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Abstract

Many studies of analogy in Artificial Intelligence have focused on analogy as
a heuristic mechanism to guide search and simplify problem solving or as a
basis for forming generalizations. This paper examines analogical learning,
where analogy is used to conjecture new knowledge about some domain. A
theory of Verification-Based Analogical Learning is presented which addresses
the tenuous nature of analogically inferred concepts and describes procedures
that can be used to increase confidence in the inferred knowledge. The theory
describes how analogy may be used to discover and refine scientific models of
the physical world. Examples are taken from an implemented system, which
discovers qualitative models of processes such as liquid flow and heat flow.

1 Introduction

Analogy is roughly composed of three stages: Access, Mapping, and
Evaluation and Use. Previous work in analogy has focused primar-
ily on how one forms an analogical mapping and how this mapping
may be used as a heuristic mechanism to guide search and simplify
problem solving. This paper makes a distinction between the differ-
ent usee of analogy and focuses on analogical learning, where analogy
is used to conjecture new knowledge about some domain. Since the
underlying assumption of analogical inference is that certain similar-
ities between two domains imply stronger, relational similarities, the
validity of knowledge inferred in this manner is very tenuous. This pa-
per describes some procedures that can be used to increase confidence
in the inferred knowledge. Specifically, a theory of Verification-Based
Analogical Learning is presented which may be used to discover and
refine scientific models of the physical world. New models' predictions
are compared against observed behavior, enabling the system to test
the validity of the analogy and sanction refinements where the anal-
ogy is incorrect. The work also addresses another common problem
in analogy, that of knowing what relations to map, by showing that
the behavioral similarity of two phenomena can be used to initiate and
guide the mapping process.

Many scientific theories are postulated as qualitative models of
physical phenomena which must be actively confirmed or refuted. This
work shows how analogy may be seen as one source of creativity in dis-
covering such models and focuses on how the results of this creativity
must be carefully examined. Intuitively, the theory corresponds to how
one might construct a wave model of sound from prior knowledge of
water wave behavior. Examples are taken from an implemented sys-
tem to demonstrate how the theory may be used to discover qualitative
models of liquid flow and heat flow.

2 The Analogy Process

To understand the possible uses for analogy, one must first have a
clear definition of analogy itself. This section serves to clarify common
terminology by presenting a breakdown of the analogy process (similar
to Gentner, 1986), followed by a discussion of the different uses for
analogy.
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Access: The access stage has two purposes. First, it locates a body
of prior knowledge (the base) which may be analogous to the
current situation (the target). Second, it should garner out those
features of the base which are pertinent to the analogy.

Mapping: The mapping stage consists of finding similarities between
the base and target (matching), and possibly transferring addi-
tional knowledge from the base to the target (inference). The
work presented in this paper draws from Gentner's (1983) Struc-
ture-Mapping theory of analogy and uses a simulation of these
principles, the Structure-Mapping Engine (SME) (Falkenhainer,
et al, 1986). Mappings constructed by SME consist of the set of
base/target correspondences and a potentially empty set of ana-
logical inferences - relations that augment the target description
by transferring knowledge from the base. SME is guided by a set
of match constructor rules that specify what items may plausibly
match, providing a useful programability option.

Evaluation and Use: Once the correspondences have been found,
the quality of the match and its consistency with general domain
knowledge should be evaluated before using the proposed anal-
ogy. The uses for analogy are discussed in the following section.

2.1 Using an Analogy

Analogy matches a base description with a target description of varying
levels of completeness. When the target is complete, analogy indicates
where the correspondences are and has no predictive power. When the
target lacks certain relations, analogical inference may occur; relations
which hold in the base but are not known to hold in the target are
mapped into the target domain. Borrowing from Indurkhya (1985), we
may formally define two types of analogical inference:

Definition: A set of analogical inferences are strongly coherent if every
sentence being mapped is logically entailed by the target. The
inferences are weakly coherent if they are merely consistent with
the target, rather than entailed by it.2

Thus, some analogical inferences may be seen as knowledge which exists
for the target domain, yet is not explicitly stated (i.e., search would
be required to retrieve it). Other analogical inferences represent new
, knowledge * conjectured facts about the target domain. This is an
important distinction for categorising the different uses of analogy:

Analogical Reasoning. Analogical reasoning involves using past ex-
periences as heuristics to guide or assist current reasoning pro-
cesses, as in recommending promising search paths (e.g. Car-
bonell (1983), Kedar-Cabelli (1985)). The classification also refers
to cases in which analogy is used as a focusing mechanism (e.g.,
stating an analogy to point out the salient features of the target).
It also applies to case-based reasoning systems, which draw on
previous instances of similar situations for guidance (e.g. Kolod-
ner et al, 1985, Hammond, 1986). Here a strict definition of

2Indurkhya (1006) uses cohersnt and its subset, strongly coherent, to refer to the

entire analogical mapping (matches plus inferences). Here we add the term weakly
coherent and only apply these terms to the inferences.



reasoning by analogy will be employed, in which analogy is used
for guidance and those analogical inferences which end up being
useful are strongly coherent.

Similarity-Based Generalisation. In analogy, one may use the sim-
ilarity between two conoepis found during the matching siage to
form a single, generalised concept. This comesponds dosely to
meny empirical (often called similarity-based) leaming methods,
some of which use pattem matching techniques to detect similar-
ities in the structural representation of features (e.g., HayesRoth
& McDemott, 1978; Michalski, 1980).

Analogical Learning. This is a method of leaming that is unique to
analogy. Roughly, if we know about some bese situation and we
enoounter some target situation which is believed to be similar
to the base, perhaps the additional knomedge we have about
the bese may also hold for the target. Thus, analogical leaming
uses weakly coherent anallogical inferences to posit new knowledge
about the target domain.

These wses of analogy may be intermixed. For example, ore mey
e the results of analogical leaming to form a more conoept
description. Thus, knowedge of the solar system could be used o leam
about the Rutherford model of the atom. In turn, these ocould be used
to fom a general conoept of centrakorce systems. In addition, the
results of analogical reasoning may be stored, thus "leam-
ing" in the analytical (EBL) sense. This paper focuses on analogical
leaming. In analogical reasoning, the inferences are used as a heuristic
device. Falsely drawn inferences only mean an impact on
rather than comeciness (i.e., they will cause backiracking). In analog-
ical leaming, the inferences are acoepted as new knowledge which did
not exist prior to the analogy. Thus, we must be sure there are sound
reasons for believing that the inferences are comect.

The underlying assumption of analogical inference is that surface
similarity implies a stronger, relational similarity. Thus, it is a tenu-
ous form of plausible inference. Accepling weakly coherent inferences
requires a cautious investigation of the leamed concepts. Ore way to
ensure that they make sense s to compare the consequences of these in-
ferences against observed physical behavior - hence, verification-based
analogical leaming. Theories produced by andogy are evaluated by
their ability to predict observed physical phenomena.

3 A Theory Of Model Acquisition

Scientific theories are seldom constructed in a vacuum. They tend
to be etther refined versions of existing theories or they ae trans-
ferred theories of similar phenomena. This work addesses both type™
of theory construction, using analogical inference as the "inventive"
mechanism. refinement techniques model the incremental
stage of theory construction. By contrast, discovery techniques enable
the construction of "first-pass" theories of the world. Analogy offers
a method for making large leaps in cument knowledge. It alows a
reasoning system to come up with an initial theory for some domain
which knonedge refinement methods may subsequently adjust.

In general, we know that when two bodies, one hot and one cold,
are placed in contact with each other, after a period of time they will
reach the same temperature. What between the time the two
objects are placed in contact and the time the two temperatures equal
ise? If the notion of water flow suggests itself, we may construct a
mode! for the situation in which heat is seen "flowing" from a higher
temperature to a lower temperature. Using the nrew model shons that
it accurately explains the phenomenon. This is called verifying the

of the model. The new theory now predicts that certain
other events must also be able to happen, such as the bidirectional-
ity of heat flow. We attempt to recollect a prior experience (history)
demonstrating this predicted behavior or we conduct simple experi-
ments to explore the space of behaviors. This is called
venfying the predictions of the model. If we were to extend the anal
egy further by hypothesising that heat wes itself a type of liquid (i.e..
therory of heat) a nmber additional predicational may be-
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Figure 1: Model construction wnd consistency verification in VBAL,

made beaed upon the intrinsic properties of liquids and physical ob-
jects. For example, conservation of matter would lead to predictions
besed on conservation of heat  Exploring the consequences of these
additional predictions is called verifying the extension of the analogy.

This entire process of hypothesis formation, confirmation, refutation,

and subsequent refinement is the essne of verification-based analogl-
cal leaming (VBAL).

In order to leam in this manner, we must be able to reason about
scientific theories and the physical situations they describe. This work
models the world in terms of qualltatlve physics, using For bus' Quali-
tative Process theory (Forbus, 1984)° A physics reasoner, QPE (For-
bus, 1986b), is employed, which takes qualitative models and
an envisionment for a given system that desaibes its possble phys-
ical states and the possble transitions between them. A single path
through the envisionment (an actual behavior) is called a history. In
addition, a physics interpreter, ATMI (Forbus, 1986a), is used to mon-
itor the world and relate obserations to known or postulated theories.

The current implementation of VBAL, called Phineas (Figure 2),
is designed to operate as a passive observer, relating observed physical

to known theories of the world. When ATMI fails to ade-
quately interpret a new event, the VBAL control module is called upon
to construct a potential explanation of the situation (see Figure 1) It
interacts with SME ar‘d a knowledge refinement module to construct
a new or revised model*

1. Dynamic Behavior Match. First, a prior situation that ap-
pears to exhibit similar behavior is aoessed and SME is used o
form a maich beween the behavior of the current and prior sit-
uations. This analogy seves to explicitly indicate which aspeds
of their behavior are the same (e.g., parhaps only same of the
prior behavior's states are analogous) and establishes the object
and quantity comespondences beiween the two domains.

2. Relevant Theory Retrieval. Onee a satisfactory experience

hes been refrieved, the domain theories usad to explain the matched

parts of the prior situation are fetched. These theories are simply
a collection of the entity and process definitions that were used
by ATMI when it originally encountered the previous behavior.
Each state in the history indicates what processes were active
during that state. Thus, if the current history only matches a
subset of the states in the old history, only the relevant process
modeks are used.

3. Theory Mapping. SME is invoked a second time to map the
potentially analogous domain theory to the new domain of inter-
est. This second analogy is generally a pure mapping of structure
from one domain to another, appropriately transformed accord-

ing to the object comespondences provided by the prior analogy
3]
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Figure 2: Bloek diagram of the Phineas system modules.

between the histories. The analogical match is constrained by
the object and quantity comespondences established during the
dynamic behavior match.

4. Consistency Verification. The comecness of the new model
is verified by using it to account for the original situation. QPE
tekes the model and produces a new envisionment, which ATMI
in tum compares to the cument situation. If verification fails,
model refinement may be used to acoount for slight imperfections
in the analogy, or a different analogy may be tried.

5. Empirical Verification. Given that the new model is con-
sistent with what has been observed, we may now seek further
empirical confiration of its validity through various stages of ex-
perimentation. A time-based planner is being used to explore the
possibility of constructing simple experiments to perform predic-
tion verification. More experiments may have to be per-

formed to verify extensions of the analogy (Falkenhainer, 1987).

At any time during the verification stages, if the model is found
to be flawed, knowledge refinement would be required to make the
appropriate adjustments in the model. For example, we could call upon
our general physical knowledge to make "common sense” adjustments
Altemately, we could resort to directed experimentation to uncover the
source of the discrepancy (e.g., Raj , 1985). Finally, we could
resort to analogy again, using different situations to fill in and comect
the missing theory (e.g., Burstein, 1983).

Phineas' operation will now be reviewed in conjuction with an ex-
ample of how the system leams a new model of heat flow by drawing
an analogy with a similar water flow experience.

3.1 Accessing Analogous Behavior

Suppese the program wes given time-ordered measurements of a heat
flow situation in which a hot horse shoe hes just been thrown into
a budket of cold water. ATMI would translate this sequence into the
qualitative history shown in Figure 3 and attempt to explain it in terms
of known theories. [f the program hes no of heat flow,
interpretation will fail. As a result, the analogical leaming module
will attempt to construct a plausible explanation. First, an analogous
history must be located from past Currentiy, we assume
that a suitable situation has been retneved Ieawng the problem of
analogical aoess for separate investigation.

In this case, an water flow history is found (a beaker
and a vial attached by a pipe) and SME is invoked to match the cur-
rent heat flow history to the prior water flow history This establishes
which things are behaving in an manner (e.g., which ob-
ject is the source of low and which object is the destination). The
roles of the beaker water and vial water in the water flow history are
found to to the rles of the harse shoe and water in the
heat flow history, respectively. Those which i
a mapping between entities or beween their quantities are stored for
later reference (the comespondences shown in Figure 3).

“The current impletentation simply queries the aser £ the name o the
gotis base ntuabion. & aumbrer f analo@eai oess merh s g e g ety
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Heat Flow History

(Cecreasing {Tamparutura (At horse-shoa 50})}
{Increwming {Temparwturs (At wuter 50}7)
{Grantar-Than {Tempsrsture (AT horse-shoe 50}
{Tecperaturs {AT water 50)}]
{Muats 50 51)
{Constant [Tamperature (At horss-show 51)})
{Constant (Temperaturs [At water 51)})
{Equal-To {Tempernture [At horse-ahoe 51))
{Tompesrature (At water 51)))

{Function-0f (Texperature *x)

(Heat *x))
Maich
Prussurs +~ Taaparaturs

Amount-of — Haat

3¢ ~ 50

51 ~ 81
cu-buaker «+ hRorsw-ahoe

cx-vigl  —  uwatar

Figure 3: Heat flow history and water Aow match.

32 Forming a New Model

The program now fefches the relevant domain theory which led to
its prior understanding of water flow A second analogical match is
performed by SME, this time between the refrieved process model for
water flow and the current heat flow situation, producing a new model
for heat flow based upon the old water low model (Figure 4).°

The at this slage is highly constrained, due to the set
of entity and function comespondences established when the dynamic
behaviors were matched. SMES rulebased architecture
this activity, since the reasoning program may dynamically modify
SME's maich construction rules to force a match between those entiies
and quantities that were found to be analogous during the aoess stage
(e.g., Pressure and Temperature) and prevent any altemate matches
for these items (e.g., Amount-Of and Temperature).

Notice that the "analogy" here is composed almost entirely of weakly
ooherent inferences, since the system had no prior model of heat flow.
Thus, the model wes constructed by analogy rather than
by analogy. Additionally, this method shows how SME's rule-based
architecture supports situations in which entity comespondences are
given prior to the match, rather than derived as a result of the match.

In many cases, not enough information is explicitly given for the
theory to properly match. In the heat flow example, we need a way
of knowing what is flowing. This information is not available if the
temperature change is all that is known. The domain model for wa-
ter fow indudes an AVOUNICF function which comesponds to HEAT in
the heat flow domain. However, the quantity HEAT never appeared in
the hest flow history as an observable. Without a notion of heat, the
program would be foroed to either map AVICLNICF directly into the
new heat flow mode! or postulate the existence of an unknown aspect
of the objects involved which to an AVIOLNICF conoept for
heat flow situations. To avod this, the world knowledge must include
enough information to deduce that temperature and heat possess a
relationship similar to the relationship between pressure and amount
(mass). In this example, the relation FUNCTIONOF wes used to ap-
proxlmate this relatlonshlp, enabling the system to match ARESSLRE

b TEVAERATURE and AVICUNICF o HEAT.

The results produced by SME (Figure 4) contain the entity

(*skolem* pipe). This indicates that, at the moment, the heat path is

gated at thie time bur have yet to be instailed and evalusted

“The model shown in the figure wos produced by SME The VBAL coniral
nudule Tater cranglotes this inta QPE process deflnition syntax The figure arrve-
r expheitly shaow whal was paoduced by analegy



Guap #t:  { (AMOUNT-OF-6 ENAT-WATOR) (AMOUNT-0F-3 WEAT-HSHOE)
(PARBE-BELNEL TEMP-HSUDE) (PRESA-VILL TEMP-WATER) }
Emnpe - {co-benker horae-ahow} (cp-vinl water)
Yaight  3.876
Candidate [nfearwoces-
(Implies
(And (Aligowd (vekolem- pips})
(Oreatar-Then (A TEMP-BSHOE) (A TEMP-WATER)))
(And (Q= (Flow-Rate pi) (- TEMP-REKDE TEMP-“ATER})
{Granter-Than (A (Flow-Rate pi)} zero)
{I+ HEAT-WATER (A {Flow-Ratas pij)}
{1- HEAT-HBHOE (A (Flow-Rate pi}))))

Figure 4; Analogically inferred mode! of heat How.

a conjectured entity. Further experimentation could be used to identify
the actual heat path, a knowledge of paths in general could be used to
indicate that immersion is a likely path, or the path could be left as a
conjeciured entity. This last choice comespond? dosely to the period
in sdence when a substance, called the ether, wes believed to exist in
order to provide a medium fortheﬂowofllghtma\es In this example,

Phineas condudes that physical contact represents a valid path.

3.3 Consistency Verification

Now that Phineas hes a new process model for heat flow, it may repeat
its attempt to interpret the original situation. The heat flow process
mode! is given to QPE and ATMI compares QPEs rew predictions
against the original observations. Since the water flow and heat flow
situations ae so similar, ATMI finds that the new theory accurately
models the heat flow situation. The program hes thus verified that the
theory is accurate for this and functionally similar instances of heat
flow. Experiments may be used to further verify the theory and the
new model may be added fo the set of known domain theories VBAL
takes weakly coherent analogical inferences and adds a new dimension
of validity to them, that of empirical validity.

4 Other Examples

Phineas hes been usad fo leam different types of water ow and heat
ﬂowmodels(eg an infinite heat source - a stove) and its knowledge
is being extended to enable leaming of oscillation mod-
els. A common problem in analogy is knowing what to map. Focusing
on the theory that explained the base history indicates which sysiem of
relations should be mapped, thus eliminating the need to consider irrel-
evant relations (e.g., evaporation) in the water - heat analogy. (Falken-
hainer, 1986) describes an example in which a mode! of water flow wes
leamed by drawing upon a two-state heat flow situation (heating up,
bailing). it shows how the dynamic behavior match enabled the sysiem
to deam the boiling imelevant to the purpose of the analogy
The examples desaribed above consist of ideal situations; that is,
the recalled behavior and comesponding theory were sufficiently similar
to analogously explain the observed behavior. Since this will often not
be the case, any theory of analogical leaming must incude a
theory of mode! refinement. See (Falkenhainer, 1986) for a discussion
of refinement in the context of VBAL and how andlogy mey sene to
focus the refinement process.

5 Discussion

Analogy hes been shown fo be a useful "inventive" mechanism, en-
abling a reasoning system to consfruct initial theories of same domain

which knowledge refinement methods may subsequently adjust. The
current implementation gpens the door for a variety of future report h
directions. For example, the various aoess mechensm- urrently be-
ing investigated may now be installed and evaluated In additon the
system lacks a knowledge refinement module and so is- unable to com-
rectly process the nonHdeal situations requiring modification works.

in progress to construct a suitable refinement module. This will allow
direct testing of the utility of different refinement schemes in the con-
text of analogy. We would aso like to test different and more complex
domain models to explore the limits of analogy as a leaming device.

A key issue in analogical leaming concems the tenuous nature of
the inferences made. Given that two domains appear to be similar in a
number of ways, how valid are the conjeciures made by the matching
module about the target domain? One way o ensure they meke sense is

o compare the consequences of these inferences against cbserved phys-
ical behavior, that is, to establish their emp/r/cal validity. Similarity-
besed and explanaton-based techniques conoepts that

produce leamed
aeglarameedtobeoonedforiheaammedbgeneateﬂwem
In analogical leaming, explicit verification and refinement are required
in order to leam anything, yet aone refine past knowledge.

This paper hes sressed a number of points. First, when discussing
analogy, we must draw a dear distinction between reasoning by anal-
ogy, similarity-based generalization, and analogical leaming. Seoond,
in leaming physical models, behavior may be usd fo initi-
ate and guide the analogy process. Third, when performlng analogical
leaming, it is important that we ensue there is a "causal" argument
for believing that surface similarities will lead to meaningful and valid
inferences. In addition, we must confim these inferences by comparing
ﬂwedenvedﬂweormagalnstrealwoddbehavpr Finally, it hes been
stressed that any mode! of analogical leaming must necessarly possess
a complementary model of knowledge refinement.
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