
A Framework for Distributed Sensing and Control1

Tom Henderson, Chuck Hansen, and Bir Bhanu
Department of Computer Science

The University of Utah
Salt Lake City, Utah 84112

Abstract

Logical Sensor Specification (LSS) has been introduced
as a convenient means for specifying multi-sensor
systems and their implementations. In this paper, we
demonstrate how control issues can be handled in the
content of LSS. In particular, the Logical Sensor
Specification is extended to include a control mechanism
which permits control information to (1) flow from more
centralized processing to more peripheral processes, and
(2) be generated locally in the logical sensor by means of
a micro-expert system specific to the interface
represented by the given logical sensor Examples are
given including a proposed scheme for controlling the
Utah/MIT dextrous hand

1. Introduction
Both the availability and need for sensor systems is

growing, as is their complexity in terms of the number and
kind of sensors within a system. But most robotic sensor-
based systems to date have been designed around a
single sensor or a small number of sensors, and ad hoc
techniques have been used to integrate them into the
complete system and for operating on their data. In the
future, however, such systems must operate in a
reconfigurable multi-sensor environment; for example,
there may be several cameras (perhaps of different types),
active range finding systems, tactile pads, and so on. In
addition, a wide variety of such sensing devices, including
mechanical, electronic, and chemical, are available for use
in sensor systems, and a sensor system may include
several kinds of sensing devices. Thus, at least three
issues regarding the configuration of sensor systems arise

1. How to develop a coherent and efficient
treatment of the information provided by many
sensors, particularly when the sensors are of
different kinds

2. How to allow for sensor system
reconfiguration, both as a means of providing
greater tolerance for sensing device failure, to
permit dynamic allocation of sensing
resources, and to facilitate future incorporation
of additional sensing devices

This work was supported in part by the System Development
Foundation and NSF Grants ECS-8307483 and MCS82-21750 Chuck
Hansen is an ARO Fellow

3. How to control the sensors
We have previously proposed the Multi-sensor Kernel
System [5, 7] and Logical Sensor Specification [4] as
solutions for the first two problems, respectively The rest
of this paper gives our method for answering the third

The purpose of the logical sensor specification is to
permit an implementation independent description of the
required data and the nature (type) of that data. In
addition, alternative ways of producing the same output
can be defined This makes it possible to recover if some
sensor fails One can also choose an alternative based on
higher level considerations (e.g., speed, resolution, etc)
Thus, a use for logical sensors is evident in any sensor
system which is composed of several sensors, where
sensor reconfiguration is desired, and/or where the
sensors must be actively controlled

As described in more detail elsewhere [4], the principal
motivations for logical sensor specification are: the
emergence of significant multi-sensor systems, the
benefits of data abstraction, and the availability of smart
sensors (thus, the substitution of hardware for software,
and vice versa, should be transparent above the
implementation level; see also Organick et. al [10]).

Logical sensors are then a means by which to insulate
the user from the peculiarities of input devices. Thus, for
example, a sensor system could be designed to deal with
camera input, without regard to the kind of camera being
used. In addition, logical sensor specification is also a
means to create and package "virtual" physical sensors.
For example, the kind of data produced by a physical laser
range finder sensor could also be produced by two
cameras and a stereo program. This similarity of output
result is more important to the user than the fact that the
information may be obtained by using one physical device,
or by using two physical devices and a program. Logical
sensor specification allows the user to ignore such
differences of how output is produced, and treat
equivalent means of obtaining data as logically the same.

Related work has been done in several areas. The need
for some device-independent interactive system has
resulted in the Graphical Kernel System (GKS) which is
now a Draft International Standard The main idea behind
GKS is to provide "a means whereby interactive graphics

T. Henderson et al. 1107

applications could be insulated from the peculiarities of
the input devices of particular terminals, and thereby
become portable" [11]. Some encouraging results reported
in the robotics literature including a systematic study of
robotic sensor design for dynamic sensing undertaken by
Beni et al [3]. Another related research effort is the
programming environment (called the Graphical Image
Processing Language) under development as part of the
IPON project (an advanced architecture for image
processing) at the University of Pennsylvania [2] The
hierarchical robot control system described by Albus [1] is
a precursor to the logical sensor scheme proposed here

The logical sensor name uniquely identifies the logical
sensor The characteristic output vector is a vector of
types which serves as a description of the output vectors
that will be produced by the logical sensor. Thus, the
output of a logical sensor is a set (or stream) of vectors,
each of which is of the type declared by that logical
sensor's characteristic output vector, Programs 1 to n
represent alternative ways in which to obtain data with the

same characteristic output vector Hence, each alternate
subnet is equivalent, with regard to type to all other
alternate subnets in the list Each alternate subnet in the
list is itself composed of: (1) a set of input sources
Each element of the set must be a logical sensor (or the
set may be empty). Allowing null input permits a physical
sensor, which has only an associated program (the device
driver), to be described as a logical sensor, thereby
permitting uniformity of sensor treatment (2) a
computation unit over the input sources Currently such
computation units are software programs, but in the
future, hardware units may also be used Finally, the role
of the selector (whose inputs are alternate subnets and an
acceptance test name) is to detect failure of an alternate
and switch to a different alternate If switching cannot be
done, the selector reports failure of the logical sensor.

In order to solve most recognition and manipulation
problems, however, it is necessary to be able to reposition
sensors (e.g., aim cameras) and adapt rapidly to changing
conditions (e.g., if an object is slipping from the grasp of a
robot hand, perhaps more force should be applied), Thus,
in addition to a stream of sensed data flowing from
physical sensors on up through some hierarchy of logical
sensors, there may also be a stream of control
commands (or signals) flowing in the reverse direction

Each logical sensor has a control command interpreter
to interpret the control commands coming from a level up
in the hierarchy and to send commands down to logical
sensors lower in the hierarchy Moreover, the select
function now plays a more sophisticated role in the logical
sensor Namely, the select function monitors both the
sensor data going up and the command stream to be
issued Given the command (or commands) to be
executed and the sensor data being produced locally, the
select function is able to short circuit the path back to the
root logical sensor and to modify the commands to be
issued Such a function may be viewed as a micro-expert
system which knows all about the interface represented by
the logical sensor in which it is located Thus, a logical
sensor acquires some of its meaning now not simply as a
sensor/algorithm combination, but also as an interface
between two layers of sensing and analysis

Another requirement on the logical sensor is that it now
also acts as a "logical controller." If the control command
received at a particular sensor requires that control
commands be sent to the source input logical sensors,
then those commands will depend on which alternate
subnet is currently selected by the selector function For
example, suppose range data can be obtained from a
stereo camera system, a laser range finder system or a
robot hand with tactile sensing Then to obtain range data
from a given region in space requires aiming and focusing
two cameras, or aiming a camera and a laser, or
positioning a robot arm The high level command to scan
a region must then be broken down into the appropriate
lower level commands

A logical sensor can be viewed as a network composed

1108 T. Henderson et al.

of sub-networks which are themselves logical sensors
Communication within a network is controlled via the flow
of data from one sub-network to another. Hence, such
networks are data flow networks

Once the logical sensors are specified, they are stored
as s-expressions In order to actually obtain an
executable system from the logical sensor specification, it
is necessary to translate the database expressions into
some executable form, eg., to produce source code for
some target language, and then either interpret or compile
and run that source We currently have two
implementations of the logical sensor specification
language running a C version (called C-LSS) running
under UNIX, and a functional language version (called
FUN-LSS) which produces FEL code (Function Equation
Language) [9]. These have been described elsewhere [4].
C-LSS produces a UNIX shell script from the specification

3. An Example
We are currently applying the methodology to some

interesting and hard problems In particular, we are
developing and testing a specification for the UTAH/MIT
Dextrous Hand This gives us the opportunity to try out
the method on a distributed multi-processor system, as
the Hand is controlled by six M68000s.

Shown in Figure 2 are some of the logical sensors which
comprise the specification of a sensor and control scheme
for the UTAH/MIT dextrous robot hand. The robot hand
has four fingers each with four degrees of freedom [8].
The high level commands for hand control are interpreted
as a set of commands to a lower-level right on down to
the control of the joint positions of each finger which
define the configuration of the robot hand

A grasping action requires several hand operations,
including the attainment of an approach configuration.
One of these is the "curl" position (the control command
to the hand logical sensor). To curl the hand requires that
each finger move away from the median axis of the hand
(the control command "abduct" to each of the finger
logical sensors). Finally, the abduct command requires
that each joint achieve a specific angle (the 0y control
commands to the joint logical sensors) Thus, the
feedback loop for position control can be located in the
programs which are part of the joint logical sensor
specification Moreover, concise local knowledge for what
to do in case of error conditions (slipping, too much force,
etc) can be embedded in the appropriate select function

4. Conclusions
We have presented a framework for the specification of

sensing and control systems. Moreover, the methodology
lends itself nicely to distributed processing The method
permits the specification of fault tolerance (both software
and hardware) and dynamic reconfiguration of the sensing
system The incorporation of control now permits closed
loop operation and adaptation to changing conditions

Our specific accomplishments include

1. The development of a methodology for the
specification of distributed sensing and control
In particular, one based on a reasonably well
understood underlying computational model,
i.e., dataflow

2 The development of an operational
environment for computing with respect to the
methodology.

The successful implementation of such a methodology
provides a very significant and fundamental tool for the
specification of distributed sensing and control systems
Moreover, we believe that our approach permits an
effective conceptual decomposition of the problem into
manageable units. For a more complete treatment of
logical sensors as a framework for distributed sensing and
control (with detailed examples), see Henderson et. al [6].

References

[I] Albus, J.
Brains, Behavior and Robotics.
BYTE Books, Peterborough, New Hampshire, 1981

[2] Bajscy, R
GRASP.NEWS Quarterly Progress Report.
Technical Report Vol 2, No. 2, The University of

Pennsylvania, School of Engineering and Applied
Science, 2nd Quarter, 1984

[3] Beni, G , S Hackwood, LA Hornak and J.L Jackel
Dynamic Sensing for Robots: An Analysis and

Implementation.
Robotics Research 2(2)51-60, Summer, 1983.

[4] Henderson, T C and E. Shilcrat
Logical Sensor Systems.
Journal of Robotic Systems 1(2); 169-193, 1984.

[5] Henderson, T.C and Wu So Fai
MKS A Multi-sensor Kernel System
IEEE Transactions on Systems, Man. and

Cyberbetics SMC- 14(5)784 791,
September/October, 1984

[6] Henderson, T.C , CD. Hansen, and Bir Bhanu
The Specification of Distributed Sensing and

Control
Journal of Robotic Systems To appear. 1985

[7] Henderson, Thomas C and Wu So Fai
A Multi-sensor Integration and Data Acquisition

System
In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages
274 280 IEEE, June, 1983

[8] Jacobsen, S , D.F. Knutti, K. Biggers, E K. Iverson and
J E Wood
An Electropneumatic Actuation System for the

Utah/MIT Dextrous Hand
In Proceedings of the Fifth CISM IFToMM

Symposium on Theory and Practice of Robots
and Manipulators. Udine, Italy, June, 1984.

[9] Keller, R.M.
FEL Programmer's Guide.
Technical Report AMPS Tech Memo 7, The

University of Utah, Department of Computer
Science, April, 1982

[10] Organick, E.I., M Maloney, D Klass and
G. Lindstrom.
Transparent Interface between Software and

hardware Versions of Ada Compilation Units.
Technical Report UTEC-83-030, University of Utah,

Salt Lake City, Utah, April, 1983

[I I] Rosenthal, D.S., J.C. Michener, G. Pfaff, R. Kessener
and M. Sabin.
The Detailed Semantics of Graphics Input Devices.
Computer Graphics 16(3):33-38, July, 1982

