
A NEW KIND OF FINITE-STATE AUTOMATON:
REGISTER VECTOR GRAMMAR

Glenn David Blank

Lehigh University
CSEE Department
Packard Lab 19

Bethlehem, PA 18015

ABSTRACT

Register Vector Grammar is a new kind of
f in i te -s ta te automaton that is sensitive to
context—without, of course, being context-
sensitive in the sense of Chomsky hierarchy.
Traditional automata are functionally simple:
symbols match by identi ty and change by
replacement. RVG is functionally complex: ternary
feature vectors (e.g. +-±--++) match and change by
masking (+ matches but does not change any value).
Functional complexity—as opposed to the computa­
t ional complexity of non-finite memory—is well
suited for modelling multiple and discontinuous
constraints. RVG is thus very good at handling
the permutations and dependencies of syntax
(wh-questions are explored as example). Because
center-embedding in natural languages is in fact
very shallow and constrained, context-free power
is not needed. RVG can thus be guaranteed to run
in a small l inear time, because it is FS, and yet
can capture generalizations and constraints that
functionally simple FS grammars cannot.

I INTRODUCTION

Lately there has been considerable impetus
among natural language researchers to res t r ic t the
computational complexity required by an adequate
theory (cf . Gazdar 1981, Church 1982, Langendoen
1984). Whereas FS languages guarantee l inear
recognition time, those cal l ing for more computa­
t ional power give rise to a combinatorial
explosion with respect to worst recognition time.
Certainly, were there no other factors (such as
those mentioned by Berwick and Weinberg 1982,
Perrault 1983, Pullum 1983 and 1984), grammars
with less computational complexity would be
preferred, because they are more easily parsed,
and probably also learned (see Berwick 1984).

Unti l recently, however, it has been supposed
that grammars with a more desirable recognition
time are cursed by a prol i ferat ion of rule
structures when it comes to representing
generalit ies and par t icu lar i t ies of natural
languages. The dilemma of computational com­
plexity vs. l ingu is t ic generality has resisted a
satisfactory solution ever since Chomsky 1957
argued that competence for natural languages
requires at least context-free power in order to

handle embedding of clauses. Moreover, to capture
generalizations about categories that participate
in variations of order, he introduced transfor­
mations of phrase structure—further increasing
computational complexity (cf. Peters and Ritchie
1973). Similarly, Woods 1970 jus t i f i ed recursion
plus the manifold tests and registers of ATNs,
which make his scheme "equivalent to a Turing
machine in power," because "the actions which it
performs are 'natural1 ones for the analysis of
language."

But natural languages can be modelled by a kind
of f in i te-s ta te device that is quite compact. We
can avoid excessive duplication of categories, and
having to approximate unbounded memory resources.
This is possible—,i£ we are w i l l i ng to abandon the
functional simplicity implied by symbols in rule
patterns.

750 G. Blank

The table-driven implementation consists of 1) a
register (here called the Current Syntactic State
Register, or CSSR), 2) a table of syntactic
productions (the Synindex) and 3) a machine which
in i t i a l i zes the CSSR, makes transitions from state
to state, and responds to a f ina l state. The
Synindex is a l i s t associating: i) a category
symbol, i i) a condition state symbol and i i i) a
result state symbol. A machine that recognizes
sentences makes transit ions by f i r s t matching a
Synindex category symbol with a word's lex ical
category and the production's condition symbol
with the CSSR; it then replaces the symbol in the
CSSR with the production's result symbol.
Following the example grammar, a transit ion from
N1 to N2 is possible because the CSSR has been
in i t i a l i zed to N1, and the category of a is DET.
The CSSR then gets that production's result
symbol, N2. So long as the l i s t of productions is
f i n i t e , it is a FS grammar. Such a machine has a
f i n i t e number of possible states, though it can
run on indef in i te ly . The category PREP, for
example, i terates back to N1 .

A FS grammar requires that every category be
determined as possible by a function of the
immediately preceding category. Space for the
register and index are pre-allocated; no external
memory is available. This is as true of the
equivalent RVG:

In a RVG, the symbols become vectors of features,
each capable of three possible values (+,-,+ , or
"on", "of f " , "mask", or henceforward 1,0,2). The
match function allows either ident i ty or ambiguity
(2 matches any value); the change function allows
either l i t e r a l or masked replacement (2 doesn't
change anything). For example, if the CSSR is
i n i t i a l i zed to 1111, the condition vector of DET
(1222) matches, and the result of DET (0222) can
be applied, yielding 0111. This is what is meant
by functional complexity: whereas in a simple FS
automaton match is ident i ty and change is
wholesale replacement, in RVG match and change
allow ambiguity and masking. Nevertheless the
ternary functions are quite simple and deter­
minate.

Note that the RVG Synindex is considerably more

compact than the equivalent FS table. Whereas the
FS table has three productions for the category
ADJ and six for N, the RVG Synindex has just one
production per category. The savings—not only of
space in the table, but time trying a l te rna t i ves -
w i l l multiply as more permutations of order are
introduced.

How do RVGs achieve their efficiency? Func­
t ional complexity confers two properties that
functionally simple grammars do not have:
mu l t ip l i c i t y and masking. Condition vectors can
convey multiple constraints. For example, PREP
(condition 0001) cannot occur unt i l the f i r s t
three features have been reversed in value.
Moreover, result vectors can produce multiple
ef fects: PREP (result 1112) re-enables a l l
NP-opening productions. Note also that disjoint
categories (e.g. N and PR0N) share the same
position in ordering vectors, so that they
mutually exclude each other. That i s , the result
of N and PRON both disable the same feature
(governing the HEAD posit ion). (PRON (result
0000) also rules out having a post-modifying
prepositional phrase.)

Masking is a consequence of ternary values.
The th i rd possible value (2) matches any value and
does not change any value. Thus constraints may
be passed through intervening states. For
example, the category N is oblivious to whether or
not the categories DET or ADJ have already
occurred, since i t s condition vector (2212)
matches the i n i t i a l state (1111) or the state
after DET (0111) or after ADJ (0011). Thus we can
represent options as well as obligations. (Note
that the ordering of optional productions is
enforced by having successive categories also
disable the constraining features, e.g. the
result of N is 0002.) Moreover, i tera t ion may be
treated as a special case of opt ional i ty. Whereas
a one-occurrence category disables i t s e l f (e.g.
the result of DET is 0111), an i terat ive category
does not (the result of ADJ is 0211). Like an
optional category, an i terat ive category is
disabled by successive categories up to the next
obligatory category (e.g. the result of N is
0002). Final ly, masking features allows con­
straints to be held through any number of
intervening states—as w i l l be demonstrated when
we consider long-distance dependencies.

Fini te functional complexity can thus increase
the expressiveness of a grammar considerably. It
is not to be confused with "complex symbols" found
elsewhere in l ingu is t i c theory. The sub-
categorization symbols of Chomsky 1965 allow for
context-sensitive power; the features of Gazdar
and Pullum 1982 ca l l for recursive elaboration of
symbols. Features attached to GP3G phrase
structure nodes themselves take the form of
open-ended trees or directed graphs. The feature
vectors of RVG, on the other hand, are f i n i t e and
do not expand. Moreover, RVG is not an
attr ibute-value system requiring piecemeal inter­
pretation of individual features. Whole vectors
(a ternary vector can be implemented as a pair of

G. Blank 751

b i t vectors), rather than l i s t s of symbols, are
the operational unit of on-line processing.

In any case, other researchers have used
oomplex features to govern categorization, but
never to describe syntactic states.

I l l WH-QUESTIONS

Wh-questions are perhaps the long-distance
dependency par excellence. A wh-word (who, what,
etc.) provokes the grammar to watch and wait for a
'gap'—an expected but missing noun phrase. The
gap may be f i l l e d wherever a noun phrase is
expected in a clause:

What is the robot seeking?
WH:what; AUX:is; SUBJ:NP:DET:the; N:robot;
VTRANS:seeking; OBJ:NGAP:CCLOSE:?;

What is the wrench on?
WH:what; AUX:is; SUBJ:NP:DET:the;
N:wrench; PREPion; NGAP:CCLOSE:?;

What did the robot f ind the wrench on?
WH:what; AUX:did; SUBJ:NP:DET:the;
N:robot; VTRANS:find; OBJ:NP:DET:the;
N:wrench; PREPPOST:on; NGAP:CCLOSE:?;

What is a robot?
WH:what; AUX:is; SUBJ:NP:DET:a; N:robot;
PREDNP:NGAP:CCLOSE:?;

What did the robot f ind the wrench?
Synindex search f a i l s a t : ?

Delaying, for the moment, discussion of embedded
clauses, we can see that wh-questions can be
modelled straightforwardly.

Synindex for Wh-Questions

CCLOSE requires that GAP have been turned of f .
The last sentence above f a i l s because GAP is never
disobligated.

It should be observed that in RVG the
recurrence of noun phrases at various positions
within a clause does not involve cal l ing a
subnetwork. Eschewing recursion, we instead
allocate separate sections of the ordering vector
type to deal with clause matters and phrase
matters. Ternary masking allows the CSSR to
preserve i t s clause-level status while i t
traverses a phrase. A number of boundary
productions—SUBJ, OBJ, IOBJ, PREP, etc.—set a
feature which at once temporarily disables
subsequent clause-level productions, and enables
the boundary production NP. If NP is chosen—
there are other possib i l i t ies—al l of the features
ordering a phrase w i l l be reset. One alternative
is NGAP, whose condition requires that both the NP
and GAP be on, and i t s result turns both of these
features of f . Thus NP and NGAP are d is jo in t .

IV EMBEDDING

Clause embedding was the primary evidence cited
by Chomsky 1957 for claiming that natural
languages are at least context-free. He
discusses, for example, the following kinds of
structures:

if S1 then S2
if [either S3 or S4]S1- then S2
if [either [George said that S5]S3

or S4]S1 then S2

The argument goes: i) f in i te-s ta te automata cannot
handle anbn (or "mirror image") grammars because
they do not have the memory to keep track of n;
i i) i f . . t hen , ei ther. .or constructions suggest
that natural languages are of this type; i i i)
therefore natural languages cannot be f i n i t e -
state.

There are, however, severe constraints on
embedding. The most well-known case is that of
object relat ive constructions:

The mouse the cat chased squeaked.
The mouse the cat the dog b i t chased squeaked.

Embedding object relatives once is not unusual,
but twice is boggling. The most common
explanantion for this problem is that center-
embedding causes an overload of short-term memory
processing. But as Kac 1980 has pointed out, this
cannot be the whole story. For if it were we
would expect embedding to break down at a
predictable depth. But it does not. For example,
though one clause can embed another of a di f ferent
type, there is no self-embedding:

If if the Pope is Catholic then pigs have
wings then Napoleon loves Josephine.

That that Dan l ikes Sue annoys Bob bothers me.

These sort of constructs are plausible, of course,

752 G. Blank

in truly context-free languages such as Pascal or
LISP.

Nor are relat ive clauses a uniform phenomena.
First of a l l , subject relat ives are possible
indef in i te ly :

The fellow who saw the dog that b i t the cat
that chased the mouse is w i l l i ng to tes t i fy .

Object relat ives appear to be l imited to a depth
of one, but combinations of an object relat ive and
a noun complement are not:

The statement that the election which he lost
ended his career dismays him.

The only one who the fact that George resigned
pleased was Tom.

Embedding also goes to deeper levels in order to
attach suspended arguments or adverbial adjuncts:

A teacher who wants students who persuade
their classmates who don't know the material
to help them to ask him instead must make
himself available.

Do you see why I wanted to deny that grammar
is recursive so vehemently now?

In the f i r s t sentence, each i n f i n i t i v e clause i.s
projected as an argument of an earl ier predicate
(wants persuade). Al l of the relat ives are
subject relat ives, so for each no gap is
suspended, only an argument. In the second
sentence, adverbs are attached to predicates after
intervening complement clauses—so vehemently to
deny and now a l l the way back to the main clause's
predicate, see.

Though short-term memory is related to the
shallowness of center-embedding generally, it is
not an adequate account for the variety of
specif ic constraints. Typically, memory l im i ta ­
tions have been regarded as an aspect of
performance rather than competence. The perfor­
mance processor, with l imited memory, is said to
"approximaten competence, which is said to
" ideal ize" the unlimited memory of a CF automaton.
Thus when Church 1982 talks about f in i te -s ta te
processing, his aim is just "to design a parser
that approximates competence with rea l i s t i c
resources." But one wonders: since memory
constraints are universal to the species, why
aren't they of import to models of competence?
The various constraints on center-embedding argue
against the functionally simple notation for
denoting clauses (e.g. S or S-bar), which seems to
imply that a l l clauses are (almost) a l ike. The
ve rsa t i l i t y possible with the f i n i t e functional
complexity of RVG re-opens the question whether CF
power is needed.

I f . . t hen and ei ther. .or are better treated as
discontinuous constraints than as "mirror-image"
syntax. A single feature allocated for each
paired construct can give us the obligations and
options we want, with the help of a production to

This fragment effectively enforces these con­
s t ra in ts : i) IF obligates a THEN clause before
Dclose; i i) EITHER obligates an EITH-OR clause
before DCLOSE; i i i) IF forbids another IF un t i l a
THEN re-options i t ; iv) EITHER forbids another
EITHER unt i l EITH-OR re-options i t ; v) EITHER
forbids IF unt i l EITH-OR re-options i t . The last
case ensures a constraint that Kac 1980 notes but
cannot explain:

Either if [clause] then [clause] or [clause]

(A possible explanation for this constraint is
that it avoids many ambiguities that might
otherwise be brought on by the conjunction or.)

In general, embedding can be modelled by any FS
automata so long as the maximum depth is f i n i t e .
Conceivably even a simple FS automaton can manage
embedding, by duplicating clause syntax at every
possible entry point. But such a grammar would be
enormous, and is perhaps jus t i f i ab ly scorned as
lacking "explanatory adequacy."

But ternary vectors can consolidate matters
considerably. Rather than having to respecify for
every possible si te of embedding, an RVG need only
keep track of the current level of embedding.

The data reviewed in this paper can be managed
by keeping track of up to three levels of
embedding. The top, or main clause leve l , is
treated di f ferent ly from the bottom two. Where
the grammar does allow us to embed more deeply
(e.g. right-embedded complements, subject re la­
t ives, e tc .) , i t w i l l begin to i terate in the
space of the bottom two clauses. Thus we can
adjoin arguments or adverbials to the current
clause, or one clause higher, or to the main
clause, which is always kept. E.g.:

Do you see [why I wanted [to deny [that
grammar is recursive] so vehemently]] now?

The adverbial so vehemently is attached back over
an intervening clause; now to the main clause.

There are two styles in which one might
implement clause embedding in RVG. They are
v i r tua l l y equivalent in terms of computational
eff iciency, but reviewing both w i l l perhaps
elucidate RVG methodology. The f i r s t is in the
same s p i r i t as NP embedding. Just as ordering of
phrasal constituents is managed by a segment of
the complete ordering vector, so each clause level
might be treated as a separate segment of a long

G. Blank 753

ordering vector type. Just as several boundary
productions (SUBJ, PREP, etc.) suspend further
clause-level productions while enabling NP, so
other boundary productions may sh i f t attention
from one clause level to another. Al l of the
segments are part of the same vector type, so that
there is no need for storage beyond the CSSR,
which holds a complete vector. Yet it is
possible, because of ternary masking, for boundary
productions to, as it were, open and close
"windows" on relevant segments. The drawback of
th is technique is that, for each level , the
grammar must replicate the features for clauses
(the ordering vectors a l l get wider), and also
repl icate most of the clause-level productions
(the Synindex table gets longer). Replicating
productions such as SUBJ, CADJ, et a l . , is
necessary in order to apply different condition
and result vectors at each clause level .
Increased size is not necessarily a clinching
drawback, since it is by a factor somewhat less
than three (phrasal and discourse-level features
and productions need not be replicated). The
alternative approach makes for a smaller Synindex,
to be manipulated by a s l ight ly more complicated
algorithm.

Instead of widening the ordering vector, we add
depth to the CSSR. The new CSSR is mult i- leveled:

The state register is s t i l l f i n i t e and fu l l y
v i s ib le ; no external memory is needed. Only now
it has ordered levels as well as features. It is
as if we broke up a long vector, masking inactive
segments with an array subscript rather than
ternary values. To embed a clause, the shi f t ing
f a c i l i t y increments ClauseLevel, and i n i t i a l i zes
the lower clause from the higher (so that features
l i ke GAP can be passed down). To return, it
simply decrements ClauseLevel.

This scheme captures generalizations about what
clause levels hold in common. It also allows
specialized productions to distinguish clause
types—with di f ferent result vectors. E.g., the
complementizer that sets up a complete clause, but
the i n f i n i t i v e part icle to arranges for a clause
start ing with a non-finite verb. Similarly, the
complex NP constraint (Ross 1967) is easily
modelled by dif ferent result codes. After
sh i f t ing clause leve l , change applies as usual.
Complement productions allow feature GAP to be
passed down (by masking), whereas relatives reset
i t :

Who were you persuaded to f ind the wrench by?
WH:who; TENSE:-past,BE:be; SUBJ:NP:PRON:you;
NPCLOSE: PASSIVE:-past par t.VDITRANS: persuade;
COMPINF:to; NONFIN:-inf, VTRANS:f ind; OBJ:NP:
DET:the; NUMBER:-sing,N:wrench; NPCLOSE:
PASSGAP: PASSIVEBY:by; NGAP:CCLOSE:?;

CIause-closing productions may or may not ins is t
that GAP be off. RELCLOSE makes th is requirement,
but does not affect the higher clause, whereas
FILLEDGAP does turn off GAP in the higher clause,
and PASSGAP leaves GAP alone.

After the sh i f t ing f a c i l i t y has embedded two
clauses, it resorts to re-use. That i s , the
second embedded clause is shifted up to the f i r s t .
Thus right-embedding can i terate in two registers,
but preserves the main clause. Two embedded
clause registers are enough to allow the parser to
resume suspended arguments or adverbials, as in

A teacher who wants students who persuade
their classmates who don't know the material
to help them to ask him instead must make
himself available.

But i t s center-embedding capacity has now has been
reached. The parser is baffled by this sentence:

Pamela persuaded the robot who wanted to give
the pyramid which was on the blocks which
it found to her very much to f ind a wrench
instead.

By the time it encounters very much, the clause to
which the adverbial might have been attached
(wanted...) has been lost to re-use. But such a
sentence is beyond the tolerance of many human
speakers as wel l .

Superficially this embedding scheme resembles a
bounded stack. But there are some crucial
differences. First of a l l , a bounded stack scheme
(such as that of Church 1982) typical ly cal ls for
a great deal more storage than just three
registers, since it w i l l have to keep track of the
f u l l gamut of embedding implied by PS rules—NPs,
VPs, X-bars and the l i ke . Second, whereas
functionally simple systems treat every level of
embedding al ike, in RVG each level of embedding is
marked—main clause, f i r s t embedded, re-usable.
Thus in RVG there is no self-embedding. Third,
CSSR levels are not really organized l i ke a stack,
since the lower two registers are re-used
i te ra t ive ly , and the main clause register is
always preserved. In fact there is nothing which
prevents a RVG from accessing clause levels in
another order. For example, we could model
cross-serial dependencies in Dutch (see Bresnan et
a l . 1982), by allowing boundary productions to
access storage registers in a queue-like order.
(Assuming that cross-serial dependency, l i ke
center-embedding, is l imited.)

754 G. Blank

V TOWARD A COMPLETE RVG SYSTEM

RVO syntax may be thought of a general-purpose
scheduler, with potential applications wherever
such a device would be desirable. Generally,
non-syntactic procedures can be scheduled by
association with Synindex productions. Indeed,
syntactic productions are motivated by non-
syntactic requirements. For example, nouns,
pronouns and names are very similar poslt ionally,
but they are treated as d ist inct categories
because of semantics. In this section I w i l l
br ie f ly describe how an RVO oan, while maintaining
modular autonomy to a considerable degree, support
integration of processes.

Categories. In earl ier versions of RVG,
categories, l ike syntactic ordering and semantic
constraints, were represented in terms of ternary
feature vectors. Ternary values supported
cross-categorization well—lexemes in more than
one category could allow them with 2 's. But since
RVG holds down duplication of productions, it is
feasable to associate, with each lexeme, a l i s t of
Synindex production numbers. Moreover it is
possible, with some pre-processing, to le t these
production numbers be generated from labels, and
also to infer the set of non-lexioal productions
that could precede each lex ical production. Thus,
for example, the lexeme k i t ten is categorized by
the label N, which is converted to a production
number; the non-lexioal production numbers for
SUB J, OBJ, NP, etc . , are kept in a precedes set
associated with the Synindex entry for N. This
approach is at once more convenient, because
categories are kept functionally simple with
respect to notation, and more e f f ic ient , because
the lexicon is 'wired' d irect ly to the Synindex,
obviating any on-line processing of categories.

Semantics. RVG syntax can in fact support Just
about any form of semantics. But I present our
biases. Since RVG permits a relat ively f l a t ,
direct treatment of permutations of order, there
is no reason to complicate matters—as trees do,
since they imply recursion. Rather than transform
syntactic structures, or propose meta-rules or
lexical-dependency subtrees which have similar
effect, why not l e t categorized actions operate
upon semantic structures directly? The problem of
mapping constituent structures into lexical
structures is simplif ied by just eliminating
context-free constituent structures. There is no
need to move or unify sub-trees in RVG; there are
no trees at a l l . Moreover, semantic and
morphological agreement can be s impl i f ied: there
is no need to 'percolate' or ' i nhe r i t ' features up
and down trees, nor to design special f i l t e r s or
powerful constraints to regulate such ac t iv i ty .
Functional complexity allows RVG to be sensitive
to context without being context-sensitive in the
sense of the Chomsky hierarchy.

In RVG, we allocate a f ixed configuration of
registers (the Current Predication State
Registers, or CPSR) for managing grammatical
relat ions. The CPSR and CSSR together comprise

the state of a clause (or a phrase in a clause),
and as shown above, RVG keeps track of up to three
clauses. Permanent semantic representation is
bu i l t up dynamically (i t is here that we allow
open-ended structures); CPSR slots hold addresses
of proposed semantic referents.

Categorized actions (associated with syntactic
productions) have the responsibi l i ty of mapping
new lex ica l material into exist ing semantic
structure. In the sp i r i t of RVG, lexemes are
viewed as standardized in structure. Al l semantic
features are organized in a single vector type,
the f i rs t -order semantic vector. Every lexeme has
an INTRINSIC f i rs t -order code. Constraints on
arguments of predicates are specif ied, as needed,
in terms of additional f i rs t -order vectors.
First_Order__Pred, a generalized procedure called
by many categorized actions, for a l l arguments,
f i r s t matches vectors (thus checking selectional
res t r ic t ions) , then unif ies them. E.g., 22201
matches 01202 and yields 01201. Thus in RVG
features are not used merely to validate, but also
to define semantic structures.

Morphology. Kunst and Blank (1982) show that
morphology oan be ef f ic ient ly implemented as a
ret r ieval tree, with provision for morphological
paradigms as nodes encountered during lex ical
lookup. Currently, we represent morphemes as
lexemes in their own r ight , each with i t s own l i s t
of Synindex production numbers and semantic
structure. Thus, for example, lookup recognizes
oats as two lexemes: -plur and cat. The lexeme
-p lur has an INTRINSIC vector (distinguishing it
from-sing). It also l i s t s the subscript for the
Synindex production NumberER, which maps the
INTRINSIC of the lexeme (-.plur) to CPSR[Head], and
then calls First__Order_Pred: thus enforcing number
agreement. Another morphologically categorized
production, TENSE, enforces 'subject-verb' agree­
ment. Actually, The kittens is playing f a i l s at
TENSE, whereas The bricks are playing violates
constraints at VTRANS. But note that a l l
agreement is managed by uniform operations upon a
single vector type.

Letters must have been being wr i t ten.
SUBJ:NP:NUM3ER:-plur,N:letter; NPCLOSE:
TENSE:-pres,MODAL:must; NQNFIN:-inf,HAVE:have;
PERF:-pastpart,BE:be; PROG:-progpart,BE:be;
PASSIVE:-pastpart,VTRANS:write; CCL0SE:.;

Discourse, etc. RVG does not require that 'S '
be the root of syntax. The examples in this paper
suggest that a disco use-level syntax could be
integrated as part of the Synindex, or as a
separate production table interfacing with the
Synindex. Paired particles were modelled as
disoourse-level discontinuity, and wh-questions
are marked by a feature switched on by the
production WH. Generalizations about syntax,
expressed by features in vectors rather than by
complex rule patterns, are thus more readily
available to other systems.

RVGs are highly reversible. A parser and a

G. Blank 755

generator can be implemented (and have been) using
the same Synindex and basic table-driving
algorithm. Indeed, a l l of the major data
structures of RVG work in either direction as i s ;
only the procedures need actually be reversed.
While parsing, discourse-level features are set by
syntax for higher-level consideration. While
generating, discourse-level features are set from
above to choose particular sentence forms.

RVGs are computationally simple and compact.
The basic algorithm is that of a table-driven
f in i te -s ta te device, modified to invoke ternary
match and change functions. Ternary vectors can
be represented on a binary computer by paired b i t
vectors. Ternary match and change are implemented
by combining logical operations (exploit ing the
low-level parallelism of bi ts in computer words).
The most recent version of RVG, in Pascal (earl ier
versions were in SNCBOL and Icon), does so, with
great gains in speed. On a DEC-20, the syntactic
parser averages about 5 milliseconds per lexeme.
Further improvement is possible—on ternary
c i rcu i t ry .

Expansion to fu l le r coverage (a substantial
fragment of English syntax has been implemented)
w i l l have a minimal slowing effect, since each new
category motivates one new production, rather than
many new rules (or a meta-rule that generates many
rules) . Each revision is on features already
allocated in a l l productions. Occasionally new
features must be allocated, but most frequently
early in grammar-making, and least frequently
la te.

Ambiguous parsing to be sure slows processing
down, though not unbearably. The combination of
well-specif ied category vectors, semantic con­
straints and possibly a form of bounded
parallelism (under investigation) can hold syntac­
t i c processing time to a small l inear time. Thus
parsing of natural languages appears to be
feasable by machines in real time. Indeed, syntax
should; be fast, if it is to f ac i l i t a te the many
other processes—from phonology to reasoning—
which a l l go on in real time.

ACKNOWLEDGEMENT

RVG originates in unpublished work by
A. E. Kunst, to whom I am also grateful for help
with th is paper. In an unpublished paper,
Professor Kunst compares RVGs to Petri nets
(rather than simple transit ion networks). Petri
nets also allow functional complexity. Specif i­
cal ly , he compares of safe Petri nets (which are
known to be weakly equivalent to FS automata) and
RVGs.

REFERENCES

[1] Berwick, R. & A. Weinberg. Parsing efficiency
and the evaluation of grammatical theories.
Linguistic Inquiry 13:4 (1982) 135-191.

[2] Berwick, R. Bounded context parsing and easy
learnabi l i ty . Proc. 22M ACL, Stanford, Palo
Alto, 1984, pp. 20-23.

[3] Blank, G. Lexicallzed metaphors: A cognitive
JttQdfii In in framework of Register Vector
semantics. PhD thesis, University of
Wisconsin-Madison, 1984.

[4] Bresnan, J . , R. Kaplan, S. Peters and A.
Zaenan. Cross-serial dependencies in Dutch.
Linguistic Inquery 13:4 (1982) 613-35.

[5] Chomsky, N. Syntactic structures. Mouton,
The Hague, 1957.

[6] Chomsky, N. of the therory? syntex
MIT Press, Cambridge, MA, 1965.

[7] Church, K. On memory l imi tat ions i,q natural
language processing. IU Linguistics
Club, Bloomington, Indiana, 1982.

[8] Gazdar, G. &G. K. Pullum. Generalized phrase
Structure grammar: a theoretical synopsis. IU
Linguistics Club, Bloomington, Indiana, 1982.

[9] Kac, M. On the recognition of complex NP's.
Workshop .on Language Processing and Asauisi-
t lon. Brown University, Providence, RI, 1980.

[10] Kunst, A. E. Petri net theory and the repre­
sentation of natural languages. Unpublished
paper, Comparative Literature, University of
Wisconsin-Madison, 1983.

[11] Langendoen, D. T. and Y. Langsam. The repre­
sentation of constituent structures for
f in i te-s tate parsing. Proc. 22nd ACL. Palo
Alto, 1984, pp. 24-27.

[12] Perrault, C. On the mathematical properties
of l inguis t ic theories. Proc. 21st ACL, MIT,
Cambridge, MA, 1983, pp. 98-104.

[13] Peters, P. S. and R. W. Ritchie. On the gen­
erative power of transformational grammars.
Information Sciences. 6 (1973) 49-63.

[14] Pullum, G. Context-freeness and the computer
processing of human languages. Proc. 21st ACL
MIT, Cambridge, MA, 1983.

[15] Pullum, G. Syntactic and semantic parsabi l i -
ty. Proc. 22nd ACL, 1984, pp. 112-22.

[16] Ross, J. Constraint? on variables in syntax.
PhD thesis, MIT, 1967.

[17] Woods, W. Transition network grammars for
natural language analysis. CACM 13:10 (1970)
591-606.

