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A b s t r a c t 
We set forth general techniques for managing dis­
course in an intelligent tutor. These techniques are 
being implemented in a structure that dynamically 
reasons about the discourse, a student's response, and 
the tutor's move. The structure is flexible, domain-
independent, and designed to be rebuilt - decision 
points and machine actions are modifiable through a 
visual editor. We discuss this formal reasoning struc­
ture and its application in an intelligent tutor. 

I . T u t o r i a l D i s c o u r s e 

We have built a process model for tutorial discourse that 
provides custom-tailored feedback to students in the form 
of examples, analogies, and simulations. The processing 
model views discourse as navigation through a set of pos­
sible discourse situations. Transition from one situation to 
another is dynamically generated so the system is capable 
of tracking and responding to contingencies in discourse 
alternatives. Fundamental to our perspective is the view 
that tutoring conversation is motivated by general rules 
(principles) of discourse and selection of intervention tech­
niques based on error and misconception analysis. 

Effective tutoring requires sophisticated and dynamic 
reasoning about selection of tutoring strategy, the choice 
of a path through the curriculum, updating the student 
model, and assessment of student errors and misconcep­
tions. Conversational actions produced by the tutor and 
responses from students will change the state of the dis­
course, and the structure must decide what the tutor 
should say and how it should interpret and act on subse­
quent student responses. Hence a desiderata on the design 
of any discourse manager is that it respond fluidly to the 
user and that it coordinate its utterances in a more flexi­
ble manner than has been required for question/answer or 
summarization systems. 

Networks and production rule formalisms have been 
used to identify admissible instructional actions in tutoring 
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systems (e.g., [Cerri, 1978; Clancey, 1982]). However, such 
formalisms are often domain-dependent and restricted to 
a narrow set of didactic responses. We have extended 
such formalisms by modifying the basic ATN architecture, 
adding greater functionality to it, and by developing a 
domain-independent structure that can be used in a va­
riety of tutors. 

We have also incorporated results from cognitive re­
search about effective tutoring into the framework, includ­
ing principles that drive production of good discourse. We 
are making the discourse framework modifiable through a 
visual editor that allows a knowledge engineer to access 
the machine's response decisions and actions. In the long 
term, we intend to make the steps of this reasoning pro­
cess available to human teachers who can then modify the 
tutor for use in a classroom. 

I I . D i s c o u r s e F o r m a l i s m 

In earlier work, we described a discourse manager to fa­
cilitate context-dependent interpretations of machine re­
sponse |Woolf & McDonald, 1984]. In this research, we 
modify that earlier architecture and add a taxonomy of 
frequently observed discourse sequences to provide default 
responses for the tutor. The new structure is based on 
discourse schemas, or collections of discourse activities 
and tutoring responses, as shown in Figure 1. These 
schemas are derived from empirical research into tutor­
ing discourse, including studies of teaching and learning 
(Brown et al., 1986; Littman et al., 1986], misconception 
research [Clement, 1982; Stevens et al, 1982], felicity laws 
[vanLehn, 1983], and general rules of discourse structure 
(Grosz & Sidner, 1985). 

In this architecture, machine response is generated by 
traversal through the formal structure called a Tutoring 
ACtion Transition Network (TACTN), 2 [McDonald et al., 
1986]. The space of possible discourse situations is ex­
pressed by arcs, defined as predicate sets, that track the 
state of the conversation. Nodes provide actions for the tu­
tor. The outer loop of the discourse manager first accesses 
the situation indicated by the arcs, resolving any conflicts 
between multiply satisfied predicate sets, and then directs 
the system's other components (e.g., the underlying do­
main expert component, the language component, or the 

2Rhymes with ACT-IN 
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Figure 1: Tutoring Discourse Schemas 

student model) to carry out the action indicated by the 
node. 

Discourse planning consists of passage through the 
arcs and nodes of the schemas, with the number and type 
of schemas depending on context (see Figure 1). For ex­
ample, if the student's answer is correct, Evaluation, and 
Process Correct Answer (not shown) Schemas will be ac­
tivated. However, if the student's answer is incorrect, up 
to six schemas will be traversed, including three schemas 
activated by the Remediation Schema: Teach by Conse­
quence, Teach by Example, and Teach by Guidance. The 
exact number of schemas depends on the tutor's assess­
ment of student error, i.e., whether it was a simple slip, 
not a simple slip, or not a simple slip - consequence exists. 

In the next section we provide a brief example of how 
this discourse planning framework is being implemented 
in a series of physics tutors. In the following sections we 
describe the tutoring structure in more detail. 

I I I . C a s e E x a m p l e 

We are building science tutors as part of the Exploring Sys­
tems Earth (ESE) consortium.3 The science tutors provide 
interactive simulations whose aim is to encourage students 
to work with "elements" of physics, such as mass, acceler­
ation, and force. The goal is to aid students in developing 
problem-solving skills, knowledge about physics concepts, 
and intuitions to facilitate learning about knowledge and 
skills. 

In these tutors, students explore heuristic simulations, 
such as the one shown in Figure 2, called the crane boom 

problem. In this example, students are asked to identify 
forces and torques on a crane boom and wall such that 
the boom will remain in equilibrium, i.e., there will be 
no vertical or horizontal movement. Students must draw 
appropriate force vectors or to solve the problem through 
equations. 

The Exploration Schema in Figure 1 provides the 
main control loop for the tutor's interactions about this 
and other physics problems. It schedules tasks, which 
might be items from a top-level curriculum list or sub-
goals generated by earlier tasks. Associated with each task 
is information about how to present the problem situation, 
what question(s) to ask, which knowledge is assumed of the 
student, etc. 

If a student had provided the force vectors shown in 
the center of Figure 2, the solution would be incorrect be­
cause of a missing force vector (located at the wall and 
pointing upwards). The tutor compares the student's re­
sponse with the correct one and then activates the Reme­
diation Schema in Figure 1. The conversation produced is 
shown in Figure 3. 

3ESE is a group of universities working together to develop in­
telligent science tutors. The schools include the University of Mas­
sachusetts, San Francisco State University, and University of Hawaii. Figure 2: Simulation Presented to the Student 
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situation: - incorrect answer 
action: [grain of truth acknowledgement] 

T: The beam does experience forces in each place you have 
shown and in the directions you have shown. 

situation: - not simple slip 
and-consequence exists 

action: [teach by consequence] 
T: Here is what the beam would look like if it experienced 
the two forces you indicated (beam pulls away from the 
wall, right side of Figure 2). 
T: Is this OK or would you like to reconsider your answer? 
S: It's OK. situation: - incorrect answer 

action: [teach by example] 
T: Consider a situation in which a roller skate wheel is at­
tached to the left end of the beam. What would happen 
to the beam then? 
S: It would fall because it would roll down the wall. 

situation: - correct answer 
action: [compare answers/ 

T: Compare the two situations-with and without the 
roller. Do you want to reconsider either of your answers in 
light of this comparison? 
S: No. situation: - incorrect answer 

action: [teach by guidance] 
T: You are missing a force somewhere on the beam. Do 
you want another hint? 

Figure 3: Conversation Between Tutor and Student 

I V . R e p r e s e n t a t i o n a l P o w e r 

TACTN structures have the look of conventional transition 
graph of "nodes" and "arcs" as one would find in ATNs 
[Woods, 1970), yet they are defined in terms of "actions" 
and "situations" (McDonald et al., 1986] as one would find 
in a production system. The motivation to modify the 
ATN architecture was based on the observation that ATNs 
were designed for natural language parsing and are non-
deterministic. 4 

This type of uncertainty has no counterpart in dis­
course generation, which requires a planning rather than 
a parsing formalism [McDonald et al., 1986). Any action 
in a TACTN can be taken deterministically. For example, 
each of the transitions, Teach by Consequence, Teach by 
Example, or Teach by Guidance, might be taken locally 
without the need to wait for a global interpretation. Dis­
course generation requires choosing between actions, not 
between interpretations, placing it in the realm of a plan-

4 Nodes in the original ATN represented accepted definitions for 
incoming tokens and arcs represented tests made on those incoming 
tokens. Non-determinism was motivated by uncertainty or the need 
to wait for an accumulated global interpretation before the system 
could be confident about the local interpretation of each token being 
scanned. 

ner, not a parser. Since we were not using all the capacity 
provided by ATNs, we decided to modify the architecture. 

Elements from both production systems and network 
formalisms have been built into TACTNs. Situations 
(arcs) are associated with actions (nodes), in the manner 
of a production system, and discourse history is encoded 
in arcs and nodes, in the manner of a network system. 
Every situation/arc implicitly includes as one of its con­
stituted predicates the action(s)/node(s) from which it 
came. Thus, if an arc originated in a particular action, 
there is a tacit predicate included in the arc's situation to 
the effect that the action must have just been taken. The 
single notational framework has the flexibility of a produc­
tion system and the record-keeping and sequencing ability 
of a network system, by virtue of its context. 

A pure production system discourse manager cannot 
retain and use a large amount of context to handle complex 
shifts in dynamic conversation. For example, GUIDON 
[Clancey, 1982) was a tutor based on a set of situation ac­
tion rules that were driven by chaining backwards from 
goals. It provided flexibility to respond to dynamically 
changing discourse circumstances. However, there was no 
provision for sequencing situation action chains except by 
using ad hoc state variables. In TACTNs, the act of chain­
ing to arcs from actions provides just such a sequencing 
mechanism. 

A . S i t u a t i o n s D e f i n e d b y A r c s 
Arcs in the discourse structure are defined by a set of pred­
icates that track the student and discourse from the per­
spective of the system. Arcs correspond to discourse situa­
tions. For example, in Figure 1 the arc simple slip is a corn-
pound predicate that is true under two conditions: (1) the 
current topic is factual and the student has had medium 
success with it in the past, or (2) the topic is conceptual 
and the student has had high success with it. In a sense, 
situations are abstractions over the state of the system or 
student knowledge, expressing generalized conditions such 
as student takes initiative or student is confused. 

The definition of arcs as aggregations of predicates in 
a boolean formula provides a powerful tool for knowledge 
engineers. Modifying predicates, and therefore arcs, al­
lows fine-grain changes on individual predicates to impact 
greatly on the system's reasoning ability and to result in 
consequential changes to the tutor's discourse activity. 

Within this structure, several arcs might define nearly 
equivalent situations as in the case when two arcs share one 
or more predicates. At such time, a conflict between arcs 
will be resolved through global or local (associated with 
specific nodes) conflict resolution stategies.5 One solution 
is to order the arcs in the set according to their specificity 
and to execute the first triggered arc. In this way, the most 

5Conflict resolution in this sense is analogous to what happens in 
a production system when the left-hand sides of more than one rule 
are satisfied. 
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specific subsuming situation will be preferred over other 
situations with which the arc shares predicates. However, 
we prefer to evaluate all the arcs, since incomparable situ­
ations (i.e. situations whose sets of predicates are disjoint) 
are likely. 

For example, suppose that students ask many ques­
tions after giving a wrong answer, and suppose that they 
also ask several seemingly random questions. One tutoring 
convention says that answering students' questions should 
take priority; another says that random questions should 
be discouraged. In such a case a non-conventional resolu­
tion mechanism must be used to resolve the conflict. 

B . A c t i o n s D e f i n e d b y N o d e s 
Nodes correspond to actions available to the system; they 
define alternative conversations and tutoring strategies. 
Nodes differ in the actions they perform and in the man­
ner they present tasks to students. Shifting actions to the 
nodes, as we did for TACTNs, instead of leaving them on 
the arcs, as was done for ATNs, facilitates the notation of 
expanding abstract actions into more concrete substeps. 
Abstract actions are nodes that are to be expanded and 
refined one or more times before taking on a form that can 
be executed. For example, the node Evaluation Schema is 
an abstract node whose expansion led to a second abstract 
node called Remediation Schema. On the other hand, the 
node Present Task represents an immediately executable 
action. Action expansion is an activity of the discourse 
manager. This notion of abstract planning borrows prin­
cipally from Sacerdoti [1974] and Stefik [1981]. 

V . F u t u r e W o r k 

The techniques we are working on allow a machine tu­
tor to remain flexible while cooperatively engaged in con­
versation. The goal is to continually adjust the discourse 
to real-time changes in either the knowledge base or the 
user by admitting to the possibility of multiple discourse 
paths arising asynchronously depending on current con­
text. These techniques are being applied toward improv­
ing a tutor's abilty to reason about discourse and to select 
appropriate remediation activities. As part of this work, 
we are building a visual editor that will allow a knowledge 
engineer to use screen figures, similar to those in Figure 1 
to reconfigure, the machine's response. 

The goal is to reduce the excessive time needed for 
building intelligent tutors by providing structures that can 
be easily refined and rebuilt as new systems are tested. 
TACTNs are designed to allow a wider circle of authors, 
e.g., psychologists, teachers, curriculum developers, etc. to 
participate in the implementation of new intelligent tutors. 
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