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Abstract 

Logical Sensor Specification (LSS) has been introduced 
as a convenient means for specifying multi-sensor 
systems and their implementations. In this paper, we 
demonstrate how control issues can be handled in the 
content of LSS. In particular, the Logical Sensor 
Specification is extended to include a control mechanism 
which permits control information to (1) flow from more 
centralized processing to more peripheral processes, and 
(2) be generated locally in the logical sensor by means of 
a micro-expert system specific to the interface 
represented by the given logical sensor Examples are 
given including a proposed scheme for controlling the 
Utah/MIT dextrous hand 

1. Introduction 
Both the availability and need for sensor systems is 

growing, as is their complexity in terms of the number and 
kind of sensors within a system. But most robotic sensor-
based systems to date have been designed around a 
single sensor or a small number of sensors, and ad hoc 
techniques have been used to integrate them into the 
complete system and for operating on their data. In the 
future, however, such systems must operate in a 
reconfigurable multi-sensor environment; for example, 
there may be several cameras (perhaps of different types), 
active range finding systems, tactile pads, and so on. In 
addition, a wide variety of such sensing devices, including 
mechanical, electronic, and chemical, are available for use 
in sensor systems, and a sensor system may include 
several kinds of sensing devices. Thus, at least three 
issues regarding the configuration of sensor systems arise 

1. How to develop a coherent and efficient 
treatment of the information provided by many 
sensors, particularly when the sensors are of 
different kinds 

2. How to allow for sensor system 
reconfiguration, both as a means of providing 
greater tolerance for sensing device failure, to 
permit dynamic allocation of sensing 
resources, and to facilitate future incorporation 
of additional sensing devices 
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3. How to control the sensors 
We have previously proposed the Multi-sensor Kernel 
System [5, 7] and Logical Sensor Specification [4] as 
solutions for the first two problems, respectively The rest 
of this paper gives our method for answering the third 

The purpose of the logical sensor specification is to 
permit an implementation independent description of the 
required data and the nature (type) of that data. In 
addition, alternative ways of producing the same output 
can be defined This makes it possible to recover if some 
sensor fails One can also choose an alternative based on 
higher level considerations (e.g., speed, resolution, etc) 
Thus, a use for logical sensors is evident in any sensor 
system which is composed of several sensors, where 
sensor reconfiguration is desired, and/or where the 
sensors must be actively controlled 

As described in more detail elsewhere [4], the principal 
motivations for logical sensor specification are: the 
emergence of significant multi-sensor systems, the 
benefits of data abstraction, and the availability of smart 
sensors (thus, the substitution of hardware for software, 
and vice versa, should be transparent above the 
implementation level; see also Organick et. al [10]). 

Logical sensors are then a means by which to insulate 
the user from the peculiarities of input devices. Thus, for 
example, a sensor system could be designed to deal with 
camera input, without regard to the kind of camera being 
used. In addition, logical sensor specification is also a 
means to create and package "virtual" physical sensors. 
For example, the kind of data produced by a physical laser 
range finder sensor could also be produced by two 
cameras and a stereo program. This similarity of output 
result is more important to the user than the fact that the 
information may be obtained by using one physical device, 
or by using two physical devices and a program. Logical 
sensor specification allows the user to ignore such 
differences of how output is produced, and treat 
equivalent means of obtaining data as logically the same. 

Related work has been done in several areas. The need 
for some device-independent interactive system has 
resulted in the Graphical Kernel System (GKS) which is 
now a Draft International Standard The main idea behind 
GKS is to provide "a means whereby interactive graphics 
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applications could be insulated from the peculiarities of 
the input devices of particular terminals, and thereby 
become portable" [11]. Some encouraging results reported 
in the robotics literature including a systematic study of 
robotic sensor design for dynamic sensing undertaken by 
Beni et al [3]. Another related research effort is the 
programming environment (called the Graphical Image 
Processing Language) under development as part of the 
IPON project (an advanced architecture for image 
processing) at the University of Pennsylvania [2] The 
hierarchical robot control system described by Albus [1] is 
a precursor to the logical sensor scheme proposed here 

The logical sensor name uniquely identifies the logical 
sensor The characteristic output vector is a vector of 
types which serves as a description of the output vectors 
that will be produced by the logical sensor. Thus, the 
output of a logical sensor is a set (or stream) of vectors, 
each of which is of the type declared by that logical 
sensor's characteristic output vector, Programs 1 to n 
represent alternative ways in which to obtain data with the 

same characteristic output vector Hence, each alternate 
subnet is equivalent, with regard to type to all other 
alternate subnets in the list Each alternate subnet in the 
list is itself composed of: (1) a set of input sources 
Each element of the set must be a logical sensor (or the 
set may be empty). Allowing null input permits a physical 
sensor, which has only an associated program (the device 
driver), to be described as a logical sensor, thereby 
permitting uniformity of sensor treatment (2) a 
computation unit over the input sources Currently such 
computation units are software programs, but in the 
future, hardware units may also be used Finally, the role 
of the selector (whose inputs are alternate subnets and an 
acceptance test name) is to detect failure of an alternate 
and switch to a different alternate If switching cannot be 
done, the selector reports failure of the logical sensor. 

In order to solve most recognition and manipulation 
problems, however, it is necessary to be able to reposition 
sensors (e.g., aim cameras) and adapt rapidly to changing 
conditions (e.g., if an object is slipping from the grasp of a 
robot hand, perhaps more force should be applied), Thus, 
in addition to a stream of sensed data flowing from 
physical sensors on up through some hierarchy of logical 
sensors, there may also be a stream of control 
commands (or signals) flowing in the reverse direction 

Each logical sensor has a control command interpreter 
to interpret the control commands coming from a level up 
in the hierarchy and to send commands down to logical 
sensors lower in the hierarchy Moreover, the select 
function now plays a more sophisticated role in the logical 
sensor Namely, the select function monitors both the 
sensor data going up and the command stream to be 
issued Given the command (or commands) to be 
executed and the sensor data being produced locally, the 
select function is able to short circuit the path back to the 
root logical sensor and to modify the commands to be 
issued Such a function may be viewed as a micro-expert 
system which knows all about the interface represented by 
the logical sensor in which it is located Thus, a logical 
sensor acquires some of its meaning now not simply as a 
sensor/algorithm combination, but also as an interface 
between two layers of sensing and analysis 

Another requirement on the logical sensor is that it now 
also acts as a "logical controller." If the control command 
received at a particular sensor requires that control 
commands be sent to the source input logical sensors, 
then those commands will depend on which alternate 
subnet is currently selected by the selector function For 
example, suppose range data can be obtained from a 
stereo camera system, a laser range finder system or a 
robot hand with tactile sensing Then to obtain range data 
from a given region in space requires aiming and focusing 
two cameras, or aiming a camera and a laser, or 
positioning a robot arm The high level command to scan 
a region must then be broken down into the appropriate 
lower level commands 

A logical sensor can be viewed as a network composed 
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of sub-networks which are themselves logical sensors 
Communication within a network is controlled via the flow 
of data from one sub-network to another. Hence, such 
networks are data flow networks 

Once the logical sensors are specified, they are stored 
as s-expressions In order to actually obtain an 
executable system from the logical sensor specification, it 
is necessary to translate the database expressions into 
some executable form, eg., to produce source code for 
some target language, and then either interpret or compile 
and run that source We currently have two 
implementations of the logical sensor specification 
language running a C version (called C-LSS) running 
under UNIX, and a functional language version (called 
FUN-LSS) which produces FEL code (Function Equation 
Language) [9]. These have been described elsewhere [4]. 
C-LSS produces a UNIX shell script from the specification 

3. An Example 
We are currently applying the methodology to some 

interesting and hard problems In particular, we are 
developing and testing a specification for the UTAH/MIT 
Dextrous Hand This gives us the opportunity to try out 
the method on a distributed multi-processor system, as 
the Hand is controlled by six M68000s. 

Shown in Figure 2 are some of the logical sensors which 
comprise the specification of a sensor and control scheme 
for the UTAH/MIT dextrous robot hand. The robot hand 
has four fingers each with four degrees of freedom [8]. 
The high level commands for hand control are interpreted 
as a set of commands to a lower-level right on down to 
the control of the joint positions of each finger which 
define the configuration of the robot hand 

A grasping action requires several hand operations, 
including the attainment of an approach configuration. 
One of these is the "curl" position (the control command 
to the hand logical sensor). To curl the hand requires that 
each finger move away from the median axis of the hand 
(the control command "abduct" to each of the finger 
logical sensors). Finally, the abduct command requires 
that each joint achieve a specific angle (the 0y control 
commands to the joint logical sensors) Thus, the 
feedback loop for position control can be located in the 
programs which are part of the joint logical sensor 
specification Moreover, concise local knowledge for what 
to do in case of error conditions (slipping, too much force, 
etc ) can be embedded in the appropriate select function 

4. Conclusions 
We have presented a framework for the specification of 

sensing and control systems. Moreover, the methodology 
lends itself nicely to distributed processing The method 
permits the specification of fault tolerance (both software 
and hardware) and dynamic reconfiguration of the sensing 
system The incorporation of control now permits closed 
loop operation and adaptation to changing conditions 

Our specific accomplishments include 

1. The development of a methodology for the 
specification of distributed sensing and control 
In particular, one based on a reasonably well 
understood underlying computational model, 
i.e., dataflow 

2 The development of an operational 
environment for computing with respect to the 
methodology. 

The successful implementation of such a methodology 
provides a very significant and fundamental tool for the 
specification of distributed sensing and control systems 
Moreover, we believe that our approach permits an 
effective conceptual decomposition of the problem into 
manageable units. For a more complete treatment of 
logical sensors as a framework for distributed sensing and 
control (with detailed examples), see Henderson et. al [6]. 
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