hypotheses con­
cerning arches, for example, that a stack of objects is a set of 
objects that satisfies the transitive closure of the On relation and. 
conversely, any set of objects so bounded is hypothesised to be a 
stack. From this an arch could be defined as an object consisting 
of two pillars which are stacks, a lintel which is on top of the 
pillars where the pillars are not touching, and so on. The limita­
tions of the previous section of course still apply, and so any 
such hypotheses are bound by the relations of HLA. 

The set axioms then provide a more primitive basis for 
forming conjectures and, additionally, expand the expressiveness 
of the system. However, while the set of allowable individuals 
has been vastly expanded, the form of the conjectures is 
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unchanged. The formal results of the last section still apply 
and. since in the intended model the property of being an indivi­
dual is decidable, the overall system remains decidable. 

4. Learning from Examples and Learning by Being Told 
In this section 1 consider where we have a knowledge base 

(KB) that consists of an arbitrary, consistent set of sentences 
that the system has been "told" are true. We now want to form 
hypotheses from the ground instances, but also taking these 
other sentences into account. Since we require that the KB be 
able to reason about knowledge and hypothesis, this part of the 
problem either requires or presupposes a theory of incomplete 
knowledge. 1 have taken the latter course, and adopted the 
theory given in [Levesque 81]. This work presents a logical 
language KL that can refer both to application domains and to 
what a knowledge base might know about such domains. KL 
extends first-order logic (FOL) by adding a sentential operator K, 
where Ka can be read as "a is known to be true". KL is extended 
here to a language called HKL that is able to deal also with con­
jectural sentences. HKL extends KL by the addition of a senten­
tial operator H. where Ha can be read as "a is conjectured to be 
true". Using HKL we can express sentences such as "John or Bill 
is hypothesised to be a teacher" or "it is known that Mary is 
hypothesised to be a teacher". HKL is specified as follows: 
Axiom Schemata 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
Rules of Inference - Modus ponens and universal generalisa­
tion 

The first five axiom schemata and the rules of inference are 
those of KL. We obtain that knowledge and conjecture are 
closed under modus ponens (3. 7, 8. 9). and meta-knowledge is 
complete and accurate (4). Also if something is known, neither 
it nor its negation is conjecture (6). and generalisation applies 
analogously to conjecture and knowledge (5. 10). What this 
extension from KL to HKL buys us is a means of distinguishing 
and reasoning with sentences known to be true, from those that 
are only hypothesised to be true. In [Delgrande 85] an extension 
of the soundness and completeness results of [Levesque 81] 
(with respect to a possible worlds semantics) is provided. 

HKL seems to have reasonable properties with respect to 
reasoning deductively with knowledge and hypothesis. There is 
a problem however with updating a KB (i.e. with "telling" a KB a 
new sentence). Consider where we have a known portion. KBK, 
of the KB and we want to form a hypothetical component. KBh,, 
based on the known portion. Basically we want to "apply" HL to 
this KB to produce a hypothesised component. Thus for example 
if KBk is 

then applying HL to what is known about the ground instances 
could yield: 

or the equivalent hypothetical KB in HKL 

The basic idea is that KBK, which is expressed in HKL. 
determines a set of ground instances and a set of sentences that 
are representable in HL. By applying the procedure of section 
2.3 for restoring consistency to these sets we obtain a set of 
hypotheses expressed in HL. If KB = [KBK. KBh.] where initially 
KB/, = 0 then we have the following procedure for forming a 
hypothetical component. 

1. Let G = |glg is a ground atomic formula and KB*h 

2. Apply the procedure of section 2.3 to G to obtain a 
consistent set of conjectures C expressed in HL. 

3. Let KBh, be the translation of the sentences of C into 
sentences of HKL; exclude any of those provable in 
KBk 

There is generally a straightforward translation of sen­
tences from HL to HKL and. given this, the above procedure can 
be constructed in a straightforward manner. However it proves 
to be the case that unless KBk is equivalent to a set of ground 
instances, this procedure may result in inconsistency. The 
difficulty is that the procedure of section 2.3 relies on the 
existence of knowable ground instances whose truth value is 
unknown. However in first-order logic, and so in HKL. it is pos­
sible to attribute a property to an unknown individual, and this 
attribution may lead to inconsistency here. For example, con­
sider where all that is known is 

Hence, for the corresponding relations in the domain, either P=Q 
or R=S. If we apply the procedure for restoring consistency to 
the known ground instances and sentences that can be expressed 
in HL. we obtain 

which, of course, when translated into HKL. is inconsistent with 
the original sentences. 

While this last result appears somewhat limiting, things in 
practice may not be too bad. Several considerations are relevant. 
First, the assumptions underlying HL are those that presumably 
underlie any system that learns from examples. Hence the prob-
lems addressed here arguably are the problems that must be 
addressed by any system that learns from examples, or else 
must be discharged by means of a priori decisions by the system 
designers. Second, while applying the procedure to a general KB 
may lead to inconsistency, it need not necessarily do so. If it 
does, it may be possible that pragmatic considerations can be 
used to resolve or skirt a particular inconsistency. 

5. Comparison with Learning Systems 
This section compares the present approach with related 

work on learning from examples. Three systems are particularly 
relevant and serve to place the present work within the field. 
The early work of John Seely Brown [Brown 73] on automatic 
theory formation is a direct precursor to mine. Patrick 
Winstons dissertation [Winston 75] on learning structural 
descriptions from examples is a well-known early AI learning 
system and serves as a good representative of approaches to 
learning from examples. Ehud Shapiro's work [Shapiro 81] is 
similar to mine in broad outline, except that the author makes 
substantial assumptions, concerning how the domain of applica­
tion is described. 

The task of Browns system is to propose definitions for a 
set of binary relations based on knowledge of the extensions of 
the relations. The system begins with a set of binary relations 
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R = {R1 Rn }and a database containing the complete exten­
sion for each R1€ R. Hence there is no notion of modifying a 
definition in light of later knowledge. A procedure is given for 
proposing definitions of the relations. However the body of a 
definition is restricted to be the disjunction of compositions of 
relations. This format though is adequate for a variety of 
domains, including that of kinship relations. The system is 
heuristic and was intended for direct implementation. Thus it 
dealt with matters such as efficiently searching for possible 
definitions, proposing definitions in a "simplest first" manner, etc. 
No analysis is carried out with regard to what may be conjec­
tured, nor is an algorithmic analysis of the system given. In 
contrast 1 have not addressed implementation issues, but rather 
have attempted to address general problems of hypothesis for­
mation, and thus issues dealing with characterising a set of con-
jectures and maintaining the consistency of a set of conjectures. 

Winston's work was briefly described in the introduction. 
Basically Winston is concerned with the pragmatic aspects of a 
learning system, and concentrates on techniques to speed the 
learning process. In some sense then his approach is complemen­
tary to the one taken here. The system of section 3 subsumes 
the conjectures that may be formed in Winston's system: thus 
anything that can be formed in his system can also be conjec­
tured in HL. (Winston actually gives a semantic net representa­
tion for his concepts. This representation however is clearly 
equivalent to a set of binary relations, and is useful mainly as a 
notational or implementational device.) However, in HL the set 
of formable conjectures and the means of restoring consistency 
are precisely laid out whereas Winston does not address these 
issues. 

Shapiro's work is. superficially, the most similar to that 
presented here. Shapiro assumes that a domain is described by a 
stream of ground instances; based on the ground instances, a set 
of conjectured axioms for the domain is proposed and refined. A 
general, incremental algorithm for proposing a set of rules which 
imply the known ground instances is developed. The algorithm 
has tuneable parameters that determine the complexity of the 
structure of a hypothesis. The key difference between Shapiro's 
work and the work at hand is that Shapiro makes substantial 
assumptions about the way the domain is described. In particu­
lar, the domain is assumed to be describable by a set of rules in 
the form of restricted Horn clauses In addition the user is given 
some control over the form of the hypotheses. These assump­
tions allow an elegant algorithm for inducing rules for a wide 
class of problems to be derived. In the approach at hand, in con-
trast, the emphasis is on what may potentially be formed, rather 
than what can efficiently be induced. 

6. Conclusion 
This work develops a formal, unified, and general (but 

basic) framework for investigating learning from examples. A 
primary goal was to keep the approach as general as possible and 
independent of any particular domain, representation scheme, or 
set of learning techniques. Hence, for example, there is no res­
triction placed on the ordering of the ground instances nor is 
there any assumption that the input examples have been already 
aggregated into complex entities such as arches. Neither is there 
any restriction with regard to introducing new ("known ) predi­
cate names during the learning process. Also, no agent is 
assumed to exist, to help direct or focus the acquisition process. 

Presumably the issues addressed here are common to, and 
are relevant to. any system for learning from examples (at least 
any system that satisfies the five assumptions given in the intro­
duction). Hence the framework may be appropriate as both a 
basis for the development of systems that learn from examples, 
and perhaps as a neutral point from which such systems may be 
viewed and compared. However only a set of formal issues have 

been addressed, and the concern has been with what conjectures 
may potentially be formed, rather than with which of those con­
jectures should in fact be held. Pragmatic issues concerned with 
the justification of conjectures, strength of evidence, and degrees 
of confirmation, to name just a few. are outside the scope of this 
work. 

Formal systems are developed for introducing and main­
taining the consistency of conjectures. An exact specification of 
what conjectures may potentially be formed is provided, and it 
is shown how the consistency of a set of conjectures can be 
restored in the face of conflicting instances. The system illus­
trates that a reasonably rich and expressive set of conjectures 
can be derived using only a minimal set of assumptions. Two 
extensions to the system are described. First the system is aug­
mented to allow relations in the domain whose extension is com­
pletely known; to this end an axiomatisation of the (so-called) 
reducible and irreducible sets is provided. Also addressed is 
learning from examples, but where the system may be told arbi­
trary sentences in addition to the ground instances. The first 
extension does not affect the formal results previously obtained; 
the second is limiting, in that it may give rise to problems with 
inconsistency that have to be resolved by pragmatic means. 

The expressiveness of the system is indicated by the fact 
that it is as at least as general as a number of existing systems, 
including [Brown 73]. [Hayes-Roth 78). [Vere 78]. and [Winston 
75]. Results concerning decidability lend credence to the possi­
bility that learning systems based directly on this approach and. 
in particular, incorporating the procedure for restoring con­
sistency, may be efficiently implementable. In addition, given 
the generality of the approach, it is possible that the framework 
could also provide an appropriate starting point for an investiga­
tion of other types of learning systems. That is. the approach 
could conceivably be extended by incorporating further assump­
tions concerning the domain, underlying representation scheme, 
or an agent to assist in the learning. 

The approach as it stands may have immediate practical 
applications. As a specific example, database systems often use 
integrity constraints to partly maintain consistency and reliabil­
ity. However, given a large number of relations, it is an arduous 
task to specify all integrity constraints and to ensure that the set 
is consistent. The approach then seems suited to the task of 
automatically proposing and verifying such constraints. This 
possibility is explored in [Delgrande 87]. 
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