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ABSTRACT 
The Graph Theorist, GT, is a system which performs 

mathematical research in graph theory. This paper focuses 
upon GTs ability to conjecture and prove mathematical 
theorems from the definitions in its input knowledge base. 
Each class of graphs is defined in an algebraic notation with 
a semantic interpretation that is a stylized algorithm to 
generate the class correctly and completely. From a 
knowledge base of such concept definitions, GT is able to 
conjecture and prove such theorems as "The set of acyclic, 
connected graphs is precisely the set of trees" and "There is 
no odd-regular graph on an odd number of vertices." 
Conjecture and proof are driven both by examples (specific 
graphs) and by definitional form (algorithms). 

1. Introduction 
The Graph Theorist, GT, is a knowledge-intensive, domain-

specific learning system which uses algorithmic class descrip­
tions to discover and prove relations among mathematical 
concepts, i.e., theorems, in graph theory. Although it 
primarily exemplifies theory-driven discovery, where search 
heuristics postulate and test the validity of conjectures, it 
also infers explanations for factual input about key graphs as 
a data-driven system would. 

Mathematical discovery includes the creation of new math­
ematical concepts, the conjecture of relations among concepts 
and the proof or disproof of such conjectures. Thus far, AI 
discovery in mathematics has focused attention primarily on 
the deductive proof of mathematical theorems using a predi­
cate calculus representation. The notable exception has been 
Lenat's AM[Len76]. AM generated mathematical objects and 
observed statistical regularities in their classification. When 
the experimental evidence warranted it, AM would conjecture 
relations among classes. Discovery in AM was driven not 
only by empirical evidence but also by 243 heuristic rules 
which originated the generation of examples and new 
concepts, and evaluated the results. Later it was generally 
recognized[Len84,Rit] that the path of discovery was pro­
nouncedly affected by the programming language itself. 

In this sense-, AM may be said to model some intuition on 
the part of the research mathematician as to a representation 
language (LISP) well-suited for exploration in a particular 
direction (number theory). AM's results indicate that, if 
knowledge about a domain can be semantically encoded into 
the class definition, then it can be harnessed to drive math­
ematical discovery. GT encodes the semantics of graph 
theory into class definitions in a more transparent and 
flexible fashion, one which supports both inductive and 
deductive reasoning. These semantics subsequently motivate 
both conjecture and proof. 

2. Concept Description in GT 
The material in this section describes the application of a 

theoretical formulation detailed rigorously in [Eps83] and 
summarized in [Eps87]. The treatment here is informal and 

describes only selected, implemented segments of the theory. 
For example, GT currently only supports undirected, 
unlabelled graphs, but coding provisions have been made for 
directed and labelled graphs, and the theoretical framework 
supports them. Let V be an arbitrary, finite set of 
elements (vertices) and let E be any subset (edges) of the 
Cartesian product V x V. Then the ordered pair G = <V,E> 
is said to be a graph. Let U be the universe of all graphs. 
Then any subset P of U is said to designate a graph property 
p and, for G in P, G is said to have property p. Any al­
gorithmic definition of the graph property p must specify 
precisely the set P. In particular, if an algorithm claims to 
generate P, that algorithm must be both correct (i.e., every 
generated graph must be in P) and complete (i.e., for each 
graph G in P there must be a finite sequence of steps 
executed by the algorithm with final output G). 

In GT, a concept is a frame representing a graph property 
and knowledge associated with it, as in [Michen]. A slightly-
edited example of an input GT frame for the concept 
ACYCLIC appears on the left in Figure 1. The slots of the 
frame include a list of examples, knowledge about hierarchic­
al relations with other concepts, historical information on the 
ways the concept has been manipulated, and a description of 
the origin of the property. (Entries of "nil" for relations are 
statements of partial knowledge, to be read as "none 
discovered yet.") The frame also includes a definition of the 
graph property in a specific, three-part formulation. 

In GT, a definition of a graph property is an ordered triple 
<f,S,o>. S is the seed set, a set of one or more minimal 
graphs (seeds), each of which has the property in question. 
(Typically the seed set is finite and GT lists its elements.) 
The seed set in the example of Figure 1 for ACYCLIC 
contains only Kl , the complete loop-free graph on one 
vertex. The operator f in the definition describes how any 
graph with the given property may be transformed to con­
struct another graph with the same property. An operator in 
GT is built from a set of four primitive operators: add the 
vertex x (Ax), add the edge between x and y (Axy), delete 
the vertex x (Dx), and delete the edge between x and y 
(Dxy). These primitives may be concatenated into terms 
(such as "AygAg") to denote sequential operation from right 
to left. Terms may be summed (as in "Ax + AygAg") to 
represent alternative actions. Thus the operator Ax + AygAg, 
for ACYCLIC is read "either add a vertex x or else add a 
vertex z and then an edge from y to z." The selector o in 
the definition describes the restrictions for binding the 
variables appearing in the operator f to the vertices and 
edges in a graph. In GT, there are currently four valid 
kinds of selector descriptions for a vertex: whether or not 
it is in the graph, its distinctness from another specific 
vertex symbol, its degree (number of neighbors) and whether 
or not its degree is the maximum among the degrees of all 
the vertices in the graph. The current valid edge selector 
descriptions in GT are of two kinds: whether or not the 
edge is in the graph, and whether its endpoints are distinct. 
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Selector descriptions may be empty, i.e., need not constrain 
binding at all. In the example of Figure 1, the selector for 
ACYCLIC is read "where y is in the vertex set, and x and z 
are not in the vertex set." 

The semantic interpretation of such a three-part definition 
for a graph property p is a single, uniform algorithm called a 
p-generator. A p-generator capitalizes on the underlying 
commonality of its class, the view of the set P as one or 
more prototypes (seeds) which can be methodically trans­
formed (under f and o) to produce exactly those graphs in 
the class. The p-generator may be thought of as an 
automaton which is started by the input of any graph in seed 
set S. ACYCLIC, for example, would require K l. The p-
generator then iterates an undetermined number of times. 
On each iteration the selector o chooses vertices and/or 
edges with respect to the current graph G, and then the 
operator modifies G, using those choices, to produce a new 
G. ACYCLIC, on each iteration, either adds a new vertex x 
to the graph, or adds a new vertex z and an edge from an 
old vertex y to z. 

Thus the algorithm for generating the class P of graphs is 

Halt 
Under all possible initial choices from S and all possible 
iterations of f subject to a, the output of this algorithm is 
precisely P, that is, if the superscript i denotes "iterate i 
times," 

i = o 
The graphs in Figure 2 illustrate several possible iterations 
of the definition of ACYCLIC; each pictured graph is output 
by the algorithm and is acyclic. The definition generates the 
infinite class of acyclic graphs; it will never halt because 
bindings for the variables in o can be found on each 
iteration. 

The content of the following three general texts is taken 
as graph theory. [Ore], a classical development in elegant 

mathematical fashion; [Har], a broad overview of topics 
presented as definitions and theorems; and [Bon], an algorith­
mic approach. What evidence is there that p-generators exist 
for every P in U, or at least for every interesting P in 
graph theory? At this writing, more than 40 properties of 
varying difficulty have been selected from the three 
benchmark texts and described correctly and completely as p-
generators[Eps83]. The use of p-generators as property def­
initions entails several kinds of non-determinism. Any graph 
in the seed set is an acceptable input; any binding satisfying 
a is valid; any term in f suffices for an iteration. In addi­
tion, many different sequences of iterations will construct 
isomorphic graphs. This ostensible indefiniteness and 
redundancy is tolerated because the property definitions 
preserve detail in a concise and flexible format. 

GT Iterations of ACYCLIC 

FIGURE 2 

3. Relations between Concepts in GT 
Inductive inference from examples does not preserve truth, 

only falsity[Mic83]. Although research mathematicians devote 
much time to example generation, and infer conjectures about 
relations among ideas based on these examples, inductive 
inference is only a tool. Rarely is a conjecture considered a 
result worthy of publication, and then only when extensive 
attempts at proof and disproof have failed. Mathematicians 
prefer to explore in the context of certainty; for them a 
conjecture should be proved or disproved relatively soon 
after it arises. GT, therefore, constructs both conjectures 
and proofs. 

Graph theory, as it appears in the three benchmark texts 
cited above, is primarily about graph properties and the rela­
tions among them. Conjectures and theorems in graph theory 
frequently take one of the following forms: 

SLOT 

Property-name: 
Number-of -seeds: 
Seed-set: 
Function: 
Sigma: 
Origin: 
Examples: 
Extremal-cases: 
Delta-pairs: 
Subsumes: 
Not-shown-to-subsume: 
Subsumed-by: 
Not-shown-subsumed-by: 
Merger-created-with: 
Merger-explored-with: 
Is-equivalent-to: 
Not-shown-equivalent-to: 

INITIAL FORMULATION 

ACYCLIC 
1 
(K1) 

y e V, x,z € V 
input 
{K1} 
(*!> 
((1 0)(1 1)) 
nil 
nil 
nil 
nil 
nil 
nil 
nil 
nil 

AFTER EXECUTION 

ACYCLIC 
1 

y E V, x,z € V 
input 
{ACYCLIC-3, ACYCLIC-2, K1} 

(1 0)(I 1)) 
(ACYCLIC-MERGED-WITH-CONNECTED CHAIN TREE) 
(CONNECTED EQUIV-CONNECTED) 
(IS-A-GRAPH) 
(ACYCLIC-MERGED-WITH-CONNECTED CONNECTED TREI 

EQUIV-CONNECTED CHAIN) 
(CONNECTED) 
(CHAIN TREE) 
nil 
(CHAIN TREE CONNECTED EQUIV-CONNECTED 

IS-A-GRAPH) 
GT Representation of ACYCLIC 

FIGURE 1 
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• TYPE 1: If a graph has property p, then it has 
property q. 

• TYPE 2: A graph has property p if and only if it has 
property q. 

• TYPE 3: If a graph has property p and property q, 
then it has property r. 

• TYPE 4: It is not possible for a graph to have both 
property p and property q. 

GT has two fundamental procedures for manipulating graph 
properties to prove such theorems. The first procedure tests 
for subsumption. Property p for class P subsumes property q 
for class Q if and only if Q is a subset of P, i.e., every 
graph with property q also has property p, so that q is a 
special case of p. Theorem type 1 is a statement that q 
subsumes p. Theorem type 2 is a statement that p and q are 
equivalent, i.e., that p subsumes q and q subsumes p. The 
second procedure constructs mergers. The merger of a 
property p for class P with a property q for class Q results 
in a new property representing PnQ, the set of graphs with 
both properties. Theorem type 3 is a statement that 
property r subsumes the merger of p and q. Theorem type 4 
is a statement that the merger of p and q is empty, i.e., that 
no graph can have both properties simultaneously. 
3.1 Proof of Subsumption 

At this writing, GT has only one method of proving 
subsumption. Given property p1 = <f1,S1,a1>, property p2 -
<f2,S2,a2>, and a conjecture that p1 subsumes p2, GT 
attempts to show that: 

• f2 is subsumed by f1 i.e., f2 is a special case of f1. 
• Every graph in S2 has property p1. 
• a2 is subsumed by ol, i.e., a2 is more restrictive than 

(Extended definitions for operator and selector subsumption 
appear in [Eps83].) Because there are usually only a few 
known seeds, GT checks the list of examples for p1 against 
S2. If any graph G in S2 is not known to have pl, GT 
generates a limited number of new examples of p1 and 
searches for G there. Because seed graphs are extremal 
cases, and because a natural metric exists on most GT 
definitions, the search is readily controlled and usually 
successful. (Alternative techniques exist for infinite seed 
sets and certain other situations.) Matching for the sub­
sumption testing of the operators and selectors is done by a 
recursive backtracking algorithm which generates a restricted 
set of candidates. 

The following example illustrates the subsumption 
procedure. For 

ACYCLIC - <AX + AyzAz (K1), [x.z € V, y € V]> 
and 

TREE = <A pqAq {K1}, [p € V, q € V]> 
and the conjecture "ACYCLIC subsumes TREE," GT must 
show that Kl the seed for TREE, is an acyclic graph and 
also that, under some matching, the ACYCLIC operator 
"covers" the TREE operator while satisfying the TREE 
selection constraints. First, K1 is on the list of acyclic 
graphs because it is the seed for ACYCLIC. Second, the 
matcher notes that every term in the TREE operator ApqAq 
(there is only one in this example) is covered by some term, 
namely AyzAz, in the ACYCLIC operator. Finally, the 
matcher observes that under the matching of p with y and q 
with z, the selector constraints (that p is in V and q is not) 
are enforced. Thus GT proves that ACYCLIC subsumes TREE 
or, more formally, "Every tree is an acyclic graph." 
3.2 Proofs Involving Mergers 

GT currently has four algorithms for merger. Given 
property p1 = <f1,S1,o1> and property p2 = <f2,S2,a2>, GT 
attempts to construct the merger p - <f,S,o> of p1 and p2. 
The first three algorithms are fairly straightforward: 

• If P1 subsumes p2, the merger is simply p2. 
• When f1 subsumes f2 and every seed in S2 has 

property p1, the merger is <f2,S2,o>, where a is a1 
and o2, eliminating any references to variables not in 
f2. 

• When f1 subsumes f2, o1 subsumes a2, and S is non-
empty, the merger is <f2,S,a2>, where 

S - {G | G E S2 n P1) u {G | G € S1 n P2). 
The fourth algorithm addresses the more interesting cases 

which do not fit these categories. Here GT examines how 
the number of vertices and the number of edges change as 
the p-generator iterates. GT uses this information in 
heuristic attempts to create a hybrid generator which 
satisfies both definitions. (A more detailed description of 
these merger techniques, with examples, appears in [Eps].) 

Some of the most interesting of GT's proofs are merger 
failures. Consider, for example, GT's discovery that a graph 
which is odd-regular (every vertex of degree d, and d is odd) 
cannot have an odd number of vertices. When no common 
seed is evident, GT generates some examples to expand its 
list of graphs with an odd number of vertices, seeking one 
which is odd-regular. When this effort fails, GT considers 
the possibility that there is no common seed and examines 
the changes to m and n wrought, by the operators. GT 
recognizes that ODD-NUMBER-OF-VERTICES begins with 
one vertex and adds two vertices at a time, so that n is 
always odd, but that ODD-REGULAR begins with an even 
number of vertices (the seed is K2) and adds an even number 
of vertices at a time, so that n is always even. This 
disparity is the reason GT gives in its proof: there can 
never be a seed for the merger, and thus the property has 
no example, i.e., is impossible. 

4. Conjecture 
A mathematician presented with non-empty classes P and Q 

from a universe U is trained to explore potential relations 
between the classes by examining whether or not each of 
PnQ, P - Q and Q - P is empty. GT models this strategy 
with conjectures about subsumption and merger. The 
standard mathematical questions, and their GT equivalents are 

• Is P a subset of Q? GT explores this by a conjecture 
that q subsumes p. 

• Is P a superset of Q? GT explores this by a con­
jecture that p subsumes q. 

• Is P equal (equivalent) to Q? GT explores this by 
two conjectures, that p subsumes q and that q sub­
sumes p. 

• Are P and Q disjoint (mutually exclusive)? GT ex­
plores this by a suggestion to merge p and q. 

Thus the theorems that GT conjectures are statements about 
set-theoretic relations between classes of graphs. Given the 
four theorem types in Section 3 and a knowledge base of k 
properties, there are potentially 2k(k+l) projects (proposals 
for exploration) on the first pass, i.e., before newly-created 
properties participate in project formulation. How does GT 
limit search through such a space? The human mathematician 
has two primary sources of evidence on which to base 
project formulation: examples and definitions. GT is capable 
of reasoning both from p-generator definitions and from 
specific graphs, either seeds or generated examples. 

Subset/superset conjectures are based upon both seeds and 
definitions. For any pair of properties p and q, GT seeks: 

• similarity in the seed sets for p and q (in decreasing 
order of significance: equal sets, one a subset of the 
other, a non-null intersection) 

• seeds of property p which are known to have the 
property q 

• similarity between the operators for p and q (i.e., 
which primitives are employed and in what groupings) 
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The strong focus on seeds is justified both by their role as 
prototypes and by efficiency; seeds tend to be small and few 
in number. 

Before GTs heuristics explore the third mathematical ques­
tion, the equivalence of p and q, they require that the two 
associated subsumptions have been either proved or conjec­
tured. Alternative definitions (characterizations) of classes 
are common in mathematics because they support conjecture 
and, therefore, research. GT demonstrates such use of 
alternative definitions. Consider, for example, the class of 
graphs known as chains. (A chain is a connected graph in 
which two nodes have degree one and all others have degree 
two.) GT has two different definitions of chain. Based on 
the operators, one suggests that a chain may be a cycle, and 
the other suggests that a chain may be a tree. GT formu­
lates and investigates both conjectures, and discovers that 
the first is incorrect and the second correct. 

Conjectures about disjointness are really conjectures that a 
merger will fail. Thus a conjecture in GT about the disjoint­
ness of p and q is expressed as a plan to merge p and q. If 
the seed sets for p and q are disjoint, the possibility of the 
disjointness of P and Q will be conjectured in the form of a 
plan to attempt the merger of p and q. 

5. Summary of Results and Future Work 
According to Michalski's characterization of learning sys-

tems[Mic86), GT learns both by observation (of its input ex­
amples and definitions) and by discovery (upon construction 
of new examples and properties). GT inductively infers 
conjectures from examples and definitions, and also proves 
deductively from the same definitions. Figure 1 displays the 
ACYCLIC frame both before and after one of GTs runs. No 
specific tasks were input, only the general directive to 
explore the knowledge base. GT formulated its own conjec­
tures and then attempted to construct proofs for them based 
on the structure of the definitions. The modifications to the 
representation for ACYCLIC constitute learning as defined in 
[Mic86]. Clearly GT learns how ACYCLIC relates to other 
concepts and constructs and stores additional examples of 
acyclic graphs. GT learns about graph theory by conjec­
turing and exploring simple relations among graph properties. 

GT is able to conjecture theorems in graph theory. 
Conjecture is driven by extremal examples and definitions. 
Example-driven discovery is based upon prototypical graphs 
(seeds) which are extremal cases of individual properties and 
therefore likely to be rich in associations. Definition-driven 
discovery focuses upon the transformations which change one 
graph with a property into another graph with the same 
property. The requirement that a definition be complete 
effectively limits such transformations to minimal changes. 
(For example, a connected graph may be transformed by 
adding a new vertex with one edge to an old vertex. 
Requiring that the new vertex be connected to more than 
one old vertex would create a different, more restricted, set 
of graphs.) The minimality of these changes and the limited 
vocabulary of operator primitives makes relations between the 
transformations in the definitions more readily apparent. 

GT is able to prove theorems in graph theory which it has 
conjectured. Proofs rely heavily on a procedure to test for 
subsumption and a procedure for merger to represent graphs 
with more than one property. Running on a Symbolics 3675 in 
Symbolics Common Lisp, GT successfully conjectures and 
proves, among other theorems, the following: 

• Every tree is acyclic. 
• Every tree is connected. 
• The set of acyclic, connected graphs is precisely the 

set of trees. 
• There are no odd-regular graphs on an odd number of 

vertices. 

Although GT is described as domain-specific, it offers 
domain-independent lessons as well. The richness of the 
semantic network GT constructs is due to extensive ex­
ploration. Thus, rather than a burden, exhaustive search is 
one of GTs strengths. In the META-DENDRAL tradition, GT 
can afford exhaustive search because its representation is 
highly-controlled. The design of the language for graph 
property definitions engineers GT for success, because it 
capitalizes on the inherent similarities within object classes 
and captures the commonalities underlying class definitions. 

Plans for GTs future development are based upon the 
power and flexibility of the p-generator representation. 
Within the discovery framework described here, plans exist to 
extend the p-generator language for the representation of 
directed graphs and, eventually for labelled graphs. These 
extensions will also provide a testbed for the study of 
performance under representational shifts. Work is under 
way to use additional example-based reasoning, particularly 
counterexamples, to evaluate the agenda and guide search. 
Thus discovery will derive additional data-driven support, 
while maintaining its theory-driven component. GTs 
knowledge base will be expanded with more concepts gleaned 
from the benchmark texts. Mathematicians studying interest­
ing sets of graph properties are invited to submit them to 
GT. The shell of GT is a domain-independent research tool 
for recursive property description. Applications of this shell 
to mathematical domains other than graph theory are 
currently under study. 
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