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A b s t r a c t 
A traditional paradigm for retrieval from a concep­
tual knowledge base is to gather up indices or fea­
tures used to discriminate among or locate items in 
memory, and then perform a retrieval operation to 
obtain matching items. These items may then be 
evaluated for their degree of match against the input. 
This type of approach to retrieval has some problems. 
It requires one to look explicitly for items in memory 
whenever the possibility exists that there might be 
something of interest there. Also, this approach does 
not easily tolerate discrepancies or omissions in the 
input features or indices. In a question-answering sys­
tem, a user may make incorrect assumptions about 
the contents of the knowledge base. This makes a 
tolerant retrieval method even more necessary. An 
alternative, two-stage model of conceptual informa­
tion retrieval is proposed. The first stage is a spon­
taneous retrieval that operates by a simple marker-
passing scheme. It is spontaneous because items are 
retrieved as a by-product of the input understand­
ing process. The second stage is a graph matching 
process that filters and evaluates items retrieved by 
the first stage. This scheme has been implemented 
and validated in the SCISOR information retrieval 
system. 

I . I n t r o d u c t i o n 

The System for Conceptual Information Summarization, 
Organization and Retrieval (SCISOR) is an information re­
trieval system designed to analyze, answer questions about, 
and summarize short newspaper stories in natural lan­
guage. Operating in the domain of corporate takeovers 
and finance, SCISOR is unique in its approach to retrieval 
of the complex conceptual events stored in its knowledge 
base. Most approaches to conceptual information retrieval 
can be broken down into the following four phases: 

1. Retrieval decision: The system comes to a point in 
its processing when it desires some information from 
memory. 

2. Retrieval setup: Indices or features are collected 
and put into a correct format for retrieval. 

3. Retrieval: The retrieval process is performed. 

4. Post-processing / Matching: The outcome of the 
retrieval process is examined and conditional actions 
may be taken. 

The conceptual information retrieval performed in 
FRUMP [DeJong, 1979], CYRUS [Kolodner, 1984], 
COREL [DiBenigno et al., 1986] (which uses the PEARL 
[Deering et a/., 1981] AI package, and IPP [Lebowitz, 1983] 
can all be put into this framework, as could any system 
that performs deductive information retrieval in the style 
of Charniak, Riesbeck and McDermott [Charniak et a/., 
1980]. An exact match restriction may be relaxed after the 
initial fetch returns a negative result. The model of finding 
items in memory here is an iterative one of generate and 
test. This model has certain problems when we consider 
how it could be used to perform certain desirable functions 
in an intelligent information retrieval system. In contrast 
to this model, in SCISOR, items are retrieved from mem­
ory automatically as a result of the instantiation of new 
input instances. When a user's question is instantiated, 
potential answers appear in a short-term buffer. When a 
new story is instantiated, any previously existing context 
for that story appears in the buffer. This automatic re­
trieval is implemented with a constrained form of marker-
passing. Items spontaneously retrieved in this manner are 
then run through a more computation intensive matching 
process. Three problems with the model of retrieval ini­
tially described will be given, followed by a description of 
the SCISOR system and its solution to these problems. 

I I . P r o b l e m D e s c r i p t i o n 

A , U n a n s w e r e d q u e s t i o n r e t r i e v a l 
One capability the SCISOR system has is to retrieve auto­
matically a user's previously posed but unanswered ques­
tion when an answer to that question becomes known or 
refined. For example, consider the following scenario: 
User: How much did ACE offer to take over ACME? 
System: Figures for the deal have not yet been disclosed. 
Intervening t ime... 
System: BEEP! Figures for the ACE-ACME takeover 

have just been released. ACE has offered $40 / share 
for all outstanding shares of ACME. 

In order to provide this capability to a system that per­
forms retrieval as previously described, the system would 
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have to keep a list of unanswered questions present. When 
new stories were input to the system, it would poll the 
unanswered questions, asking "does this answer you?". A 
better approach might be to set up demons on each unan­
swered question that look for certain input features that 
might relate to the content of the question. In either case, 

. however, the system is always looking for answers to its still 
outstanding questions. In SCISOR, if input features hap­
pen to relate to an unanswered question in memory, that 
question is spontaneously brought up for consideration. If 
the input does not relate to any unanswered questions, 
nothing happens. 

B . R e t r i e v a l w i t h p a r t i a l i n f o r m a t i o n 
SCISOR has another capability that would be awkward to 
implement in the model of retrieval previously described: 
to find events in memory even when a user's question con­
tains only partial, or even incorrect information. For ex­
ample, consider the following question, along with some 
independent potential states of the world that might be 
true at the time the user asked the question. 

• Did ACE food company take over ACME hardware 
company? 

1. The ACME hardware company took over ACE 
food company. 

2. The ACE food company took over the BIG-
ACME company, which owns the ACME hard­
ware company. 

3. The ACE food company made an offer to the 
ACME hardware company, but has not yet suc­
ceeded in taking over the ACME company. 

4. ACE is a conglomerate and not simply a food 
company. 

In each of these cases, the question asked cannot be 
well answered simply "yes" or "no". Consider what a de­
ductive information retrieval mechanism such as that de­
scribed in Chamiak, et. al. [Chamiak et al., 1980] might 
do to find the answers to the questions above. One pos­
sible method would be to retrieve all takeover events in 
which the company taking over another company was the 
ACE food company. The episodes found would then be 
checked to find ones in which ACE took over another com­
pany. The resulting events are examined to see whether 
the object of the takeover was the ACME hardware com­
pany. Such a procedure is incapable of detecting any of the 
scenarios described above without further augmentation. 

One potential augmentation would be to incorporate 
heuristics such as "If user asks if X did Y, and nothing is 
found, check if Y did X". This would allow the system to 
find the correct scenario numbered (1) above. To answer 
(4), a heuristic that looks up and down the "isa" hierarchy 
of all the input features could be used. Note that many 
such ad hoc heuristics would be necessary to find relevant 
episodes, given only arbitrary partial or erroneous infor­
mation. A second potential augmentation would be to try 

combinations of features instead of all features. For ex­
ample, if one takes ACE, ACME, and TAKEOVER as three 
features of the question above, then the system could ask 
"ACME takeover who", "ACE takeover who" and "ACE, 
ACME what" to find the situations (2) and (3) above. A 
third possibility, used in the CYRUS program [Kolodner, 
1984], is to generate plausible indices through reconstruc­
tion of what was likely to be present in the situation. Al­
though this procedure has a certain cognitive appeal, it is 
not guaranteed to find events present in the memory. In 
fact, none of the augmentations described is guaranteed to 
find relevant situations; some are not particularity princi­
pled, and all involve substantial additional computation. 

In SCISOR, finding partially matching scenarios is a 
by-product of the retrieval process because the first pass of 
the two-stage retrieval process SCISOR uses simply finds 
events with features that are the same as, or similar to, 
features in the input question. The validity of the relation­
ships between the features is not considered until the sec­
ond pass of the two-stage process is performed. Thus, any 
of the scenarios above would be retrieved given the input 
question as stated. The evaluation mechanism then deter­
mines what is the same as the user's question and what the 
differences are. These differences may then be expressed 
to the user. Note that when nothing closely matches what 
the user asked, no events in the system's knowledge base 
will have enough activation to exceed the threshold, and 
the system will respond that it doesn't know. 

C . P r e v i o u s s t o r y r e t r i e v a l 
Finally, the SCISOR system can find previous articles 
stored in memory when a new article is input that deals 
with the same situation. In the corporate takeover domain, 
events happen over time. For example, ACE may make an 
offer to ACME on Monday, and ACME may respond to 
the offer on Friday. The initial offer should be retrieved 
from memory when the response to the offer is input, so 
that this new piece of information can be properly inte­
grated into the history of events. The way that this could 
be done with the traditional method of retrieval is similar 
to the case of retrieving unanswered questions when the 
answers are input. That is, checking after each new story 
to see if it is a continuation of a known story would re­
sult in substantial additional overhead. Also, dealing with 
the features present in a story continuation could have the 
same problem as dealing with missing or incorrect features 
in a user's input questions. For example, it would be diffi­
cult to find out that ACE was trying to take over ACME 
when subsequently ACME announced it was trying to take 
over ACE. Both of these concerns are elegantly addressed 
with SCISOR's method of retrieval. 

Summary of Problems SCISOR Solves: 

1. SCISOR addresses a user's previously unanswered 
questions when an answer comes along. Instead of 
always looking for answers that may or may not be 
present in incoming stories, incoming stories that hap-
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pen to relate to unanswered questions activate only 
those questions, which can then be considered. 

2. SCISOR is capable of locating relevant information in 
response to a user's questions even when that question 
contains misleading or partial information. 

3. SCISOR retrieves previous events when updates of 
those events are read. This is done in the same ef­
ficient manner as retrieving an unanswered question, 
and with the same tolerance for partial or contradic­
tory input as in the question-answering case. 

The following exchange illustrates the kind of input-
output behavior SCISOR was designed to exhibit: 

User: Did ACE food company take over the ACME hard­
ware company? 

System: Yes, ACE took over the BIG-ACME company, 
which owns the ACME company. ACE completed the 
$18.2 million friendly takeover last Friday. 

User: What was the sequence of events in the takeover? 

System: Rumors that BIG-ACME was to be taken over 
started May IS, 1985. The stock rose $5 a share to 
$65. On May 16, the ACE company announced that 
it had made an offer to BIG-ACME valued at $66 a 
share. The offer was a cash offer to purchase all t mil­
lion outstanding shares of BIG-A CME. After a month 
of deliberation involving some potential conflict of in-
terest matters, the deal was completed last Friday. 

User: What happened yesterday in the HAL Corporation 
bid for BIG? 

System: HAL Corporation increased its bid for the BIG 
company yesterday, up $4 to $70 a share. BIG has 
not commented on the new offer. 

These three hypothetical exchanges illustrate three ca­
pabilities difficult to obtain from traditional document re­
trieval technology [Salton and McGill, 1983]. The first i l­
lustrates the ease of obtaining concise answers to straight­
forward questions by posing the question to the system in 
natural language. The second illustrates obtaining a sum­
mary of an event-sequence whose description spanned mul­
tiple articles occurring over time. In the third exchange, 
a simple update of an ongoing story, presumably being fol­
lowed by the question-asker, is obtained. 

Full-text retrieval systems are incapable of relating ar­
ticles to one another. Thus, it is impossible to ask such a 
system for a summary of a situation that unfolds over a pe­
riod of time and probably involves multiple articles. The 
user must retrieve the entire series of articles and read each 
one to obtain an understanding of all that has occurred. 
Given that most articles consist of background information 
potentially known to the reader, simply restricting the in­
formation shown to the user to new information would be 
very helpful. The best scenario, however, is to give the user 
the ability to retrieve a preprocessed summary of events in 
any given situation, as SCISOR does. 

Figure 1: SCISOR System Architecture 

This section has described some of the problems with 
both traditional methods of conceptual information re­
trieval and with the traditional paradigm of document re­
trieval. The next section describes the SCISOR system 
and in more detail how its approach to retrieval addresses 
the problems. 

I I I . I m p l e m e n t a t i o n 

SCISOR takes input in natural language, integrates new 
information into memory, and answers natural language 
questions in natural language. The natural language in­
put is processed with the TRUMP parser and semantic 
interpreter [Jacobs, 1986]. New events are integrated as 
a continuation of an ongoing story (if present) by the 
event integrator, which also stores new events for retrieval. 
The FLUSH acquisition tools [Besemer and Jacobs, 1987] 
are aids to the acquisition of vocabulary and phrases in 
the system's phrasal lexicon. The events in SCISOR are 
represented using the KODIAK knowledge representation 
language [Wilensky, 1986], augmented with some scriptal 
knowledge [Schank and Abelson, 1977] of typical events in 
the domain. Linguistic knowledge is represented using the 
Ace linguistic knowledge representation framework [Jacobs 
and Rau, 1985]. Responses to the user are to be generated 
with the KING [Jacobs, Fall, 1987] natural language gen­
erator. Figure 1 illustrates the architecture of SCISOR. 

A . M e m o r y O r g a n i z a t i o n 
SCISOR manipulates conceptual structures represented in 
the KODIAK knowledge representation language. KO­
DIAK can be viewed as a hybrid frame and semantic net-
based language, similar in spirit to KRYPTON [Brachman 
et a/., 1983]. In SCISOR, knowledge stored is either spe­
cific, abstract, or semantic. An example of a specific mem­
ory is the memory of the ACE food company acquiring the 
ACME hardware company. A traditional episodic memory 
[Tulving, 1972] is composed of specific memories. An ex­
ample of an abstract memory is the generalization across 
specific experiences we might have heard about where com­
panies have acquired other companies. Abstract (or gener­
alized episodic) memories are on the border between spe-
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Figure 2: Structure of long-term memory 

cific memories and semantic memory. Semantic memory 
is the memory or knowledge of what "companies" are and 
what "acquiring" is. Semantic memory is used in under­
standing and making inferences about the input to the 
system. 

This tr ipart i te division of memory approximates a 
continuum, where the three divisions represent the most 
specific level, the most general level, and the levels in be­
tween. At the most specific level are things that happen 
in the world that are composed of particular, unique in­
stantiations of concepts. Specific memories may abstract 
through generalization by the generalization mechanism, 
and these abstractions may abstract. Figure 2 illustrates 
the structure of long-term memory wi th associated exam­
ples. 

In addition to this tr ipart i te division, another level of 
organization is superimposed on memory. Groups of re­
lated concepts in episodic or abstract memory are linked 
together through a common node, called a TAG. The TAG 
allows the system to detect quickly whenever multiple in­
stantiated concepts appear in the same event or episode. 
This TAG is attached to concepts by the event integrator. 
The integrator simply takes all the instantiated concepts 
passed to it and assigns them a new TAG. Each TAG has 
a numerical threshold value, currently equal to a fraction 
of the number of concepts in the episode, currently one-
th i rd . Long articles may consist of TAGs that have TAGs 
as components. Figure 3 illustrates the kind of structure 
the integrator superimposes on memory. 

B. The Retrieval Mechanism 
Retrieval in SCISOR is a two-stage process. The first stage 
is a coarse search that finds events in memory likely to 
be relevant. Relevance is determined by the number of 
features present in an event in memory related to features 
in the input. After the most likely candidates have been 
isolated, a more computation-intensive matching process 
is performed. The operation of the retrieval mechanism, 

and the SCISOR system in general, is duscussed in more 
detail in Rau [Rau, 1987]. 

The first stage of the retrieval process is performed by 
a process of priming or constrained spreading activation. 
As concepts are instantiated in the system, instances of 
concepts that are related via category membership links 
are marked (i.e., primed or activated). When a certain 
subset of the concepts in an event or episode is marked, the 
entire episode is put into the system's short-term memory 
buffer. This is the spontaneous retrieval phase. The events 
that have been spontaneously retrieved can then be run 
through the match filter to check the nature of the match 
between the input and the events retrieved. Periodically, 
all marks are deleted from the system. Marker-passing 
"waves" are propagated continuously as new concepts are 
instantiated. This mechanism retrieves answers to input 
questions, old unanswered questions to new input answers, 
and stories given related input stories in exactly the same 
manner. 

In more detail, the retrieval mechanism operates in 
the following manner: 

1. At the time of concept instantiation, related concepts 
are marked according to the "priming rules" (see next 
section). Every concept that is marked causes its 
containing episode or episodes (its TAGs) to have in­
creased activation* The current and threshold levels 
of activation are simple properties of the TAG. 

2. TAGs that have had their values increased check 
themselves to see whether their current activation lev­
els exceed their threshold. 

3. If the TAG threshold has been exceeded, an intersec­
tion has been detected, and the entire episode is put 
into the short-term memory buffer. The match filter 
is then called to refine the potential matches. 

4. If a concept is instantiated that is included in an 
episode already in the memory buffer, an incremen­
tal match filter is called to match incrementally the 
new concepts. 

•Actually, high-frequency, low-content concepts may not partici­
pate in this process. 
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5. All concepts in the memory are unmarked after ev­
ery one or two sentences and after every question are 
input. 
The rules that guide how levels of activation or marks 

are passed through the conceptual hierarchy are given be­
low. These rules were formulated to decrease the possi­
bility of retrieving memories that have limited predictive 
capacity or relevance to the current situation. 

1. Pr iming Rules 
The effect of the following rules is that all instances 

of concepts that are components of episodes and are chil­
dren of the incoming parent of the parent of the incoming 
instance in the conceptual hierarchy, are marked. Also, all 
instances of concepts that are components of memories, 
and are direct instances of concepts that are parents of the 
incoming instance, are marked. This rule prevents every­
thing in the hierarchy from being marked, and limits what 
is marked to a level of conceptual abstraction supported by 
the presence of a direct instance at that or a more general 
level. 

For example if a user asked "What happened to the 
ACE company?", the event being asked about is at a fairly 
general level of conceptual abstraction. Any event involv­
ing the ACE company and more specific than this general 
"event" instance would be a valid answer. If no event were 
known, the unanswered question would be stored. In the 
future, any input events involving the ACE company (i.e., 
offers, rumors) would cause the unanswered question to be 
activated. Note that all concepts as they are instantiated 
cause any related instances to be marked, which allows 
any feature in the input to be a potentially useful index 
key into memory. 
Rules: 

1. Mark concepts that are components of specific or ab­
stract events. These concepts are marked with TAGs. 

2. Determine the categories to which the incoming in­
stance belongs (Categories-of A). 

3. Determine the concepts in the reflexive, transitive clo­
sure along category membership links of Categories-of 
(Categories-of A). 

4. Mark the direct instances of concepts in this closure. 
Each marked concept increases the current activation 
value of each of its TAGs. 
Additional refinements to this algorithm have been 

made to increase the system's efficiency. One such re­
finement has been to check the number of episodes con­
taining a certain concept before passing markers to all 
those episodes. This check can be made easily by main­
taining a count of the number of category members in 
each conceptual category. For example, if the system had 
read about events involving thousands of companies, this 
number would be stored at the parent COMPANY node. 
When this number is very large, the system suppresses 
the marker-passing operation. Events that are retrieved 

Figure 5: Part of a Story Episode 

The story episode contains information about a kind 
of offer, a CASH-OFFER, made by Warnaco for a clothing 
company. The question episode requests the value of any 
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through the activation of more unique concepts then in­
corporate the high-frequency concept information in just 
those events. This simple refinement suppresses waves 
of activation unlikely to cause significant differentiation 
among events in memory, while still taking all features of 
the input into consideration. 

After a set of events has been spontaneously retrieved, 
a match filtering operation is performed to ensure that 
the correct relationship exists between concepts within the 
events. 

2. The Match Fi l ter 
The match filter takes spontaneously retrieved events 

and computes a final degree of match, based on the results 
of matching relationships between the concepts in the input 
and the concepts in the retrieved events. In the following 
discussion, a "component" refers to a constituent concept 
in an event. 

Input to the match filter consists of an ordered list of 
the most highly activated episodes in the short-term mem­
ory buffer. Also present is information about what input 
components caused a retrieved episode's component to be 
activated. Output of the filter is a potentially reordered 
list of matching episodes, with additional information that 
relates the components of the input to the components of 
the retrieved episodes with more precision and certainty. 

The match filter starts at one node in the retrieved 
episode and begins to construct a new graph that repre­
sents the matching elements of the input and the retrieved 
nodes. It performs this process by checking that values of 
the "slots" (called aspectuals in KODIAK) in the retrieved 
episode are also marked by values of the slots in the input. 
For example, consider the example illustrated in Figures 4 
and 5. 



offers made by a company in a takeover attempt on an 
apparel company. 

Due to the marker-passing, the instantiation of OFFER 
in the question episode causes CASH-OFFER to be marked. 
Similarly, CLOTHING marks APPAREL. The other features 
that contribute to the retrieval of the story episode are 
TAKEOVER, COMPANY and VALUE-OFFER. The match fil­
ter begins at a node that is marked only by one node from 
the input. OFFER2 is such a node, but note that COM-
PANY2 and COMPANY3 are both marked by COMPANY4 
and COMPANY5. 

The filter proceeds to check that the OFFER of CASH-
OFFER3 (TAKEOVER3) is marked by the OFFER of OFFER2 
(TAKEOVER2). Given that this is true, the OFFER2/CASH-
OFFER3 match is added to a new graph that represents the 
matching elements of the input and the retrieved episodes. 
This process is repeated for every node in the input. In 
the case of answering a question, those nodes that do not 
correspond are added to a list of presuppositions to be ex­
pressed to the user. Also, any node that was more general 
than the input may be expressed to the user. For example, 
if the user was interested in what pet-food companies were 
being taken over, and the system only knew about food 
companies, this generalization is pointed out. 

C . S y s t e m S t a t u s 
SCISOR is implemented in Common Lisp; it is used on 
VAX computers and Symbolics and SUN workstations. 
The TRUMP parser and semantic interpreter has not yet 
been tested with a large grammar or vocabulary but, in 
these early stages, it has been relatively easy to customize. 
On the SUN-3 it processes input at the rate of a few 
seconds per sentence, including the selection of candidate 
parse and semantic interpretation. The KING natural lan­
guage generator was implemented in Franz Lisp, and at 
this writing has not yet been converted to Common Lisp 
to run with TRUMP. 

The system has been tested with a dozen or so sto­
ries stored in the knowledge base. Hundreds of semantic 
concepts and domain vocabulary are also present. About 
a dozen questions are answered by the system. 

I V . R e l a t e d R e s e a r c h 

A . Q u e s t i o n A n s w e r i n g 
In SCISOR, the processes that find the approximate loca­
tion of an answer to a user's question and the processes 
that determine what the answer should be are separate. A 
great deal of work has been done on the second problem, 
most notably by Lehnert [Lehnert, 1978]. Determining an 
appropriate answer to a user's question, given that the 
context in which the user's question was posed is already 
known, is a separate process from the initial retrieval of a 
context in which to search for an answer. This initial re­
trieval of a context is the spontaneous retrieval this paper 
describes. 

B . M e m o r y - b a s e d R e a s o n i n g 
Stanfill and Waltz [Stanfill and Waltz, 1986] provide ex­
cellent motivation for using episodic memory to perform 
various reasoning tasks. While it is hoped that SCISOR 
will eventually be used to perform reasoning of the type 
they describe, the method of retrieval of episodes used in 
the two systems is antithetical. While Stanfill and Waltz 
assume that it is impossible to find a best match from an 
event-based memory without examining every item in the 
knowlege base, this is in fact exactly what SCISOR does. 
SCISOR accomplishes this by only activating events with 
features related to features in the input. Thus search is fo­
cused entirely on best-match candidates. Events with no 
features related to features in the input are never touched. 

Also, SCISOR uses its semantic knowledge to find 
close matches, where closeness is a measure of semantic 
distance. Stanfill and Waltz's proposed lack of knowledge 
of the semantic domain of system operation will prevent 
their system from finding truly best matches. 

C . P a r t i a l P a r s i n g 
Recently, there have been some limited successes in the de­
velopment of AI systems to parse partially and to under­
stand short texts in constrained domains [Dejong, 1979, 
Lebowitz, 1983, Kolodner, 1984, Young and Hayes, 1985]. 
However, work in effectively accessing these knowledge 
bases has not been as successful. For example in Young and 
Hayes [Young and Hayes, 1985], the information cannot be 
accessed after it has been understood except through a tra­
ditional database front-end, or by direct examination of the 
conceptual, frame-like representation. In CYRUS, a natu­
ral language question-answering component allows queries 
of the knowledge base. However, the system is not guaran­
teed to answer correctly. As a cognitive model, its memory 
failures are understandable and interesting, but when ac­
curacy and reliability of information are important, such 
a model is not viable. SCISOR demonstrates some of the 
uses that can be made with automatically extracted con­
ceptual information from text when that conceptual infor­
mation is combined with a powerful and robust method of 
spontaneous retrieval. 

D . C o g n i t i v e E f fec t s 
In systems such as SCISOR that use the same parsing 
mechanism for both question parsing and story parsing, 
interesting effects occur. For example, in BORIS [Dyer, 
1983], the system would occasionally take as true informa­
tion present in a user's question not previously known to 
the system. Although this has been shown to be a cog-
nitively valid effect [Loftus, 1975], and does increase the 
system's opportunities to learn, it is not a desirable effect 
for an information retrieval system. In the SCISOR sys­
tem, a strict difference is maintained between information 
read in articles, and information present in user's ques­
tions in that all information present in questions and not 
previously known to the system is flagged as potentially 
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unreliable. Thus the system believes nothing it is told, 
but everything it reads in the paper. 

The model of retrieval discussed has a certain cogni­
tive appeal. It exhibits the same kind of spontaneous recall 

,M as people do, as is discussed in Schank's work on remind­
ing [Schank, 1982]. Also, the answer to a user's question 
may be retrieved before the user has finished asking the 
question, an interesting effect also first achieved in Dyer's 
BORIS system. 

V . S u m m a r y 

SCISOR performs retrieval in a two-stage process. The 
first step, a spontaneous and coarse search, can be sum­
marized as follows: 

1. New inputs are instantiated: As the system reads 
new stories, or users ask the system questions, con­
cepts are instantiated. 

2. Marker passing occurs: Markers are passed to 
other instances related to the input instances through 
semantic category ("isa") links. 

3. Items are spontaneously retrieved: When 
enough instances in an event have been marked, the 
event is retrieved from long-term memory. 

4. Items are evaluated: The system must evaluate 
items retrieved for relevance in the processing at hand. 

The second stage is a kind of graph matching process that 
performs a syntactic matching function on the likely can­
didates retrieved by the first process. This spontaneous 
method of retrieval elegantly solves some retrieval prob­
lems found in other systems: 

1. SCISOR efficiently addresses a user's previously unan­
swered questions if an answer becomes known. Instead 
of always looking for answers that may or may not be 
present in incoming stories, incoming stories that re­
late to unanswered questions activate only those ques­
tions, which may then be considered. 

2. SCISOR can locate relevant information in response 
to a user's questions, even when that question contains 
misleading or partial information. This capability is 
a by-product of the method of retrieval used. 

3. SCISOR retrieves previous events when updates of 
those events are read. This is done in the same ef­
ficient manner as retrieving an unanswered question, 
and with the same tolerance for partial or contradic­
tory input as in the question-answering case. 

V I . P r o b l e m s 

Currently, matching of features can be relaxed only by 
the spreading of markers through the "isa", or abstraction 
hierarchy. An example of a more difficult problem is men­
tioned in a discussion of matching in KRL [Bobrow and 
Winograd, 1977]. That is, it might be nice to retrieve an­
swers to questions like "Does John own a dog" given that 

we have in memory that John owns a dog license. This 
type of reasoning and deduction could be performed with 
the SCISOR system by an iterative spontaneous retrieval. 
John's owning a dog could potentially retrieve the informa­
tion that dog owners have dog licenses, which could then 
activate John's owning of the dog license. The effects on 
processing time and efficiency of such iterative retrieval are 
unknown, they could be substantial. 

Another limitation SCISOR has is in the kind of ques­
tions the system can answer. Currently the SCISOR sys­
tem is capable of answering only questions about informa­
tion explicitly stored in the knowledge base. Any infor­
mation that potentially could be reconstructed or inferred 
from information stored in the knowledge base is not avail­
able. The line between what is explicit in a story and what 
can be deduced from that story is not sharp, because some 
amount of "figuring" must go on to obtain any reasonable 
understanding of the story. To obtain this understand­
ing, SCISOR computes something similar to a maximally 
complete inference set [Cullingford, 1986] as the set of in­
formation present explicitly in articles and inferred from 
the context and other world knowledge. Anything in that 
understanding can be directly retrieved. 

For example, SCISOR is able to answer the question 
"What company was sold for $3 billion?" without pre-
indexing a story containing that information by AMOUNT-
OF-SALE. However the system cannot answer the question 
"Which companies have been taken over more times than 
they have taken over other companies?" for example, be­
cause an answer would require counting all the times a 
company has been taken over and has taken over other 
companies, comparing these two numbers, and repeating 
the process for every other company in the knowledge base. 

Another problem that ultimately must be addressed is 
the speed and memory requirements necessary in a viable 
information system. The effects of such a large knowledge 
base on the speed and accuracy of the retrieval mechanism 
are unknown. 

V I I . C o n c l u s i o n s 

SCISOR is an experiment in the usefulness of a spon­
taneous, marker-passing approach to conceptual infor­
mation retrieval. In its current implementation, it has 
demonstrated some promising results. The marker-passing 
scheme, combined with the knowledge representation used, 
seems to produce an effective contents-addressable, dis­
tributed representation. Retrieval occurs spontaneously 
when features in the input are related to features of events 
in memory. SCISOR can find answers to input questions 
even in fight of missing or misleading input information. 

The system has not yet been tested on a large num­
ber of documents. However so far, the tests that have 
been performed are quite promising. Before any definitive 
claims can be made about the ultimate usefulness of this 
type of system, it must be tested with a large sample of 
documents in real IR tasks. The next stage of the project 
will include such tests. 
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