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ABSTRACT

Logic programming has been an attempt to bridge
the gap betwen specification and programming language
and thus to simplify the software development process.
Even though the only difference between a specification
and a program in a logic programming framework is that
of efficiency, there is still some conceptual distance to
be covered between a naive, intuitively correct
specification and an efficiently executable version of it
And even though some mechanical tools have been
developed to assist in covering this distance, no fully
automatic system for this purpose is yet known. In this
paper v/t present a general class of first-order logic rela-
tions, which is a subset of the extended Horn clause
subset of logic, for which we give mechanical means for
deriving Horn logic programs, which are guaranteed to
be correct and complete with respect to the initial
specifications.

I. INTRODUCTION
A* Logic program derivation*

Logic programming is an attempt to bridge the gap
between specification and programming language
requirements. By making a clear separation between
logic and control, it makes it possible for the program-
mer to deal initially with the logic of his problem and
then derive more efficient, still logically equivalent, ver-
sions of it by altering the control accordingly. The
apparently simple operational semantics of Horn-clausal
logic and its various efficient implementations, mainly in
the form of PROLOG interpreters and compilers, makes
it quite appealing as a programming language.

Of course, even though it has been shown that any
problem expressed in first oider predicate logic can be
reformulated using only Horn clauses, expressing prob-
lems in Horn clauses is certainly not claimed to be very
natural. Various attempts have been made - [Bowen
1982], [Murray 1982], [Stickel 1984] - to implement full
first-order logic as a programming language but, apart
from efficiency considerations, the lack of intuitively
clear operational semantics for full first-onier logic
makes them unusable.

On the other hand, [Clark & Sickel 1977], [Hannson
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1980), [Hogger 1978,1981] and [ Vasey 1985) have been
trying o develop transformation techniques, based on
Iogical objct-level deduction, for deriving (Hom) logic
programs from fist-order logic specifications and also
for increasing the efficiency of logic programs.

According to Hogger, logic procedure derivation
refers to the ask of showing that the statements (pro-
cedures) comprising a logic program are true theorems
about the problem domain implied by a first-order
axiomatic formulation of the problern, which constitutes
the program’s specification. In practice, this amounts to
constructing a series of deductions (a derivation) treat-
ing the specification sentences as assumptions in order
to prove each statement in the program. Additionally,
proof of each statement is logically independent of
proofs of the other stalements and of any assumptions
about the behaviour of the program in execution.

We illustrate a general method for deriving Hom
clause programs from standard logic specifications by
deriving such a program from the following specification
of the subset relation:

SL: subser(1,12) <> Vz (member{zll) > member(zi2))
82: Vi “member( x,nid)
83: member(x,ul) <> x= u or member{ x,0)
where we represent sets as lists with no duplicates. nd
represents the empty list and w.f is the list with head u
and tail L
The inference steps can be thought of as combining
resolution with convemsion o clausal form. Some of
themn are analog to the and unfold transformation
operations developed by [ Burstall and Darlington 1977]
in a recursive equations framework.
We start by converting the if-half’ direction of §1 into
clausal form. We get the two clauses:
C1: subser(1} 12), member( K11 12)11) <
C2: subser(11,L2) <— member{ N11,12),12)
where fis a skolem-function symbol, denoting an arbi-
trary function of 1 and 2.
Notice that C1 is a non-Horn clause.
The base clause of the recursive Hom program,

P1: subser(nd 12) <
is directly obtained by resolving the clausal form of 52,
"<~ member( x,n2)*, with C1.
The recursive clause of the program can be derived
more naturally by reasoning with the ification in

standard form. matching the atoms member(zi1)"
and "“member{xu.l)” in S1 (only its if-half} and S3
respectively { ing) we obtain:

S4: subser( .l 12) < Vz ([ u or member( 2,0 }5> member( z.12))
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Now we begin to convert 54 into clausal form:
S5: subsef{ul12) <- Vz [p= u > member(z2)] &

Vz Imember(z,l} > member(z,i2)]
Any further conversion would result in non-Hom
clauses. Fortunately the two non-atomic conditions in
S5 can be replaced by equivalent atomic ones using the
cquivalences:
S6: Vz fo= u <> member(z,12)] <> member(ul2)
S7: Vz Imember(z,l) > member( z,2}] <—> subser(1,12)
The first equivalence is a special case of the substitu-
tivity of equality, while the second one is an instance of
S1 and its application corresponds to flding. Thus we
easily obtain the rest of the pm)gmm:
P2: subset{u.l,i2) < member{u,i2), subsexX(i2)

Some of the inference steps presented here and
other more complex ones needed for more difficult
derivations can be easily mechanised, but there remains
a significant portion of them, -which seems to require
some inventiveness. It should be emphasised here that
no complete inference system exists yet for such deriva-
tions. The same applies to transformation techniques
for improving the efficiency of logic programs.

Thus, although deduction is a logically sufficient
tool for creating logic programs from specifications or
from other programs, this tool requires intelligent con-
trol in order to be practicaL An attempt towards the
implementation of a semi-automatic tool for assisting
with such manipulations is reported in [Vasey 1985]. In
this paper, however, -we restrict our attention to a
specific class of relations, -which we identify in section Il
and, for -which fully automatic program derivation is
possible, as we shall show. And because we find that a
systematic treatment of data types in bgic is necessary
for the adequate formalisation of our results, we present
such a treatment below.

B. Characterising data types in logic

Clark and Tamlund in [Clark & Tamlund 1977]
were the first ones to present a uniform way to charac-
terise and deal with data types within the framework of
first-order logic. Different treatments of data types in
bgic also appear in [Vasey 1985]. Here, however, we
restrict our attention to recursively defined data types
and present a general axiomatic way of characterising
them, which serves as the basis for formalising some
results in the next section.

By data type - or sort - we mean a collection of
values, a subset of the Herbrand Universe. A simple
way to characterise data types without departing from
first-order bgic is to use predicates, since any relation
can be thought of as defining data types for its argu-
ments ,Le. the sets of values that bebng to the relation.
For example, consider the unary predicate natural, such
that naetwrak'x) is true if and only if x is a natural
number - bebngs to the data type natural This data
type can be axiomatised with a recursive definition:
natural{ x} <> x= 1 exody (naturul(y) & JO- sucdy))
and an equality axiom: succ{x)= ¥ Dy,
where exor is the symbol for exclusive or, 71 is a con-
stant and suec is the successor function; 7 and seac are
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the two constructors of the type. Notice that the ele-
ments of this type are of the form : 1, sucdl),
wodsuo( 1)),... for any fnite time of ‘succ
ocourrences.  Similarly we can axiomatise the common
types of lists #nd trees - used in following examples.

(D) G—»l= nd exor
An Jit (elemerd( i) & Hs(l) & b DRI
and

hill = 252 <> hi= h2 & bI= 42,
where ni and '.' are the term constructors of our
representation of lists and elemer is an arbitrary type.

tree{x) <> x= ruill exor
v hv Jar (tree{ xt) & node(w) & tree(xr) &

& x= t{xd,w,xr))
and
Nl wiarl) = (22,w2, 202} <3 wie w2 & xila xI2 &

& xrl= xr2

where nudl and t are our trec-representation constructors
and node is an arbitrary type.

In general, in order to axiomatise an arbitrary data
type with a recursive definition we assume the existence
of two constructor predicates Al and A2, such that:
Reaype(r} <> AKr) exr

At fo(Rectype(u )} & ... & Rectypelu ) &
.S‘rmf{'vlll& i &)pm(vm)n&
AXru,v) J

where u= (uy,..4,), v= (v},...v, ) (u and v can be tuples
of variables) and , b= 1,...m, denote arbitrary types.
Al, the basc mnstrm:for, cstablishes a bottomn clement
for the type and A2, the main constructor, builds new
elements of the type out of old ones. A kind of an
equality axiom may also be added:

fut Ml Vu VWwilAXruy) > u=ul & v= vi1).

Naturally we amsociate an induction scherna with
any so defined data type, which enables us to reason
about any relation defined over such a type.

For Any Formula P :
VrlAKR) > Ar)) &

Vu Vo (AXru,v) 5> (Aud & ... & Au,) > K]

¥ Vr{Rectype(r) = Hr})

If now, for example, we define a relation evers
even(x) <> Jy o= 2*y , and we wish it to have meaning
only when x is a natural number, we can can use the
conditonal definition:

Vix (natural x) —>(everl x) <—> Jy x~ 2%y)).
In general, in onder to denote that a specific arpument x
of a relation R can only range over some data type
Sometype, we usc a conditional definition for R :
¥x (Sometype( x) —> (R(x,y) <> Definiens))
where Lkﬁnimss!mdsfgrﬂ'lc dct{rﬁgfn;gm;fformy
other arguments.
This means that R has meaning only for those first
arpuments that satisfy Sometype - are of this type.
In the case where Sometype is a2 Rectype the definition of
R can be put into one of the forms
Rix,y) <> [Al{x) & RXx,y)]or

or kv [AXxuv) & RXuvyl

g(.x,y) <>k M AXxuy) & REu v,y



Il1. ACLASS OF FIRST-ORDER LOGIC RELATIONS

In [Kowalsld 1985] an extension of Horn clauses is
identified, called the extended Horn douse subset of
logic, which offers more expressive power than the
Horn clause subset and admits efficient computations.
A clause belongs to the extended Horn clause subset of
logic if and only if its condition contains a universally
quantified Horn clause. Additionally, we say that a rela-
tion is defined with an extended Horn clause if and only if
the if-half of its definition is an extended Horn clause.
Quite a number of common relations, some of which
are presented below, fall naturally within this class.
Here we identify a class of first-order relations, which
can be defined with a subset of the extended Horn
clause subset of logic and for which we present means
for mechanically transforming their definition into Horn
clausal form. First we present a few examples of rela-
tions in this class and explain the relationship with their
corresponding programs.

A. Examples.

a) The subset relation.

This has already been presented in (l), but here we
slightly alter the format in the member specification so as
to conform to our general schema of specifying relations
over recursive data structures presented in U). Both
arguments of subset are assumed to be of type list.

S1: subser(l],12) <> Vz (member(z,l1) -3 member(2,12))
82: “member(x,l) < = ni
S3: member{ x,l) <3fth fit (i= It & (0= th or member(x,it)))

Notice that subset is defined with an extended Horn
clause and member is defined recursively on its second
argument & 82 is the base case, since 1 is instantiated to
niL, and S3 contains the recursive occurrence of member
with &= &, the tail of the original list The well-
definedness can be easily proved by induction on lists.
The corresponding program for subset as inferred
above, is:

P1: subsef nil {2) <
P2: subsefu.l12) < member{u 12} & subsef112)

Notice that this is a recursive program on the first argu-
ment; Pl is the base case clause and P2 the recursive
one, since it contains a recursive call to subset with its
first argument being the tail of the original list Termi-
nation can be proved by induction on lists. It is essen-
tially the recursion of the first occurrence of member in
the initial specification - which has been eliminated in
the above program - that has been transferred onto sub-
set. And, as it will be shown below, one could avoid all
the trouble of formally inferring this program - as we
did in (1) - and write it down, more or less directly, fol-
lowing some syntactic rules.

b)The max relation,

max{{,x) holds when | is of type list, x of type element
and x is the maximum element of | with respect to some
ordering  relat {*<") defined on elements.

81: maxdix) <> member{xl) & Vz (member(zl) = z<x)

§2, 83: a5 in the above example.
Simnilarly here fi extende orm
cfause a’r;d % w”ﬁlrgt 130% sccon con gl E‘lz

§4: upperbound({,x) <> Vz (member(z,l) = z< x)

we can obtain the following recursive program for upper-
P2: upperbound(nil,x) <-

P3: upperboundlu.l,x) < u<x & upperbound(l,x)

which does not involve the relation member and for
which the same observations can be made as in the
above example.

Thus, we get the follo program for max:

P1: maddl, J:J < member(“:llf& upperbound(l,x)

together with P2, P3.

¢) The ordiree relation.

ordiree( x) holds when x is of type tree and its nodes are
ordered with respect 1 an ordering relation ‘<.
lefof(u,v,x) holds when node u is on the left of node v
in tree x. belongs{u,x) holds when u is a node of tree x.

51: onttree(x) <—=> Vu Vv {lefofluvx) > u < v)
52: “leflof{u,v,x) <— 1= nuil
83: lepofu,v,x) <> I v o (2= o, w,xr) &
{ (u= w& belongs{v,xr})
or {w= w & belongsu,xi))
or (belongsu,d} &
& belongs{ v,xr))
or leflofu,v,xi)
or leftofu,v,xr)
S4: “belongs{u,x} < x= null
S5: belongsu,x) <> Jd Jw Jor (2= d,w,ar) &
(u= w or belongs(u,xi)
or belongs(u,xr)))

The corresponding program js :

P1: ondtree{ radl) <
P2: ordtree(t xi,w,xr)) < quall{xdw) & qudNwar) &
& auxit3oxd, ) &
& ordtree( 1) & oritreel xr)
P3: quxil I{null,w) <
P4A: auxid KK d wi xr) w) < wi<w &
& quxl i xd.w) & audli{aw
P5: quxit w,null) <
P& qucdXw dwlxx)) < w<wl &
& auxaiZiw,xd) & qudldw,xr)
P7: quxi3(nui,x) <
P& auxd N xd, w,xr) x) <~ awddwax) &
& qual ¥ xd,x) & auxH xr,x)

which is recursive, does not involve lzfof and bdongs,
but introduces three new relations - auxi] a2, auxd3

-, which are again recursively defined. Here the passage
frorn the specification S to the program P is not as obvi-
ous as in the previous two examples mainly due to the
nested recurzions. Nevertheless S and P are equivalent
under the dosed world esumption and a simple syntactic
transformation suffices to obtain P from S, as we shall
show later,
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B. Formal results

Firstly we define a class of relations, which we call
RR (Recursively-defined Relations). We consider rela-
tions of at least two nts - either of which can
stand for a tuple of arguments - which parameterise the
clasg. A third argument is added in the representation
of these relations to stand for any other - if any - argu-
menty, which are uninteresting for our purposes.

Definition 1 : A relation R belongs to KR Iff it belongs
10 one of the classes RR(Q, RRI, RR2, RR3, RR4.

A relation R belongs to RROfr.q] iff it can be defined as:
SO: R(r.qs) <> g¢= A7), for some arbitrary function /.
A relation R belo:

to RR1[rq]iff it can be defined as:
S1: " R(rg,s) < ANP

82: Rir.g,s) <>k h(AAruv &
{RXuyvgq,;s) or
Rlu;q.,8) ... or Rlu,.q,9))
where: i) AI, A2 are consthuctor mdim{'cs for a recur-
sive data type (sce 1.B)
i) R2 belongs W RR/xq) where x can be any of its
other arguments {apart from ¢) or a function of these.

A relation R belongs to RR2{r,q] iff it can be defined as:
S§3: Rirqs) <> (AKr) & RKrq,s)) or
A v (AXruy) &
IRXuvg,s) or
Rlu 1,q,s) v OT R(un,q,s)})
where A1,A2,R2 are a3 above and the same holds for
R1I as for R2.

A melation R belongs to RR3fr,q] iff it can be defined as:
84: Rirg.s) <> RIilrgl s} & RZ?r.qZ

where g= (g1,¢2) (an arbitrary split) and R1, R2 belong
o Rng,;!i and RR[r.g2] respectively.

A relation R belongs o RR4{r.q] iff it can be defined as:
S5: R(r,q,s} <> RI(rq.s) or R l}q,s)
A 0

where R1, R2 bebong o RR[gq

The relations member, leflof and belongs are examgples of
RR-relations.

Notice that, if we consider only the "<—-half of any of
the above definitons for the relation R, it can be
directly expressed in Homn clausal form, thus pro

us with a legic program for computing any instance o

the relation R - given & Hom-logic interpreter like PRO-
LOG -, which is not only correct but alsc complete with
respect to the initial specification. The correctness fol-
Ibws trivially from the truth of: A<—>»8 } A<-B. For
the completeness we also need the dosed world assenp-
tion (cw.a.); that is, if there aren’t any other clauses
with head A, which means that the only way to establish
A is by showing B - A is true only if B is -, it follows
that: A<—BF B<—A and thus: A<%-BF A<—>8.

The programs corresponding to the above classes are:

RRO: R(rq,s) < q= £r) orsimply: R(rfr)s) <

RR1: R(rg,s) < ANru,v), RXuvg,s)
Rirgs) < AAruv), Rlupg,s) (b= 1.0
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RR2: Rirgq,s) <- ANr), R(rg.8
Rirg,s) < AXruv), RXuvgs
Rirg.s) < AXMruv), Rluyg (b= 1,...0)

RR3: Rlrq,s) < RKrql,®), RXrg2%)

RR4: R(r,q.s) < Rl(rg,s)
Rirgs) < RXNrgqs)

It should be noted that in all of the above programs we
assume the existence of logic for the intro-
duced relations R1 and R2, a fact that follows from our
definitions - formally by induction.

Now we define another class of relations, which we
call ERR (Extended RR). Relations in this class have at
least one argument, which parameterises the ciass, and a
second argument i added as in the previous classes.

Definition 2 : A relaton Q belongs o ERRf] iff its
definition can be put in the form :
fr.s} <> Vg(Rrqs) > Aqs)
where R belongs to RRIr.¢/ and A is an arbitrery rela-
tion, for which we can obtain a Horn logic program. O

The relatons subset, upperbound and ordiree are
examples of ERR-relations.
Notice that for this class a Hom logic program cannot
be obtained directly, that is, simply by converting into
clausal form as above. However, the following theorem
provides us with an easy way to get such a logic pro-
gram, which is correct and complete with respect to its
specification.
: If a relation belongs 1o ERR then it can
re-expressed in a logically equivalent way (under the
c.w.a.) using only Hom clauses,
More spcd.gany. if Q belongs to ERRIr/ and thus can
be defined as: 8 : r,s) <> Vg (Rrg.s) > Ag,5)

then the cormespondi arc as follows:

1) if R belongs m%ﬁgqo then

P:Q(rs) < Afr.s
2) if R belongs to RR1fr.q] then

P1: Q(re) < AR}

P2: fr,s) < AAruv), QNuvas), Qlups), ..., Qlu,,s)
where AS: OAuv,s) <> Vg (RXuvqs5) > Al q,x)ﬁ( H AP}
3) if R belongs to RR2/r.q] then

PL: Q(rs) < Al(r), QI(r.9)

P2: rs) < AXruw), QAuyvys), Qu, 9, ...,
where ASL: QI(r,8) <> Vig (RI(rq,0 > Alg») (F1APD)
and AS2: QNu,vs) <> Vg {RXuvgs) > Mg (= AP2)
4) if R belongs to RR3fr,g] then

AS: Q(r.s) <> Vg (RKrgs) >QNr.s)
where AS1: Qir.s) <> Vg (RXrq.5) > Aqs)

5) if R belongs to RR4[r§ then

P:Q(r.s) < Ql(rs), QXr.8)

where ASL: QI(r.9) <> Vg (RI(rq.s) > Ag,s)
and AS2: Q2r.s) < Vg (RArgq.s) > Aq.s) 0

BPROOF : For each of the above five cases we shall
show that ibe rcla that holds between the pro-
and its apecification is that of logical equivalence
{undcrthe c.wa.), from which the correctness and com-
pletences results follow trivially.



1) In this simple case we can prove both directions of
the equivakence using a single chain of inferences, which
always preserve equivalence. )

Thus we have : SH P{ ing S0) =ince:

§: f(r,s) <> Vg (R(rq,s) > Alg,s)] 1 (by S0)

i [Q(r.8) <> Vg (g= A1} > Alg,s))] H (substitutivity)

Wl [QUr,s) <> Alfr),8)] H (byc.wa. for §

HiQrs <« Afr)l: P

2) For simplicity in the proof we consider only the case

where u in AXru,v) is a gingleton. The more general

case presents no additional conceptual dificulty.

Corvectness: We have to show: $,51,52,A5) Pl & P2,

which can be split into a) 5,51,52,A5 + P! and

b) §5,51,52,AS - P2,

a) 8: fQrs) <> Vg (Rir,gs) = Alg )]

F Q(r,s) < Vg (R(rg,s) 5> Algs)] + (since: "A-DA 8))

FiQXrs) < Vg (C Rirg,s)] + (bySI)

FQrs) <« Al(r)]: Pl

b) S: KQ(r.s) <-3>Vq (R(rq,s) > Algs)]t

F {Q(r,s) < Vg (R(rgs) > Algs))] k (by§2)

FIQ(r,s) < Vig {Ju o (AXru,v) & (RNu,vgs) or R(ug,s)))
QA? 5]

F Q(rs) < Vg Vu Vw(AXruv) & (RNu,vq,s) or R(ugs))
-> Alg.s))]

b (since (A& B—>C) <=> (A>(B->C)))

FiQ(rs) < Vu Vv (AXruv) >

Vg (RKu,v,q,5) or Rlu,q,s) -> Alg )]
F (since: Aor B—>>C <=> (A>C)&{B>C))
FR(rs) < Vu Vv (ANruv) >
Vg (R Hu,v,q.8) > Alg,s)) &
Vg (Rlu,gs) - Algs)) )]

I {by AS and by S With r= u -fokiing)

FRO(ns) < Vu Vo (AXruv) = QHuvs) & Qlu,s))]

FiQ(rs) < ANruv) & QHuvs) & Qus)]: P2

s: We have o show: P1,P2,AS,51,52} 8

Here we need to resort to induction, According to our
induction schema, it suffices to prove S for those r such
that AI(r} holds and by assuming S for r= u  prove It
for m= r, where A ru,v) holds,
Notice that by c.wia.:
PI&P2 H [Q(r,s) <> Al(r) exor

' & o (AXruv) & QHuvs) & Qlu,s))]
Thus we have:
a) Base case. Assume: ANr) <> pue,
PLP2t [rs) <> true] }(since: ~ R(r.q,s) <> true)
F {er,s) <>Vg ("R(rg.s) or Alg. 9]+
FIO(rs) <> Vg (Rirg.s) > Aqs)]: 8
b) Induction step. Assume (ANr) <> fulse and)
AXruv) <> true, for some ¢ and v and, by assuming:
% us) <> Vg (Rlug.s) - Algs)] (:8), prove S.

n:
PLP2V [Q(r,s) <= QHu,v,s) & Qlu,s)k (by AS and §°)
FO(rs) Vg (RHuvgs) > A8 &

Vg (Rlugs) > Algs)) T
+ f(r,s) <> Vg {RKuvqs) or Rlugs) = Alg )]+
FQ(rs) Vg (e o (AXruv) &(RI(uvg,s) oer:f.s)”
>

a9
(by S+ IQ(r,5} <> Vg (Rirgs) > Algs)]:S.
3) Similarly here we only consider the case where u is &

singleton.
Correctness: We have 1o show: $,53,AS1,AS2 + PI&F2,

which can be split into a) $,53,A81,AS82 | PI and
b) 5,53,AS1,AS2 + P2.
However for a better presentation we can follbw the
same path of (top-down) inferences up to a point for
both (5 and (b) and then continue with two different
branches in a bottom-up fashion. Thus:
S: fQlr.s) <> Vg (R(rg.s) > Algs)]
F f(r.s) < Vg (Rirgs) - Algs)] + (byS3)
+IQ(re) <- Vg ((AKT) & Ri(rq,s) or

& v (AXruv) & (RXuvg,s) or R( :;g,s)ﬂ

>

q. 0]
FIQre) < Vg (Al(r) & RKrq,®) > Algs)) &
Vg (i & (ANruv & [RNu,vq,s) or Rlu,q,s)))
> Algs)]
FQ(rs) < (Allr) > Vg (RI(rg.s) > Algs)) &
Vu ¥ (AXruv) -
Vg (RN uvq.5) or Rlug,s) = Alga)))]
+ (by AS1, AS2 and by § with r= & -folding)
FO(rs) <« (AN > Qrs)) &
Vu Vo (AXruv > QXuvs) & Qlus)]: IS
a) It suffices to show IS+ P1.
ISHIQirs) <« AKD & QHrs)] <a>
<m> IS, AKP), QHrs) b Qfrs) <=>
<=2 fOlrs) < (true ->tnee) &
Vu Vv (false > QX u,v,s) & Q(u, st Qlr.s)
<=> Qr,} H Q(r,s), which s valid.
b) It suffices 1o show: IS+ P2,
ISFI)rs) <« ANruyv) & QXuyvs) & Qlust] <=>
<=2 IS, AXruv), Q2uvs), Q(us) - Q(rs) <=>
<= Q(rs) < (falswe > Qlrs)) &
Vu Vv {tue > true}]b Q(r,s) <=2
<> QUr,5) b {rs), which is valid,

Completeneas: We have to show: P1,P2,AS1,AS2,531 8.
Again we resort to induction.
Notice that by cow.a:
PLP2 R Q(r, ) <> (ANR & QX(rs)) or
(ANruv) & QXuyvs) & lu,s))]
a) Base case, Assume: Al(r) <> prue. Then
SIH/R(rgs) <> RNrqs)}(:53) and
PLP2 H{Q(rs) <> (true & QNr,s)) or fulse]}
FiQ(r,s) <—>QHrs)] + (by ASE)
FQUrs) <> Vg (RNrgqs5) =>Alg st (byS3)
F {Qlrs) <> Vg (Rirgs) > Algs))i:S.
b) Induction step.
Assume (ANr) <> fale and) AXru) <—> rue, for
some u and v and, byam.lmi}g
[{u,s) <> Vg (R(uq,s5) > Alqs))] (:8’), prove S. First,
we have:
S3HIR(rg.s) <> RAuvyq,s or Ru,qs)]:83. Then:
PLP2} [Qlrs) <> faise or (true & QXu,vs & Hum))]
LS SR bem S L Sy 452 and 8
Vg (Rlugs) > Algs) T+
FfQlr.s) <> Vg (RAuvgs) or Rlug,s) - Algs))]v
(by S3) + IQ(rs) <> Vg {R(rqs) - Aqsh]: S

4) From § and $4 casily follows that:
frs) <>Vl Va2 (RI(rgl s) & RXr,q2,s) ->»
> Allql142) NI
HQ(rs) <> Vgl (Rilrgls) >
> Va2 (RXrq2,5) > Allgl q2),8)))]
from which AS follows (using AS}S Of course, this is
not a (Hom clause) program, but it can be easily seen -

Dayantis 13



formally by induction - that a logic program can be ulti-
mately deduced

5) Frem S and S5 easily follows that:
IQ(r,s) <> Vg (RKrq,s) or RAr,q.s) 5 AMqs)) I
HQ(r,s) <>Vg (RKrgq.s) > Alg,s) &
Vg (RXArq,s) ->Algs)) ]
from which P follows (by using ASI, AS2).
The same as for the previous case applies here. Q.E.D.

The identification and synthesis process for the
ERR class of relations described in the above theorem
has been implemented in PROLOG, thus providing with
an automatic tool for synthesising (naive) programs for
such relations.

I11. CONCLUDING REMARKS

We have identified a subset of the extended Horn
clause subset of logic, for which we proved that it can
be reexpressed in Horn clausal form. Thus, for rela-
tions that are defined with clauses belonging to this sub-
set we gave mechanical means for obtaining a directly
executable (by standard PROLOG interpreters) pro-
gram.

The significance of this transformation largely
depends on two factors.
The first is the generality of this class: how many rela-
tions are naturally expressed in this way? In [Kowalski
1985] it is argued that the extended Horn clause subset
of bgic has great expressive power and many examples,
as the ones presented above, can be found that fall
within this class. Moreover our subset is still general
enough; the only requirement is that the antecedent of
the universally quantified Horn clause is recursively
defined with an ultimate direct instantiation of the
universally quantified variables. Such a case is very
common when dealing with recursively defined domains
as indicated by the examples presented.

The second is whether the recursive Horn clausal
form, which is the end product of this transformation is
really more efficiently executable than the initial
specification. As it is pointed out in [Kowalski 1985]
one can build interpreters that encompass the extended
Horn clause subset of logic: "By translating the universal
quantifier into double negation and interpreting negation
by failure such clauses can be executed both correctly
and efficiently, though incompLetely". The source of
incompleteness is the introduction of negation, which
means that we cannot get all possible answers to a
query. For example in the case of the 'subset’ example
this method will work only for queries with both argu-
ments instantiated - to test if the relation holds between
two known sets - while execution won't terminate in
any other use. This, of course, is a severe limitation,
given our expectations from a logic programming
language that is supposed to offer input-output non-
determinism, and it can be overcome using the recur-
sive programs.

Furthermore, it is argued that such an iterative execu-
tion - effectively generating every instance of the
universally quantified variables that satisfies the

14 ARCHITECTURES AND LANGUAGES

antecedent and checking if it also satisfies the conse-
quent - is more efficient than a recursive one, since it
does not require a stack- Given that there are efficient
ways of implementing recursion - tail-recursion in par-
ticular can be turned into iteration - we argue that the
recursive programs that result from our transformation
are in general more efficient than the corresponding
iterative execution of the initial specifications. Addi-
tionally they do not require any extra sophistication
from the bgic interpreter for their execution.

In the light of the above discussion a link between
iteration and recursion should become apparent Furth-
ermore, it should be realised that the above result
depends very much upon the nature of recursion and it
is unlikely that similar results can be obtained for more
general subsets of logic. Obviously, additional domain-
specific knowledge and intelligent manipulation is neces-
sary for the derivation of efficient Horn clause programs
from arbitrary first-order logic specifications.
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