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Abstract 

Many inductive knowledge acquisition algorithms generate clas­
sifiers in the form of decision trees. This paper describes a tech­
nique for transforming such trees to small sets of production 
rules, a common formalism for expressing knowledge in expert 
systems. The method makes use of the training set of cases from 
which the decision tree was generated, first to generalize and as­
sess the reliability of individual rules extracted from the tree, 
and subsequently to refine the collection of rules as a whole. The 
final set of production rules is usually both simpler than the de­
cision tree from which it was obtained, and more accurate when 
classifying unseen cases. Transformation to production rules also 
provides a way of combining different decision trees for the same 
classification domain. 

In t roduct ion 

A decision tree is a simple recursive structure for expressing a 
sequential classification process in which a case, described by a 
set of attributes, is assigned to one of a disjoint set of classes. 
Each leaf of the tree denotes a class. An interior node denotes a 
test on one or more of the attributes with a subsidiary decision 
tree for each possible outcome of the test. To classify a case we 
start at the root of the tree. If this is a leaf, the case is assigned 
to the nominated class; if it is a test, the outcome for this case 
is determined and the process continued with the subsidiary tree 
appropriate to that outcome. 

Figure 1 shows a non-trivial decision tree for one aspect of the di­
agnosis of thyroid disease (Quinlan, Compton, Horn and Lazarus, 
1986). To simplify printing, the tree has been turned on its side. 
Leaves are shown in bold font, and the possible outcomes at an 
interior node are represented by logical expressions with equal 
indentation. The interpretation of the attributes and decision 
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classes is not important here, but notice that the root of this 
tree is a test on attribute T3. When classifying a case, we will be 
directed to the subtree starting with FTI < 49.5 or that headed 
FTI < 172.5 depending on whether the value of TZ is less than, 
or greater than or equal to, 1.15. 

Research that commenced in the late 1950s with Hunt's Concept 
Learning System (Hunt, Marin and Stone, 1966) has led to several 
reliable methods for developing decision trees from training sets 
of cases with known classes. Modern systems of this type, such as 
those described in (Breiman, Friedman, Olshen and Stone, 1984; 
Kononenko, Bratko and Roskar, 1984; Quinlan, 1986) can deal 
effectively with large training sets affected by noise and incom­
pleteness, and can classify new cases even when the outcome of 
crucial tests is unknown. 

The starting point for this paper is a decision tree developed 
by some means from a training set of cases. We examine meth­
ods for re-expressing the decision tree as a succinct collection of 
production rules of the form 

If left-hand side then class (certainty factor) 

There are three reasons for such a transformation. First, pro­
duction rules are a widely-used and well-understood vehicle for 
representing knowledge in expert systems (Winston, 1984). Sec­
ondly, a decision tree such as that in Figure 1 can be difficult for 
a human expert to understand and modify, whereas the extreme 
modularity of production rules makes them relatively transpar­
ent. Finally, and most importantly, this transformation can im­
prove classification performance by eliminating tests in the de­
cision tree attributable to peculiarities of the training set, and 
by making it possible to combine different decision trees for the 
same task. 

The transformation takes place in two stages addressed in the 
following sections. Individual rules are first developed from the 
decision tree, and the collection of rules so derived is then pro­
cessed as an entity to yield the final ruleset. 

Ext rac t ing Ind iv idua l Rules 

Recall that classifying a case using a decision tree is effected by 
following a path through the tree to one of the leaves. This path 
from the root of the tree to a leaf establishes conditions, in terms 
of specified outcomes for the tests along the path, that must be 
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At this point we make use of the training set T of cases from 
which the decision tree was generated in order to improve this 
prototype rule. Let Xi be one of these conditions and let S C T 
be the set of cases that satisfy all the other conditions in the left-
hand side of our rule. With respect only to 5, the relevance of Xi 
to determining whether a case belongs to class c (given that the 
other conditions are satisfied) can be summarized by the 2 x 2 
contingency table 

where se is the number of these cases that satisfy Xt and belong 
to class e, se is the number that satisfy Xi but belong to some 
class other than c, and so on. 

Note that sc-f sc is the number of cases in the training set T that 
satisfy the entire left-hand side of the rule and that ac of them 
belong to the class nominated by the rule. These two numbers 
provide a means of estimating the accuracy or certainty factor of 
the rule. The obvious choice of setting 

can be rather optimistic, especially when the numbers are small. 
Since for any reasonable rule sc will be larger than ac, the use 
of Yates' correction for continuity (Snedecor and Cochran, 1980, 
p118) gives a more reasonable estimate as 

There are at least two sets of circumstances under which this 
condition Xi should be deleted from the left-hand side of the 
rule. The first typically arises with disjunctive concepts (Bundy, 
Silver and Plummer, 1985) in which a case belongs to a partic­
ular class whenever a disjunctive logical expression of the form 
Y V Z is satisfied. A decision tree for such a classification task 
might commence with a test that is relevant to Y but not to Z, so 
the leaves associated with the disjunct Z will generate prototype 
rules that contain irrelevant conditions. If Xi is such a condi­
tion, eliminating it will produce a more general rule without any 
decrease in accuracy, i.e. 

satisfied by any case classified by that leaf. For example, any 
case that is classified as negative by the asterisked leaf near the 
middle of Figure 1 must satisfy all the conditions 

Every leaf of a decision tree thus corresponds to a primitive pro-
duction rule of the form 

then class c 

where the XI'S are conditions and c is the class of the leaf. 

Secondly, the presence of Xi in the left-hand side of the rule 
may give greater apparent accuracy, but this accuracy may de­
rive from chance characteristics of the training set that cannot 
be expected to hold for unseen cases. The algorithm used to 
construct the decision tree from the training set T has probably 
attempted to 'fit' the data, even when it is noisy or inconclusive. 
Under these circumstances, retaining Xi can be dangerous be­
cause the seeming reliability of the rule can lend false confidence 
to a classification. There are several statistical tests that can be 
used to signal this state of affairs. Following a suggestion of Don­
ald Michie, I use Fisher's exact test (Finney, Latscha, Bennett 
and Hsu, 1963) to determine the significance level at which we 
can reject the hypothesis that Xi is irrelevant to whether a case 
satisfying all the other conditions belongs to class c. If this level 
is not very small, the condition Xi is deleted. 
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The algorithm for dropping conditions from the left-hand tide of 
a rule can now be stated succinctly. Condition Xi is a candidate 
for elimination either if its removal will not decrease the certainty 
factor of the rule, or if the hypothesis that Xi is irrelevant cannot 
be rejected at the 1% level or better. So long as there are candi­
dates for elimination, we discard the one whose removal has the 
least detrimental effect on the accuracy of the rule, and continue. 
Of course, after any Xi has been removed, the contingency tables 
for the remaining conditions must be recalculated. 

As an illustration of the process, consider the rule above, ex­
tracted from Figure 1 which was in turn generated from a train­
ing set of 2800 cases. We focus first on the condition TT4 < 56.5. 
The contingency table over all cases satisfying the remaining con­
ditions is 

so that removing this condition will increase the value of the cer­
tainty factor. The same holds for the condition FTI < 172.5. In 
the reduced rule the contingency table for the condition TSH > 
5.75 is 

Even though the rule without this condition is apparently less 
accurate, the condition is removed because the hypothesis that 
it is irrelevant to whether a case in 5 is class negative can only be 
rejected at the 17% level. The remaining condition is significant 
at better than the 0.1% level, so the final rule from this path 
becomes 

if T3 > 1.15 then class negative (99.0%) 

The number of rules generated in this way is almost always 
smaller than the number of leaves in the decision tree. Some 
paths generate no rules, either because all conditions are elim­
inated or because the rule replicates another from a different 
path. In this example, although the decision tree of Figure 1 has 
27 leaves, the process above produces just 13 rules. 

[Aside: The reader may wonder why we use the decision tree at 
all, instead of developing rules directly from the training set of 
cases. Working from the tree has two major advantages. Most 
interesting classification tasks involve attributes with continu­
ous values which must be formed into tests by the development 
of appropriate threshholds (e.g. TZ < 1.15 from before). The 
divide-and-conquer approach commonly employed by algorithms 
for constructing decision trees provides a powerful and context-
sensitive means of coping with this otherwise complex problem. 
Secondly, even a long path in a decision tree typically involves 
only a small proportion of the possible attributes. The training 
set of Figure 1 uses 23 attributes to describe each case, but no 
path in the decision tree uses more than nine tests; the space 
of potential rules is thus shrunk from 0(223) to 0(29) with a 
corresponding reduction in computational load.] 

Processing Collections of Rules 

Having reduced the given decision tree to a set of plausible rules, 
we might judge the transformation task to have been accom­
plished. It seems relevant to wonder, though, how well the rules 
classify unseen cases, and whether some subset of the rules might 
be as useful as the whole set. These questions presume that there 
is some target production rule interpreter in the wings. The fol­
lowing uses an extremely simple interpreter: 

To classify a case, find a rule that applies to it. If 
there is more than one, choose the rule with the higher 
certainty factor. If no rule applies, take the class by 
default to be the most frequent class in the training 
set. 

Alternative and equally sensible interpreters (e.g. those that 
choose the most specialized applicable rule) should produce sim­
ilar results. 

Let R be the set of production rules and T the training set of 
cases from which the decision tree was generated. We would like 
to find that subset of R which misclassified the fewest cases in T 
but, by analogy with the set-covering task, this is an NP problem. 
Instead, a heuristic algorithm is used to find a "good" subset by 
successively discarding single rules. 

For any case in T and any single rule r, we look at the class 
to which this case would be assigned by the entire set R and 
the reduced set R - {r}. The advantage of r is the number of 
cases in T for which the correct class is given by R but not by 
R - {r}> less the number of cases vice versa. If the advantage of 
r is negative or zero, removing r from the set of production rules 
will not increase the number of cases in T that are misclassified. 
This suggests a straightforward procedure: at each step, delete 
from R the rule with least advantage, so long as this advantage is 
less than or equal to zero. The set of rules remaining at the end 
of this process is locally optimal to the extent that deleting any 
further rule will increase the number of misclassifications over 
T. (This may overlook, however, situations in which deleting a 
subset of the rules would improve performance.) The procedure 
usually finds a good subset of R, but is weak when the initial 
set of rules contains many pairs of very similar rules: in this 
situation, most rules will have advantage 0 and so advantage is 
a poor basis on which to choose the rule to delete. 

We saw previously that the decision tree of Figure 1 with 27 
leaves gave rise to 13 production rules. The winnowing process 
described above reduces this set to just four rules with an average 
of 3.75 conditions per rule. 

Accuracy 

We now turn to the classification accuracy of the reduced set of 
rules. Since each rule was formed by eliminating conditions from 
a path in the tree, it tends to be over-generalized with respect to 
the training set. However, the relevant test of any classification 
mechanism is its performance on unseen cases. 
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When presented with 972 unseen cases, the decision tree of Fig-
ure 1 misclassifies 14 of them as compared to 13 errors from the 
final set of four production rules above. Results from other ex­
periments reported in detail in (Quinlan, 1987) are summarized 
in Table 1. In each of six domains, ten decision trees were gen­
erated from a training set and their performance measured on 
unseen cases. Each decision tree was then transformed to a set 
of production rules whose accuracy was assessed on the same un­
seen cases. The average sizes and error rates for each domain 
shown in Table 1 bring out the point that the production rules 
are generally much simpler and sometimes more accurate than 
the decision tree from which they were generated. 

Another advantage of transforming decision trees to production 
rules is their resulting modularity. There is no obvious way to 
combine two decision trees for the same classification task so as to 
generate a super-tree that is more accurate than either of its par­
ents. If each decision tree is converted to a set of rules, though, a 
composite reduced set can be produced simply by merging rules 
from all trees before applying the final winnowing process out­
lined above. This approach has been found to give encouraging 
results. For example, ten decision trees derived from the same 
training set as the tree of Figure 1, when combined in this way, 
yield a set of five production rules that correctly classify all but 
8 of the 972 unseen cases, even though the best of the trees gives 
11 errors on these same cases. 

Conclusion 

The conclusion of this work is that it is possible to re-express 
complex decision trees as small sets of production rules that out­
perform the original trees when asked to classify unseen cases. 
The methods outlined here also provide a way to merge differ­
ent decision trees for the same task, thereby obtaining another 
increase in accuracy. 

This method for reducing the number of rules can be contrasted 
with the TRUNC algorithm employed in AQ15 (Michalski, Mozetic 
Hong and Lavrac, 1986). The analog of a rule in that system is 
a complex or conjunction of conditions associated with a class. 
Unlike rules, complexes are exact in the sense that any case in 
the training set satisfying all the conditions is guaranteed to be­
long to the designated class. At each iteration, TRUNC discards 
the complex satisfied by the fewest cases in the training set until 

some stopping criterion is met. AQ15 uses a powerful form of 
partial or analogical matching to allow a case which satisfies no 
complex to be deemed to match the most similar complex. As a 
result, even though deleting a complex cannot decrease the num­
ber of misclassified training cases, it may not necessarily cause an 
increase in this number. Interestingly, Michalski et al also report 
that removal of little-used complexes has been found to lead to 
improved classification performance on unseen cases. 

Although the algorithms presented here work well, they should 
be capable of further improvement. Both the condition-dropping 
and rule-dropping processes use a hill-climbing approach which 
can often get stuck on a local optimum. More sophisticated 
search strategies should generate better individual rules and bet­
ter rule sets at the cost of some increase in computation. 
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