
Generating Production Rules From Decision Trees

J. R. Quinlan*
Artificial Intelligence Laboratory

Massachusetts Institute of Technology
545 Technology Square

Cambridge MA 02139 USA

Abstract

Many inductive knowledge acquisition algorithms generate clas­
sifiers in the form of decision trees. This paper describes a tech­
nique for transforming such trees to small sets of production
rules, a common formalism for expressing knowledge in expert
systems. The method makes use of the training set of cases from
which the decision tree was generated, first to generalize and as­
sess the reliability of individual rules extracted from the tree,
and subsequently to refine the collection of rules as a whole. The
final set of production rules is usually both simpler than the de­
cision tree from which it was obtained, and more accurate when
classifying unseen cases. Transformation to production rules also
provides a way of combining different decision trees for the same
classification domain.

In t roduct ion

A decision tree is a simple recursive structure for expressing a
sequential classification process in which a case, described by a
set of attributes, is assigned to one of a disjoint set of classes.
Each leaf of the tree denotes a class. An interior node denotes a
test on one or more of the attributes with a subsidiary decision
tree for each possible outcome of the test. To classify a case we
start at the root of the tree. If this is a leaf, the case is assigned
to the nominated class; if it is a test, the outcome for this case
is determined and the process continued with the subsidiary tree
appropriate to that outcome.

Figure 1 shows a non-trivial decision tree for one aspect of the di­
agnosis of thyroid disease (Quinlan, Compton, Horn and Lazarus,
1986). To simplify printing, the tree has been turned on its side.
Leaves are shown in bold font, and the possible outcomes at an
interior node are represented by logical expressions with equal
indentation. The interpretation of the attributes and decision

* Permanent address: School of Computing Sciences, New South
Wales Institute of Technology, Sydney 2007, Australia.
** Much of the research described here was carried out at the Ar­
tificial Intelligence Laboratory, Massachusetts Institute of Tech­
nology, whose artificial intelligence research is supported in part
by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-85-
K-0124. This research has also received support from the Aus­
tralian Research Grants Scheme and the Westinghouse Electric
Corporation.

classes is not important here, but notice that the root of this
tree is a test on attribute T3. When classifying a case, we will be
directed to the subtree starting with FTI < 49.5 or that headed
FTI < 172.5 depending on whether the value of TZ is less than,
or greater than or equal to, 1.15.

Research that commenced in the late 1950s with Hunt's Concept
Learning System (Hunt, Marin and Stone, 1966) has led to several
reliable methods for developing decision trees from training sets
of cases with known classes. Modern systems of this type, such as
those described in (Breiman, Friedman, Olshen and Stone, 1984;
Kononenko, Bratko and Roskar, 1984; Quinlan, 1986) can deal
effectively with large training sets affected by noise and incom­
pleteness, and can classify new cases even when the outcome of
crucial tests is unknown.

The starting point for this paper is a decision tree developed
by some means from a training set of cases. We examine meth­
ods for re-expressing the decision tree as a succinct collection of
production rules of the form

If left-hand side then class (certainty factor)

There are three reasons for such a transformation. First, pro­
duction rules are a widely-used and well-understood vehicle for
representing knowledge in expert systems (Winston, 1984). Sec­
ondly, a decision tree such as that in Figure 1 can be difficult for
a human expert to understand and modify, whereas the extreme
modularity of production rules makes them relatively transpar­
ent. Finally, and most importantly, this transformation can im­
prove classification performance by eliminating tests in the de­
cision tree attributable to peculiarities of the training set, and
by making it possible to combine different decision trees for the
same task.

The transformation takes place in two stages addressed in the
following sections. Individual rules are first developed from the
decision tree, and the collection of rules so derived is then pro­
cessed as an entity to yield the final ruleset.

Ext rac t ing Ind iv idua l Rules

Recall that classifying a case using a decision tree is effected by
following a path through the tree to one of the leaves. This path
from the root of the tree to a leaf establishes conditions, in terms
of specified outcomes for the tests along the path, that must be

304 KNOWLEDGE ACQUISITION

At this point we make use of the training set T of cases from
which the decision tree was generated in order to improve this
prototype rule. Let Xi be one of these conditions and let S C T
be the set of cases that satisfy all the other conditions in the left-
hand side of our rule. With respect only to 5, the relevance of Xi
to determining whether a case belongs to class c (given that the
other conditions are satisfied) can be summarized by the 2 x 2
contingency table

where se is the number of these cases that satisfy Xt and belong
to class e, se is the number that satisfy Xi but belong to some
class other than c, and so on.

Note that sc-f sc is the number of cases in the training set T that
satisfy the entire left-hand side of the rule and that ac of them
belong to the class nominated by the rule. These two numbers
provide a means of estimating the accuracy or certainty factor of
the rule. The obvious choice of setting

can be rather optimistic, especially when the numbers are small.
Since for any reasonable rule sc will be larger than ac, the use
of Yates' correction for continuity (Snedecor and Cochran, 1980,
p118) gives a more reasonable estimate as

There are at least two sets of circumstances under which this
condition Xi should be deleted from the left-hand side of the
rule. The first typically arises with disjunctive concepts (Bundy,
Silver and Plummer, 1985) in which a case belongs to a partic­
ular class whenever a disjunctive logical expression of the form
Y V Z is satisfied. A decision tree for such a classification task
might commence with a test that is relevant to Y but not to Z, so
the leaves associated with the disjunct Z will generate prototype
rules that contain irrelevant conditions. If Xi is such a condi­
tion, eliminating it will produce a more general rule without any
decrease in accuracy, i.e.

satisfied by any case classified by that leaf. For example, any
case that is classified as negative by the asterisked leaf near the
middle of Figure 1 must satisfy all the conditions

Every leaf of a decision tree thus corresponds to a primitive pro-
duction rule of the form

then class c

where the XI'S are conditions and c is the class of the leaf.

Secondly, the presence of Xi in the left-hand side of the rule
may give greater apparent accuracy, but this accuracy may de­
rive from chance characteristics of the training set that cannot
be expected to hold for unseen cases. The algorithm used to
construct the decision tree from the training set T has probably
attempted to 'fit' the data, even when it is noisy or inconclusive.
Under these circumstances, retaining Xi can be dangerous be­
cause the seeming reliability of the rule can lend false confidence
to a classification. There are several statistical tests that can be
used to signal this state of affairs. Following a suggestion of Don­
ald Michie, I use Fisher's exact test (Finney, Latscha, Bennett
and Hsu, 1963) to determine the significance level at which we
can reject the hypothesis that Xi is irrelevant to whether a case
satisfying all the other conditions belongs to class c. If this level
is not very small, the condition Xi is deleted.

Quinlan 305

The algorithm for dropping conditions from the left-hand tide of
a rule can now be stated succinctly. Condition Xi is a candidate
for elimination either if its removal will not decrease the certainty
factor of the rule, or if the hypothesis that Xi is irrelevant cannot
be rejected at the 1% level or better. So long as there are candi­
dates for elimination, we discard the one whose removal has the
least detrimental effect on the accuracy of the rule, and continue.
Of course, after any Xi has been removed, the contingency tables
for the remaining conditions must be recalculated.

As an illustration of the process, consider the rule above, ex­
tracted from Figure 1 which was in turn generated from a train­
ing set of 2800 cases. We focus first on the condition TT4 < 56.5.
The contingency table over all cases satisfying the remaining con­
ditions is

so that removing this condition will increase the value of the cer­
tainty factor. The same holds for the condition FTI < 172.5. In
the reduced rule the contingency table for the condition TSH >
5.75 is

Even though the rule without this condition is apparently less
accurate, the condition is removed because the hypothesis that
it is irrelevant to whether a case in 5 is class negative can only be
rejected at the 17% level. The remaining condition is significant
at better than the 0.1% level, so the final rule from this path
becomes

if T3 > 1.15 then class negative (99.0%)

The number of rules generated in this way is almost always
smaller than the number of leaves in the decision tree. Some
paths generate no rules, either because all conditions are elim­
inated or because the rule replicates another from a different
path. In this example, although the decision tree of Figure 1 has
27 leaves, the process above produces just 13 rules.

[Aside: The reader may wonder why we use the decision tree at
all, instead of developing rules directly from the training set of
cases. Working from the tree has two major advantages. Most
interesting classification tasks involve attributes with continu­
ous values which must be formed into tests by the development
of appropriate threshholds (e.g. TZ < 1.15 from before). The
divide-and-conquer approach commonly employed by algorithms
for constructing decision trees provides a powerful and context-
sensitive means of coping with this otherwise complex problem.
Secondly, even a long path in a decision tree typically involves
only a small proportion of the possible attributes. The training
set of Figure 1 uses 23 attributes to describe each case, but no
path in the decision tree uses more than nine tests; the space
of potential rules is thus shrunk from 0(223) to 0(29) with a
corresponding reduction in computational load.]

Processing Collections of Rules

Having reduced the given decision tree to a set of plausible rules,
we might judge the transformation task to have been accom­
plished. It seems relevant to wonder, though, how well the rules
classify unseen cases, and whether some subset of the rules might
be as useful as the whole set. These questions presume that there
is some target production rule interpreter in the wings. The fol­
lowing uses an extremely simple interpreter:

To classify a case, find a rule that applies to it. If
there is more than one, choose the rule with the higher
certainty factor. If no rule applies, take the class by
default to be the most frequent class in the training
set.

Alternative and equally sensible interpreters (e.g. those that
choose the most specialized applicable rule) should produce sim­
ilar results.

Let R be the set of production rules and T the training set of
cases from which the decision tree was generated. We would like
to find that subset of R which misclassified the fewest cases in T
but, by analogy with the set-covering task, this is an NP problem.
Instead, a heuristic algorithm is used to find a "good" subset by
successively discarding single rules.

For any case in T and any single rule r, we look at the class
to which this case would be assigned by the entire set R and
the reduced set R - {r}. The advantage of r is the number of
cases in T for which the correct class is given by R but not by
R - {r}> less the number of cases vice versa. If the advantage of
r is negative or zero, removing r from the set of production rules
will not increase the number of cases in T that are misclassified.
This suggests a straightforward procedure: at each step, delete
from R the rule with least advantage, so long as this advantage is
less than or equal to zero. The set of rules remaining at the end
of this process is locally optimal to the extent that deleting any
further rule will increase the number of misclassifications over
T. (This may overlook, however, situations in which deleting a
subset of the rules would improve performance.) The procedure
usually finds a good subset of R, but is weak when the initial
set of rules contains many pairs of very similar rules: in this
situation, most rules will have advantage 0 and so advantage is
a poor basis on which to choose the rule to delete.

We saw previously that the decision tree of Figure 1 with 27
leaves gave rise to 13 production rules. The winnowing process
described above reduces this set to just four rules with an average
of 3.75 conditions per rule.

Accuracy

We now turn to the classification accuracy of the reduced set of
rules. Since each rule was formed by eliminating conditions from
a path in the tree, it tends to be over-generalized with respect to
the training set. However, the relevant test of any classification
mechanism is its performance on unseen cases.

306 KNOWLEDGE ACQUISITION

When presented with 972 unseen cases, the decision tree of Fig-
ure 1 misclassifies 14 of them as compared to 13 errors from the
final set of four production rules above. Results from other ex­
periments reported in detail in (Quinlan, 1987) are summarized
in Table 1. In each of six domains, ten decision trees were gen­
erated from a training set and their performance measured on
unseen cases. Each decision tree was then transformed to a set
of production rules whose accuracy was assessed on the same un­
seen cases. The average sizes and error rates for each domain
shown in Table 1 bring out the point that the production rules
are generally much simpler and sometimes more accurate than
the decision tree from which they were generated.

Another advantage of transforming decision trees to production
rules is their resulting modularity. There is no obvious way to
combine two decision trees for the same classification task so as to
generate a super-tree that is more accurate than either of its par­
ents. If each decision tree is converted to a set of rules, though, a
composite reduced set can be produced simply by merging rules
from all trees before applying the final winnowing process out­
lined above. This approach has been found to give encouraging
results. For example, ten decision trees derived from the same
training set as the tree of Figure 1, when combined in this way,
yield a set of five production rules that correctly classify all but
8 of the 972 unseen cases, even though the best of the trees gives
11 errors on these same cases.

Conclusion

The conclusion of this work is that it is possible to re-express
complex decision trees as small sets of production rules that out­
perform the original trees when asked to classify unseen cases.
The methods outlined here also provide a way to merge differ­
ent decision trees for the same task, thereby obtaining another
increase in accuracy.

This method for reducing the number of rules can be contrasted
with the TRUNC algorithm employed in AQ15 (Michalski, Mozetic
Hong and Lavrac, 1986). The analog of a rule in that system is
a complex or conjunction of conditions associated with a class.
Unlike rules, complexes are exact in the sense that any case in
the training set satisfying all the conditions is guaranteed to be­
long to the designated class. At each iteration, TRUNC discards
the complex satisfied by the fewest cases in the training set until

some stopping criterion is met. AQ15 uses a powerful form of
partial or analogical matching to allow a case which satisfies no
complex to be deemed to match the most similar complex. As a
result, even though deleting a complex cannot decrease the num­
ber of misclassified training cases, it may not necessarily cause an
increase in this number. Interestingly, Michalski et al also report
that removal of little-used complexes has been found to lead to
improved classification performance on unseen cases.

Although the algorithms presented here work well, they should
be capable of further improvement. Both the condition-dropping
and rule-dropping processes use a hill-climbing approach which
can often get stuck on a local optimum. More sophisticated
search strategies should generate better individual rules and bet­
ter rule sets at the cost of some increase in computation.

Acknowledgements

I thank many colleagues for comments and suggestions, particu­
larly Wray Buntine, Jason Catlett, Bill Leech, John McDermott,
Donald Michie and Ron Rivest. I am grateful to the Garvan In­
stitute of Medical Research, Sydney, for providing access to the
thyroid data.

References

Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984),
Classification and Regression Trees, Belmont: Wadsworth.
Bundy, A., Silver, B. and Plummer, D. (1985), An analytical
comparison of some rule-learning programs, Artificial Intelligence
27, pp 137-181.
Finney, D.J., Latscha, R., Bennett, B.M. and Hsu, P. (1963),
Tables for Testing Significance in a 2 x 2 Contingency Table,
Cambridge University Press.
Hunt, E.B., Marin, J. and Stone, P.J. (1966), Experiments in
Induction, New York: Academic Press.
Kononenko, I., Bratko, I. and Roskar, E. (1984), Experiments in
automatic learning of medical diagnostic rules, Technical Report,
Jozef Stefan Institute, Ljubljana, Yugoslavia.
Michalski, R.S., Mozetic, I., Hong, J. and Lavrac, N. (1986), The
multi-purpose incremental learning system AQ15 and its test­
ing application to three medical domains, Proc. Fifth National
Conference on Artificial Intelligence, Philadelphia.

Quinlan, J.R. (1986), Induction of decision trees, Machine Learn­
ing 1, 1.
Quinlan, J.R., Compton, P.J., Horn, K.A. and Lazarus, L. (1986),
Inductive knowledge acquisition: a case study, Proc. Second Aus­
tralian Conference on Applications of Expert Systems, Sydney.

Quinlan, J.R. (1987), Simplifying decision trees, Int. Journal
Man-Machine Studies, to appear.
Snedecor, G.W. and Cochran, W.G. (1980), Statistical Methods
(7th edition), Iowa State University Press.
Winston, P.H. (1984), Artificial Intelligence (2nd edition), Addison-
Wesley.

Quinlan 307

