
ON THE DISCOVERY OF MATHEMATICAL THEOREMS

Susan L. Epstein

Department of Computer Science
Hunter College of the City University of New York

695 Park Avenue, New York, NY 10021

ABSTRACT
The Graph Theorist, GT, is a system which performs

mathematical research in graph theory. This paper focuses
upon GTs ability to conjecture and prove mathematical
theorems from the definitions in its input knowledge base.
Each class of graphs is defined in an algebraic notation with
a semantic interpretation that is a stylized algorithm to
generate the class correctly and completely. From a
knowledge base of such concept definitions, GT is able to
conjecture and prove such theorems as "The set of acyclic,
connected graphs is precisely the set of trees" and "There is
no odd-regular graph on an odd number of vertices."
Conjecture and proof are driven both by examples (specific
graphs) and by definitional form (algorithms).

1. Introduction
The Graph Theorist, GT, is a knowledge-intensive, domain-

specific learning system which uses algorithmic class descrip­
tions to discover and prove relations among mathematical
concepts, i.e., theorems, in graph theory. Although it
primarily exemplifies theory-driven discovery, where search
heuristics postulate and test the validity of conjectures, it
also infers explanations for factual input about key graphs as
a data-driven system would.

Mathematical discovery includes the creation of new math­
ematical concepts, the conjecture of relations among concepts
and the proof or disproof of such conjectures. Thus far, AI
discovery in mathematics has focused attention primarily on
the deductive proof of mathematical theorems using a predi­
cate calculus representation. The notable exception has been
Lenat's AM[Len76]. AM generated mathematical objects and
observed statistical regularities in their classification. When
the experimental evidence warranted it, AM would conjecture
relations among classes. Discovery in AM was driven not
only by empirical evidence but also by 243 heuristic rules
which originated the generation of examples and new
concepts, and evaluated the results. Later it was generally
recognized[Len84,Rit] that the path of discovery was pro­
nouncedly affected by the programming language itself.

In this sense-, AM may be said to model some intuition on
the part of the research mathematician as to a representation
language (LISP) well-suited for exploration in a particular
direction (number theory). AM's results indicate that, if
knowledge about a domain can be semantically encoded into
the class definition, then it can be harnessed to drive math­
ematical discovery. GT encodes the semantics of graph
theory into class definitions in a more transparent and
flexible fashion, one which supports both inductive and
deductive reasoning. These semantics subsequently motivate
both conjecture and proof.

2. Concept Description in GT
The material in this section describes the application of a

theoretical formulation detailed rigorously in [Eps83] and
summarized in [Eps87]. The treatment here is informal and

describes only selected, implemented segments of the theory.
For example, GT currently only supports undirected,
unlabelled graphs, but coding provisions have been made for
directed and labelled graphs, and the theoretical framework
supports them. Let V be an arbitrary, finite set of
elements (vertices) and let E be any subset (edges) of the
Cartesian product V x V. Then the ordered pair G = <V,E>
is said to be a graph. Let U be the universe of all graphs.
Then any subset P of U is said to designate a graph property
p and, for G in P, G is said to have property p. Any al­
gorithmic definition of the graph property p must specify
precisely the set P. In particular, if an algorithm claims to
generate P, that algorithm must be both correct (i.e., every
generated graph must be in P) and complete (i.e., for each
graph G in P there must be a finite sequence of steps
executed by the algorithm with final output G).

In GT, a concept is a frame representing a graph property
and knowledge associated with it, as in [Michen]. A slightly-
edited example of an input GT frame for the concept
ACYCLIC appears on the left in Figure 1. The slots of the
frame include a list of examples, knowledge about hierarchic­
al relations with other concepts, historical information on the
ways the concept has been manipulated, and a description of
the origin of the property. (Entries of "nil" for relations are
statements of partial knowledge, to be read as "none
discovered yet.") The frame also includes a definition of the
graph property in a specific, three-part formulation.

In GT, a definition of a graph property is an ordered triple
<f,S,o>. S is the seed set, a set of one or more minimal
graphs (seeds), each of which has the property in question.
(Typically the seed set is finite and GT lists its elements.)
The seed set in the example of Figure 1 for ACYCLIC
contains only Kl , the complete loop-free graph on one
vertex. The operator f in the definition describes how any
graph with the given property may be transformed to con­
struct another graph with the same property. An operator in
GT is built from a set of four primitive operators: add the
vertex x (Ax), add the edge between x and y (Axy), delete
the vertex x (Dx), and delete the edge between x and y
(Dxy). These primitives may be concatenated into terms
(such as "AygAg") to denote sequential operation from right
to left. Terms may be summed (as in "Ax + AygAg") to
represent alternative actions. Thus the operator Ax + AygAg,
for ACYCLIC is read "either add a vertex x or else add a
vertex z and then an edge from y to z." The selector o in
the definition describes the restrictions for binding the
variables appearing in the operator f to the vertices and
edges in a graph. In GT, there are currently four valid
kinds of selector descriptions for a vertex: whether or not
it is in the graph, its distinctness from another specific
vertex symbol, its degree (number of neighbors) and whether
or not its degree is the maximum among the degrees of all
the vertices in the graph. The current valid edge selector
descriptions in GT are of two kinds: whether or not the
edge is in the graph, and whether its endpoints are distinct.

194 KNOWLEDGE ACQUISITION

Selector descriptions may be empty, i.e., need not constrain
binding at all. In the example of Figure 1, the selector for
ACYCLIC is read "where y is in the vertex set, and x and z
are not in the vertex set."

The semantic interpretation of such a three-part definition
for a graph property p is a single, uniform algorithm called a
p-generator. A p-generator capitalizes on the underlying
commonality of its class, the view of the set P as one or
more prototypes (seeds) which can be methodically trans­
formed (under f and o) to produce exactly those graphs in
the class. The p-generator may be thought of as an
automaton which is started by the input of any graph in seed
set S. ACYCLIC, for example, would require K l. The p-
generator then iterates an undetermined number of times.
On each iteration the selector o chooses vertices and/or
edges with respect to the current graph G, and then the
operator modifies G, using those choices, to produce a new
G. ACYCLIC, on each iteration, either adds a new vertex x
to the graph, or adds a new vertex z and an edge from an
old vertex y to z.

Thus the algorithm for generating the class P of graphs is

Halt
Under all possible initial choices from S and all possible
iterations of f subject to a, the output of this algorithm is
precisely P, that is, if the superscript i denotes "iterate i
times,"

i = o
The graphs in Figure 2 illustrate several possible iterations
of the definition of ACYCLIC; each pictured graph is output
by the algorithm and is acyclic. The definition generates the
infinite class of acyclic graphs; it will never halt because
bindings for the variables in o can be found on each
iteration.

The content of the following three general texts is taken
as graph theory. [Ore], a classical development in elegant

mathematical fashion; [Har], a broad overview of topics
presented as definitions and theorems; and [Bon], an algorith­
mic approach. What evidence is there that p-generators exist
for every P in U, or at least for every interesting P in
graph theory? At this writing, more than 40 properties of
varying difficulty have been selected from the three
benchmark texts and described correctly and completely as p-
generators[Eps83]. The use of p-generators as property def­
initions entails several kinds of non-determinism. Any graph
in the seed set is an acceptable input; any binding satisfying
a is valid; any term in f suffices for an iteration. In addi­
tion, many different sequences of iterations will construct
isomorphic graphs. This ostensible indefiniteness and
redundancy is tolerated because the property definitions
preserve detail in a concise and flexible format.

GT Iterations of ACYCLIC

FIGURE 2

3. Relations between Concepts in GT
Inductive inference from examples does not preserve truth,

only falsity[Mic83]. Although research mathematicians devote
much time to example generation, and infer conjectures about
relations among ideas based on these examples, inductive
inference is only a tool. Rarely is a conjecture considered a
result worthy of publication, and then only when extensive
attempts at proof and disproof have failed. Mathematicians
prefer to explore in the context of certainty; for them a
conjecture should be proved or disproved relatively soon
after it arises. GT, therefore, constructs both conjectures
and proofs.

Graph theory, as it appears in the three benchmark texts
cited above, is primarily about graph properties and the rela­
tions among them. Conjectures and theorems in graph theory
frequently take one of the following forms:

SLOT

Property-name:
Number-of -seeds:
Seed-set:
Function:
Sigma:
Origin:
Examples:
Extremal-cases:
Delta-pairs:
Subsumes:
Not-shown-to-subsume:
Subsumed-by:
Not-shown-subsumed-by:
Merger-created-with:
Merger-explored-with:
Is-equivalent-to:
Not-shown-equivalent-to:

INITIAL FORMULATION

ACYCLIC
1
(K1)

y e V, x,z € V
input
{K1}
(*!>
((1 0)(1 1))
nil
nil
nil
nil
nil
nil
nil
nil

AFTER EXECUTION

ACYCLIC
1

y E V, x,z € V
input
{ACYCLIC-3, ACYCLIC-2, K1}

(1 0)(I 1))
(ACYCLIC-MERGED-WITH-CONNECTED CHAIN TREE)
(CONNECTED EQUIV-CONNECTED)
(IS-A-GRAPH)
(ACYCLIC-MERGED-WITH-CONNECTED CONNECTED TREI

EQUIV-CONNECTED CHAIN)
(CONNECTED)
(CHAIN TREE)
nil
(CHAIN TREE CONNECTED EQUIV-CONNECTED

IS-A-GRAPH)
GT Representation of ACYCLIC

FIGURE 1

Epstein 195

• TYPE 1: If a graph has property p, then it has
property q.

• TYPE 2: A graph has property p if and only if it has
property q.

• TYPE 3: If a graph has property p and property q,
then it has property r.

• TYPE 4: It is not possible for a graph to have both
property p and property q.

GT has two fundamental procedures for manipulating graph
properties to prove such theorems. The first procedure tests
for subsumption. Property p for class P subsumes property q
for class Q if and only if Q is a subset of P, i.e., every
graph with property q also has property p, so that q is a
special case of p. Theorem type 1 is a statement that q
subsumes p. Theorem type 2 is a statement that p and q are
equivalent, i.e., that p subsumes q and q subsumes p. The
second procedure constructs mergers. The merger of a
property p for class P with a property q for class Q results
in a new property representing PnQ, the set of graphs with
both properties. Theorem type 3 is a statement that
property r subsumes the merger of p and q. Theorem type 4
is a statement that the merger of p and q is empty, i.e., that
no graph can have both properties simultaneously.
3.1 Proof of Subsumption

At this writing, GT has only one method of proving
subsumption. Given property p1 = <f1,S1,a1>, property p2 -
<f2,S2,a2>, and a conjecture that p1 subsumes p2, GT
attempts to show that:

• f2 is subsumed by f1 i.e., f2 is a special case of f1.
• Every graph in S2 has property p1.
• a2 is subsumed by ol, i.e., a2 is more restrictive than

(Extended definitions for operator and selector subsumption
appear in [Eps83].) Because there are usually only a few
known seeds, GT checks the list of examples for p1 against
S2. If any graph G in S2 is not known to have pl, GT
generates a limited number of new examples of p1 and
searches for G there. Because seed graphs are extremal
cases, and because a natural metric exists on most GT
definitions, the search is readily controlled and usually
successful. (Alternative techniques exist for infinite seed
sets and certain other situations.) Matching for the sub­
sumption testing of the operators and selectors is done by a
recursive backtracking algorithm which generates a restricted
set of candidates.

The following example illustrates the subsumption
procedure. For

ACYCLIC - <AX + AyzAz (K1), [x.z € V, y € V]>
and

TREE = <A pqAq {K1}, [p € V, q € V]>
and the conjecture "ACYCLIC subsumes TREE," GT must
show that Kl the seed for TREE, is an acyclic graph and
also that, under some matching, the ACYCLIC operator
"covers" the TREE operator while satisfying the TREE
selection constraints. First, K1 is on the list of acyclic
graphs because it is the seed for ACYCLIC. Second, the
matcher notes that every term in the TREE operator ApqAq
(there is only one in this example) is covered by some term,
namely AyzAz, in the ACYCLIC operator. Finally, the
matcher observes that under the matching of p with y and q
with z, the selector constraints (that p is in V and q is not)
are enforced. Thus GT proves that ACYCLIC subsumes TREE
or, more formally, "Every tree is an acyclic graph."
3.2 Proofs Involving Mergers

GT currently has four algorithms for merger. Given
property p1 = <f1,S1,o1> and property p2 = <f2,S2,a2>, GT
attempts to construct the merger p - <f,S,o> of p1 and p2.
The first three algorithms are fairly straightforward:

• If P1 subsumes p2, the merger is simply p2.
• When f1 subsumes f2 and every seed in S2 has

property p1, the merger is <f2,S2,o>, where a is a1
and o2, eliminating any references to variables not in
f2.

• When f1 subsumes f2, o1 subsumes a2, and S is non-
empty, the merger is <f2,S,a2>, where

S - {G | G E S2 n P1) u {G | G € S1 n P2).
The fourth algorithm addresses the more interesting cases

which do not fit these categories. Here GT examines how
the number of vertices and the number of edges change as
the p-generator iterates. GT uses this information in
heuristic attempts to create a hybrid generator which
satisfies both definitions. (A more detailed description of
these merger techniques, with examples, appears in [Eps].)

Some of the most interesting of GT's proofs are merger
failures. Consider, for example, GT's discovery that a graph
which is odd-regular (every vertex of degree d, and d is odd)
cannot have an odd number of vertices. When no common
seed is evident, GT generates some examples to expand its
list of graphs with an odd number of vertices, seeking one
which is odd-regular. When this effort fails, GT considers
the possibility that there is no common seed and examines
the changes to m and n wrought, by the operators. GT
recognizes that ODD-NUMBER-OF-VERTICES begins with
one vertex and adds two vertices at a time, so that n is
always odd, but that ODD-REGULAR begins with an even
number of vertices (the seed is K2) and adds an even number
of vertices at a time, so that n is always even. This
disparity is the reason GT gives in its proof: there can
never be a seed for the merger, and thus the property has
no example, i.e., is impossible.

4. Conjecture
A mathematician presented with non-empty classes P and Q

from a universe U is trained to explore potential relations
between the classes by examining whether or not each of
PnQ, P - Q and Q - P is empty. GT models this strategy
with conjectures about subsumption and merger. The
standard mathematical questions, and their GT equivalents are

• Is P a subset of Q? GT explores this by a conjecture
that q subsumes p.

• Is P a superset of Q? GT explores this by a con­
jecture that p subsumes q.

• Is P equal (equivalent) to Q? GT explores this by
two conjectures, that p subsumes q and that q sub­
sumes p.

• Are P and Q disjoint (mutually exclusive)? GT ex­
plores this by a suggestion to merge p and q.

Thus the theorems that GT conjectures are statements about
set-theoretic relations between classes of graphs. Given the
four theorem types in Section 3 and a knowledge base of k
properties, there are potentially 2k(k+l) projects (proposals
for exploration) on the first pass, i.e., before newly-created
properties participate in project formulation. How does GT
limit search through such a space? The human mathematician
has two primary sources of evidence on which to base
project formulation: examples and definitions. GT is capable
of reasoning both from p-generator definitions and from
specific graphs, either seeds or generated examples.

Subset/superset conjectures are based upon both seeds and
definitions. For any pair of properties p and q, GT seeks:

• similarity in the seed sets for p and q (in decreasing
order of significance: equal sets, one a subset of the
other, a non-null intersection)

• seeds of property p which are known to have the
property q

• similarity between the operators for p and q (i.e.,
which primitives are employed and in what groupings)

196 KNOWLEDGE ACQUISITION

The strong focus on seeds is justified both by their role as
prototypes and by efficiency; seeds tend to be small and few
in number.

Before GTs heuristics explore the third mathematical ques­
tion, the equivalence of p and q, they require that the two
associated subsumptions have been either proved or conjec­
tured. Alternative definitions (characterizations) of classes
are common in mathematics because they support conjecture
and, therefore, research. GT demonstrates such use of
alternative definitions. Consider, for example, the class of
graphs known as chains. (A chain is a connected graph in
which two nodes have degree one and all others have degree
two.) GT has two different definitions of chain. Based on
the operators, one suggests that a chain may be a cycle, and
the other suggests that a chain may be a tree. GT formu­
lates and investigates both conjectures, and discovers that
the first is incorrect and the second correct.

Conjectures about disjointness are really conjectures that a
merger will fail. Thus a conjecture in GT about the disjoint­
ness of p and q is expressed as a plan to merge p and q. If
the seed sets for p and q are disjoint, the possibility of the
disjointness of P and Q will be conjectured in the form of a
plan to attempt the merger of p and q.

5. Summary of Results and Future Work
According to Michalski's characterization of learning sys-

tems[Mic86), GT learns both by observation (of its input ex­
amples and definitions) and by discovery (upon construction
of new examples and properties). GT inductively infers
conjectures from examples and definitions, and also proves
deductively from the same definitions. Figure 1 displays the
ACYCLIC frame both before and after one of GTs runs. No
specific tasks were input, only the general directive to
explore the knowledge base. GT formulated its own conjec­
tures and then attempted to construct proofs for them based
on the structure of the definitions. The modifications to the
representation for ACYCLIC constitute learning as defined in
[Mic86]. Clearly GT learns how ACYCLIC relates to other
concepts and constructs and stores additional examples of
acyclic graphs. GT learns about graph theory by conjec­
turing and exploring simple relations among graph properties.

GT is able to conjecture theorems in graph theory.
Conjecture is driven by extremal examples and definitions.
Example-driven discovery is based upon prototypical graphs
(seeds) which are extremal cases of individual properties and
therefore likely to be rich in associations. Definition-driven
discovery focuses upon the transformations which change one
graph with a property into another graph with the same
property. The requirement that a definition be complete
effectively limits such transformations to minimal changes.
(For example, a connected graph may be transformed by
adding a new vertex with one edge to an old vertex.
Requiring that the new vertex be connected to more than
one old vertex would create a different, more restricted, set
of graphs.) The minimality of these changes and the limited
vocabulary of operator primitives makes relations between the
transformations in the definitions more readily apparent.

GT is able to prove theorems in graph theory which it has
conjectured. Proofs rely heavily on a procedure to test for
subsumption and a procedure for merger to represent graphs
with more than one property. Running on a Symbolics 3675 in
Symbolics Common Lisp, GT successfully conjectures and
proves, among other theorems, the following:

• Every tree is acyclic.
• Every tree is connected.
• The set of acyclic, connected graphs is precisely the

set of trees.
• There are no odd-regular graphs on an odd number of

vertices.

Although GT is described as domain-specific, it offers
domain-independent lessons as well. The richness of the
semantic network GT constructs is due to extensive ex­
ploration. Thus, rather than a burden, exhaustive search is
one of GTs strengths. In the META-DENDRAL tradition, GT
can afford exhaustive search because its representation is
highly-controlled. The design of the language for graph
property definitions engineers GT for success, because it
capitalizes on the inherent similarities within object classes
and captures the commonalities underlying class definitions.

Plans for GTs future development are based upon the
power and flexibility of the p-generator representation.
Within the discovery framework described here, plans exist to
extend the p-generator language for the representation of
directed graphs and, eventually for labelled graphs. These
extensions will also provide a testbed for the study of
performance under representational shifts. Work is under
way to use additional example-based reasoning, particularly
counterexamples, to evaluate the agenda and guide search.
Thus discovery will derive additional data-driven support,
while maintaining its theory-driven component. GTs
knowledge base will be expanded with more concepts gleaned
from the benchmark texts. Mathematicians studying interest­
ing sets of graph properties are invited to submit them to
GT. The shell of GT is a domain-independent research tool
for recursive property description. Applications of this shell
to mathematical domains other than graph theory are
currently under study.
Acknowledgements: The author thanks N.S. Sridharan and
Virginia Teller for their assistance and support in this
research and its presentation.

REFERENCES
[Bon]Bondy,J. and Murty.U., Graph Theory with Applications,
New York, North-Holland, 1976.
[Eps83]Epstein,S.L./Knowledge Representation in Mathematics:
A Case Study in Graph Theory/ Ph.D. dissertation, Rutgers
University, 1983.
[Eps87]Epstein,S.L., "Languages for Problem Solving in Graph
Theory," in The Role of Language in Problem Solving 2", J.C.
Boudreaux, B.W. Hamill and R.N. Jernigan, eds., North-Hol­
land, 1987, pp.261-300.
[Eps]Epstein,S.L., "Learning and Discovery - One System's
Search for Mathematical Knowledge," in preparation.
[Har]Harary,F., Graph Theory, Reading, MA, Addison-Wesley,
1972.
[Len76]Lenat,D.B., "AM: An Artificial Intelligence Approach to
Discovery in Mathematics," Ph.D. dissertation, Stanford
University, 1976.
[Len84]Lenat,D.B., "Why AM and EURISKO Appear to Work,"
Artificial Intelligence, Volume 23, Number 3, August 1984,
pp.269-294.
[Mic86]Michalski,R.S., "Understanding the Nature of Learning:
Issues and Research Directions," in Machine Learning: An
Artificial Intelligence Approach, Volume II, R.S. Michalski,
J.G. Carbonell and T.M. Mitchell, eds., Palo Alto, Tioga, 1986,
pp.3-25.
[Mic83]Michalski,R.S. and R.E. Stepp, "Learning from Ob­
servation: Conceptual Clustering," in Machine Learning: An
Artificial Intelligence Approach, R.S. Michalski, J.G. Carbonell
and T.M. Mitchell, eds., Palo Alto, Tioga 1983, pp.331-363.
[Michen]Michener,E.R., "Understanding Understanding Math­
ematics," Technical Report AI MEMO-488, MIT, August, 1978.
[Ore]Ore,0., American Mathematical Society Colloquium
Publications, Volume 38: Theory of Graphs, Providence, RI,
American Mathematical Society, 1962.
[Rit]Ritchie,G.D. and F.K. Hanna, "AM: A Case Study in AI
Methodology," Artificial Intelligence, Volume 23, Number 3,
August 1984, pp.269-294.

Epstein 197

