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Abstract 
Many studies of analogy in Artificial Intelligence have focused on analogy as 
a heuristic mechanism to guide search and simplify problem solving or as a 
basis for forming generalizations. This paper examines analogical learning, 
where analogy is used to conjecture new knowledge about some domain. A 
theory of Verification-Based Analogical Learning is presented which addresses 
the tenuous nature of analogically inferred concepts and describes procedures 
that can be used to increase confidence in the inferred knowledge. The theory 
describes how analogy may be used to discover and refine scientific models of 
the physical world. Examples are taken from an implemented system, which 
discovers qualitative models of processes such as liquid flow and heat flow. 

1 Introduction 
Analogy is roughly composed of three stages: Access, Mapping, and 
Evaluation and Use. Previous work in analogy has focused primar­
ily on how one forms an analogical mapping and how this mapping 
may be used as a heuristic mechanism to guide search and simplify 
problem solving. This paper makes a distinction between the differ­
ent usee of analogy and focuses on analogical learning, where analogy 
is used to conjecture new knowledge about some domain. Since the 
underlying assumption of analogical inference is that certain similar­
ities between two domains imply stronger, relational similarities, the 
validity of knowledge inferred in this manner is very tenuous. This pa­
per describes some procedures that can be used to increase confidence 
in the inferred knowledge. Specifically, a theory of Verification-Based 
Analogical Learning is presented which may be used to discover and 
refine scientific models of the physical world. New models' predictions 
are compared against observed behavior, enabling the system to test 
the validity of the analogy and sanction refinements where the anal­
ogy is incorrect. The work also addresses another common problem 
in analogy, that of knowing what relations to map, by showing that 
the behavioral similarity of two phenomena can be used to initiate and 
guide the mapping process. 

Many scientific theories are postulated as qualitative models of 
physical phenomena which must be actively confirmed or refuted. This 
work shows how analogy may be seen as one source of creativity in dis­
covering such models and focuses on how the results of this creativity 
must be carefully examined. Intuitively, the theory corresponds to how 
one might construct a wave model of sound from prior knowledge of 
water wave behavior. Examples are taken from an implemented sys­
tem to demonstrate how the theory may be used to discover qualitative 
models of liquid flow and heat flow. 

2 The Analogy Process 
To understand the possible uses for analogy, one must first have a 
clear definition of analogy itself. This section serves to clarify common 
terminology by presenting a breakdown of the analogy process (similar 
to Gentner, 1986), followed by a discussion of the different uses for 
analogy. 
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Access: The access stage has two purposes. First, it locates a body 
of prior knowledge (the base) which may be analogous to the 
current situation (the target). Second, it should garner out those 
features of the base which are pertinent to the analogy. 

Mapp ing : The mapping stage consists of finding similarities between 
the base and target (matching), and possibly transferring addi­
tional knowledge from the base to the target (inference). The 
work presented in this paper draws from Gentner's (1983) Struc­
ture-Mapping theory of analogy and uses a simulation of these 
principles, the Structure-Mapping Engine (SME) (Falkenhainer, 
et al, 1986). Mappings constructed by SME consist of the set of 
base/target correspondences and a potentially empty set of ana­
logical inferences - relations that augment the target description 
by transferring knowledge from the base. SME is guided by a set 
of match constructor rules that specify what items may plausibly 
match, providing a useful programability option. 

Evaluat ion and Use: Once the correspondences have been found, 
the quality of the match and its consistency with general domain 
knowledge should be evaluated before using the proposed anal­
ogy. The uses for analogy are discussed in the following section. 

2.1 Using an Analogy 

Analogy matches a base description with a target description of varying 
levels of completeness. When the target is complete, analogy indicates 
where the correspondences are and has no predictive power. When the 
target lacks certain relations, analogical inference may occur; relations 
which hold in the base but are not known to hold in the target are 
mapped into the target domain. Borrowing from Indurkhya (1985), we 
may formally define two types of analogical inference: 

Def in i t ion : A set of analogical inferences are strongly coherent if every 
sentence being mapped is logically entailed by the target. The 
inferences are weakly coherent if they are merely consistent with 
the target, rather than entailed by it.2 

Thus, some analogical inferences may be seen as knowledge which exists 
for the target domain, yet is not explicitly stated (i.e., search would 
be required to retrieve it). Other analogical inferences represent new 

, knowledge • conjectured facts about the target domain. This is an 
important distinction for categorising the different uses of analogy: 

Analogical Reasoning. Analogical reasoning involves using past ex­
periences as heuristics to guide or assist current reasoning pro­
cesses, as in recommending promising search paths (e.g. Car-
bonell (1983), Kedar-Cabelli (1985)). The classification also refers 
to cases in which analogy is used as a focusing mechanism (e.g., 
stating an analogy to point out the salient features of the target). 
It also applies to case-based reasoning systems, which draw on 
previous instances of similar situations for guidance (e.g. Kolod-
ner et al, 1985; Hammond, 1986). Here a strict definition of 

2Indurkhya (1006) uses cohersnt and its subset, strongly coherent, to refer to the 
entire analogical mapping (matches plus inferences). Here we add the term weakly 
coherent and only apply these terms to the inferences. 
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reasoning by analogy will be employed, in which analogy is used 
for guidance and those analogical inferences which end up being 
useful are strongly coherent. 

Similarity-Based Generalisation. In analogy, one may use the sim­
ilarity between two concepts found during the matching stage to 
form a single, generalised concept. This corresponds closely to 
many empirical (often called similarity-based) learning methods, 
some of which use pattern matching techniques to detect similar­
ities in the structural representation of features (e.g., Hayes-Roth 
& McDermott, 1978; Michalski, 1980). 

Analogical Learning. This is a method of learning that is unique to 
analogy. Roughly, if we know about some base situation and we 
encounter some target situation which is believed to be similar 
to the base, perhaps the additional knowledge we have about 
the base may also hold for the target. Thus, analogical learning 
uses weakly coherent analogical inferences to posit new knowledge 
about the target domain. 

These uses of analogy may be intermixed. For example, one may 
use the results of analogical learning to form a more general concept 
description. Thus, knowledge of the solar system could be used to learn 
about the Rutherford model of the atom. In turn, these could be used 
to form a general concept of central-force systems. In addition, the 
results of analogical reasoning processes may be stored, thus "learn­
ing" in the analytical (EBL) sense. This paper focuses on analogical 
learning. In analogical reasoning, the inferences are used as a heuristic 
device. Falsely drawn inferences only mean an impact on performance 
rather than correctness (i.e., they will cause backtracking). In analog­
ical learning, the inferences are accepted as new knowledge which did 
not exist prior to the analogy. Thus, we must be sure there are sound 
reasons for believing that the inferences are correct. 

The underlying assumption of analogical inference is that surface 
similarity implies a stronger, relational similarity. Thus, it is a tenu­
ous form of plausible inference. Accepting weakly coherent inferences 
requires a cautious investigation of the learned concepts. One way to 
ensure that they make sense is to compare the consequences of these in­
ferences against observed physical behavior - hence, verification-based 
analogical learning. Theories produced by analogy are evaluated by 
their ability to predict observed physical phenomena. 

3 A Theory Of Model Acquisition 
Scientific theories are seldom constructed in a vacuum. They tend 
to be either refined versions of existing theories or they are trans­
ferred theories of similar phenomena. This work addresses both type* 
of theory construction, using analogical inference as the "inventive" 
mechanism. Knowledge refinement techniques model the incremental 
stage of theory construction. By contrast, discovery techniques enable 
the construction of "first-pass" theories of the world. Analogy offers 
a method for making large leaps in current knowledge. It allows a 
reasoning system to come up with an initial theory for some domain 
which knowledge refinement methods may subsequently adjust. 

In general, we know that when two bodies, one hot and one cold, 
are placed in contact with each other, after a period of time they will 
reach the same temperature. What happens between the time the two 
objects are placed in contact and the time the two temperatures equal­
ise? If the notion of water flow suggests itself, we may construct a 
model for the situation in which heat is seen "flowing" from a higher 
temperature to a lower temperature. Using the new model shows that 
it accurately explains the phenomenon. This is called verifying the 
consistency of the model. The new theory now predicts that certain 
other events must also be able to happen, such as the bidirectional-
ity of heat flow. We attempt to recollect a prior experience (history) 
demonstrating this predicted behavior or we conduct simple experi­
ments to explore the space of hypothesized behaviors. This is called 
venfying the predictions of the model. If we were to extend the anal-
egy further by hypothesising that heat was itself a type of liquid (i.e.. 
therory of heat) a nmber additional predicational may be-

made baaed upon the intrinsic properties of liquids and physical ob­
jects. For example, conservation of matter would lead to predictions 
based on conservation of heat. Exploring the consequences of these 
additional predictions is called verifying the extension of the analogy. 
This entire process of hypothesis formation, confirmation, refutation, 
and subsequent refinement is the essence of verification-based analogi­
cal learning (VBAL). 

In order to learn in this manner, we must be able to reason about 
scientific theories and the physical situations they describe. This work 
models the world in terms of qualitative physics, using For bus' Quali­
tative Process theory (Forbus, 1984).3 A physics reasoner, QPE (For-
bus, 1986b), is employed, which takes qualitative models and produces 
an envisionment for a given system that describes its possible phys­
ical states and the possible transitions between them. A single path 
through the envisionment (an actual behavior) is called a history. In 
addition, a physics interpreter, ATMI (Forbus, 1986a), is used to mon­
itor the world and relate obserations to known or postulated theories. 

The current implementation of VBAL, called Phineas (Figure 2), 
is designed to operate as a passive observer, relating observed physical 
phenomena to known theories of the world. When ATMI fails to ade­
quately interpret a new event, the VBAL control module is called upon 
to construct a potential explanation of the situation (see Figure I) It 
interacts with SME and a knowledge refinement module to construct 
a new or revised model:4 

1. Dynamic Behavior Match. First, a prior situation that ap­
pears to exhibit similar behavior is accessed and SME is used to 
form a match between the behavior of the current and prior sit­
uations. This analogy serves to explicitly indicate which aspects 
of their behavior are the same (e.g., perhaps only some of the 
prior behavior's states are analogous) and establishes the object 
and quantity correspondences between the two domains. 

2. Relevant Theory Retrieval. Once a satisfactory experience 
has been retrieved, the domain theories used to explain the matched 
parts of the prior situation are fetched. These theories are simply 
a collection of the entity and process definitions that were used 
by ATMI when it originally encountered the previous behavior. 
Each state in the history indicates what processes were active 
during that state. Thus, if the current history only matches a 
subset of the states in the old history, only the relevant process 
models are used. 

3. Theory Mapping. SME is invoked a second time to map the 
potentially analogous domain theory to the new domain of inter­
est. This second analogy is generally a pure mapping of structure 
from one domain to another, appropriately transformed accord­
ing to the object correspondences provided by the prior analogy 

3In QP theory, a situation is represented as a collection of objects a set f 
relationships between them, and a set of processes which account for all changer in 
ne world (eg, liquid flow). Each object has a set of continuous parameters such as 

TEMPERATURE and PRESSURE, which are represented as symbolic quantities that have 
in amount and a denvative Process definitions contain a set r( initial conditions 
that constriant activation and a set of relations that indicate how the active process 
would affect the war 

4 The knowledge element modine iscorrectly antimiplations 
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between the histories. The analogical match is constrained by 
the object and quantity correspondences established during the 
dynamic behavior match. 

4. Consistency Verification. The correctness of the new model 
is verified by using it to account for the original situation. QPE 
takes the model and produces a new envisionment, which ATMI 
in turn compares to the current situation. If verification fails, 
model refinement may be used to account for slight imperfections 
in the analogy, or a different analogy may be tried. 

5. Empirical Verification. Given that the new model is con­
sistent with what has been observed, we may now seek further 
empirical confirmation of its validity through various stages of ex­
perimentation. A time-based planner is being used to explore the 
possibility of constructing simple experiments to perform predic-
tion verification. More complex experiments may have to be per­
formed to verify extensions of the analogy (Falkenhainer, 1987). 

At any time during the verification stages, if the model is found 
to be flawed, knowledge refinement would be required to make the 
appropriate adjustments in the model. For example, we could call upon 
our general physical knowledge to make "common sense" adjustments 
Alternately, we could resort to directed experimentation to uncover the 
source of the discrepancy (e.g., Rajamoney, 1985). Finally, we could 
resort to analogy again, using different situations to fill in and correct 
the missing theory (e.g., Burstein, 1983). 

Phineas' operation will now be reviewed in conjuction with an ex­
ample of how the system learns a new model of heat flow by drawing 
an analogy with a similar water flow experience. 

3.1 Accessing Analogous Behavior 
Suppose the program was given time-ordered measurements of a heat 
flow situation in which a hot horse shoe has just been thrown into 
a bucket of cold water. ATMI would translate this sequence into the 
qualitative history shown in Figure 3 and attempt to explain it in terms 
of known theories. If the program has no knowledge of heat flow, 
interpretation will fail. As a result, the analogical learning module 
will attempt to construct a plausible explanation. First, an analogous 
history must be located from past experience. Currently, we assume 
that a suitable situation has been retrieved, leaving the problem of 
analogical access for separate investigation.5 

In this case, an analogous water flow history is found (a beaker 
and a vial attached by a pipe) and SME is invoked to match the cur­
rent heat flow history to the prior water flow history This establishes 
which things are behaving in an analogous manner (e.g., which ob­
ject is the source of flow and which object is the destination). The 
roles of the beaker water and vial water in the water flow history are 
found to correspond to the roles of the horse shoe and water in the 
heat flow history, respectively. Those correspondences which provide 
a mapping between entities or between their quantities are stored for 
later reference (the correspondences shown in Figure 3). 

3.2 Forming a New Model 
The program now fetches the relevant domain theory which led to 
its prior understanding of water flow A second analogical match is 
performed by SME, this time between the retrieved process model for 
water flow and the current heat flow situation, producing a new model 
for heat flow based upon the old water flow model (Figure 4).° 

The analogy at this stage is highly constrained, due to the set 
of entity and function correspondences established when the dynamic 
behaviors were matched. SME's rule-based architecture complements 
this activity, since the reasoning program may dynamically modify 
SME's match construction rules to force a match between those entities 
and quantities that were found to be analogous during the access stage 
(e.g., Pressure and Temperature) and prevent any alternate matches 
for these items (e.g., Amount-Of and Temperature). 

Notice that the "analogy" here is composed almost entirely of weakly 
coherent inferences, since the system had no prior model of heat flow. 
Thus, the model was constructed by analogy rather than augmented 
by analogy. Additionally, this method shows how SME's rule-based 
architecture supports situations in which entity correspondences are 
given prior to the match, rather than derived as a result of the match. 

In many cases, not enough information is explicitly given for the 
theory to properly match. In the heat flow example, we need a way 
of knowing what is flowing. This information is not available if the 
temperature change is all that is known. The domain model for wa­
ter flow includes an AMOUNT-OF function which corresponds to HEAT in 
the heat flow domain. However, the quantity HEAT never appeared in 
the heat flow history as an observable. Without a notion of heat, the 
program would be forced to either map AMOUNT-OF directly into the 
new heat flow model or postulate the existence of an unknown aspect 
of the objects involved which corresponds to an AMOUNT-OF concept for 
heat flow situations. To avoid this, the world knowledge must include 
enough information to deduce that temperature and heat possess a 
relationship similar to the relationship between pressure and amount 
(mass). In this example, the relation FUNCTION-OF was used to ap-
proximate this relationship, enabling the system to match PRESSURE 
to TEMPERATURE and AMOUNT-OF to HEAT. 

The results produced by SME (Figure 4) contain the entity 
(*skolem* pipe). This indicates that, at the moment, the heat path is 
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a conjectured entity. Further experimentation could be used to identify 
the actual heat path, a knowledge of paths in general could be used to 
indicate that immersion is a likely path, or the path could be left as a 
conjectured entity. This last choice correspond? closely to the period 
in science when a substance, called the ether, was believed to exist in 
order to provide a medium for the flow of light waves. In this example, 
Phineas concludes that physical contact represents a valid path. 

3.3 Consistency Verification 
Now that Phineas has a new process model for heat flow, it may repeat 
its attempt to interpret the original situation. The heat flow process 
model is given to QPE and ATMI compares QPE's new predictions 
against the original observations. Since the water flow and heat flow 
situations are so similar, ATMI finds that the new theory accurately 
models the heat flow situation. The program has thus verified that the 
theory is accurate for this and functionally similar instances of heat 
flow. Experiments may be used to further verify the theory and the 
new model may be added to the set of known domain theories VBAL 
takes weakly coherent analogical inferences and adds a new dimension 
of validity to them, that of empirical validity. 

4 Other Examples 
Phineas has been used to learn different types of water flow and heat 
flow models (e.g., an infinite heat source - a stove) and its knowledge 
representation is being extended to enable learning of oscillation mod­
els. A common problem in analogy is knowing what to map. Focusing 
on the theory that explained the base history indicates which system of 
relations should be mapped, thus eliminating the need to consider irrel­
evant relations (e.g., evaporation) in the water - heat analogy. (Falken-
hainer, 1986) describes an example in which a model of water flow was 
learned by drawing upon a two-state heat flow situation (heating up, 
boiling). It shows how the dynamic behavior match enabled the system 
to deam the boiling irrelevant to the purpose of the analogy 

The examples described above consist of ideal situations; that is, 
the recalled behavior and corresponding theory were sufficiently similar 
to analogously explain the observed behavior. Since this will often not 
be the case, any general theory of analogical learning must include a 
theory of model refinement. See (Falkenhainer, 1986) for a discussion 
of refinement in the context of VBAL and how analogy may serve to 
focus the refinement process. 

5 Discussion 
Analogy has been shown to be a useful "inventive" mechanism, en­
abling a reasoning system to construct initial theories of some domain 
which knowledge refinement methods may subsequently adjust. The 
current implementation opens the door for a variety of future report h 
directions. For example, the various access mechanism.- urrently be­
ing investigated may now be installed and evaluated In addition the 
system lacks a knowledge refinement module and so is- unable to corr-
rectly process the non-ideal situations requiring modification works. 

in progress to construct a suitable refinement module. This will allow 
direct testing of the utility of different refinement schemes in the con­
text of analogy. We would also like to test different and more complex 
domain models to explore the limits of analogy as a learning device. 

A key issue in analogical learning concerns the tenuous nature of 
the inferences made. Given that two domains appear to be similar in a 
number of ways, how valid are the conjectures made by the matching 
module about the target domain? One way to ensure they make sense is 
to compare the consequences of these inferences against observed phys­
ical behavior, that is, to establish their empirical validity. Similarity-
based and explanation-based techniques produce learned concepts that 
are guaranteed to be correct for the examples used to generate them. 
In analogical learning, explicit verification and refinement are required 
in order to learn anything, yet alone refine past knowledge. 

This paper has stressed a number of points. First, when discussing 
analogy, we must draw a clear distinction between reasoning by anal­
ogy, similarity-based generalization, and analogical learning. Second, 
in learning physical models, dynamic behavior may be used to initi­
ate and guide the analogy process. Third, when performing analogical 
learning, it is important that we ensure there is a "causal" argument 
for believing that surface similarities will lead to meaningful and valid 
inferences. In addition, we must confirm these inferences by comparing 
the derived theories against real world behavior. Finally, it has been 
stressed that any model of analogical learning must necessarily possess 
a complementary model of knowledge refinement. 
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