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ABSTRACT 

Register Vector Grammar is a new kind of 
f in i te -s ta te automaton that is sensitive to 
context—without, of course, being context-
sensitive in the sense of Chomsky hierarchy. 
Traditional automata are functionally simple: 
symbols match by identi ty and change by 
replacement. RVG is functionally complex: ternary 
feature vectors (e.g. +-±--++) match and change by 
masking ( + matches but does not change any value). 
Functional complexity—as opposed to the computa­
t ional complexity of non-finite memory—is well 
suited for modelling multiple and discontinuous 
constraints. RVG is thus very good at handling 
the permutations and dependencies of syntax 
(wh-questions are explored as example). Because 
center-embedding in natural languages is in fact 
very shallow and constrained, context-free power 
is not needed. RVG can thus be guaranteed to run 
in a small l inear time, because it is FS, and yet 
can capture generalizations and constraints that 
functionally simple FS grammars cannot. 

I INTRODUCTION 

Lately there has been considerable impetus 
among natural language researchers to res t r ic t the 
computational complexity required by an adequate 
theory (cf . Gazdar 1981, Church 1982, Langendoen 
1984). Whereas FS languages guarantee l inear 
recognition time, those cal l ing for more computa­
t ional power give rise to a combinatorial 
explosion with respect to worst recognition time. 
Certainly, were there no other factors (such as 
those mentioned by Berwick and Weinberg 1982, 
Perrault 1983, Pullum 1983 and 1984), grammars 
with less computational complexity would be 
preferred, because they are more easily parsed, 
and probably also learned (see Berwick 1984). 

Unti l recently, however, it has been supposed 
that grammars with a more desirable recognition 
time are cursed by a prol i ferat ion of rule 
structures when it comes to representing 
generalit ies and par t icu lar i t ies of natural 
languages. The dilemma of computational com­
plexity vs. l ingu is t ic generality has resisted a 
satisfactory solution ever since Chomsky 1957 
argued that competence for natural languages 
requires at least context-free power in order to 

handle embedding of clauses. Moreover, to capture 
generalizations about categories that participate 
in variations of order, he introduced transfor­
mations of phrase structure—further increasing 
computational complexity (cf. Peters and Ritchie 
1973). Similarly, Woods 1970 jus t i f i ed recursion 
plus the manifold tests and registers of ATNs, 
which make his scheme "equivalent to a Turing 
machine in power," because "the actions which it 
performs are 'natural1 ones for the analysis of 
language." 

But natural languages can be modelled by a kind 
of f in i te-s ta te device that is quite compact. We 
can avoid excessive duplication of categories, and 
having to approximate unbounded memory resources. 
This is possible—,i£ we are w i l l i ng to abandon the 
functional simplicity implied by symbols in rule 
patterns. 
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The table-driven implementation consists of 1) a 
register (here called the Current Syntactic State 
Register, or CSSR), 2) a table of syntactic 
productions (the Synindex) and 3) a machine which 
in i t i a l i zes the CSSR, makes transitions from state 
to state, and responds to a f ina l state. The 
Synindex is a l i s t associating: i) a category 
symbol, i i ) a condition state symbol and i i i ) a 
result state symbol. A machine that recognizes 
sentences makes transit ions by f i r s t matching a 
Synindex category symbol with a word's lex ical 
category and the production's condition symbol 
with the CSSR; it then replaces the symbol in the 
CSSR with the production's result symbol. 
Following the example grammar, a transit ion from 
N1 to N2 is possible because the CSSR has been 
in i t i a l i zed to N1, and the category of a is DET. 
The CSSR then gets that production's result 
symbol, N2. So long as the l i s t of productions is 
f i n i t e , it is a FS grammar. Such a machine has a 
f i n i t e number of possible states, though it can 
run on indef in i te ly . The category PREP, for 
example, i terates back to N1 . 

A FS grammar requires that every category be 
determined as possible by a function of the 
immediately preceding category. Space for the 
register and index are pre-allocated; no external 
memory is available. This is as true of the 
equivalent RVG: 

In a RVG, the symbols become vectors of features, 
each capable of three possible values (+,-,+ , or 
"on", "of f " , "mask", or henceforward 1,0,2). The 
match function allows either ident i ty or ambiguity 
(2 matches any value); the change function allows 
either l i t e r a l or masked replacement (2 doesn't 
change anything). For example, if the CSSR is 
i n i t i a l i zed to 1111, the condition vector of DET 
(1222) matches, and the result of DET (0222) can 
be applied, yielding 0111. This is what is meant 
by functional complexity: whereas in a simple FS 
automaton match is ident i ty and change is 
wholesale replacement, in RVG match and change 
allow ambiguity and masking. Nevertheless the 
ternary functions are quite simple and deter­
minate. 

Note that the RVG Synindex is considerably more 

compact than the equivalent FS table. Whereas the 
FS table has three productions for the category 
ADJ and six for N, the RVG Synindex has just one 
production per category. The savings—not only of 
space in the table, but time trying a l te rna t i ves -
w i l l multiply as more permutations of order are 
introduced. 

How do RVGs achieve their efficiency? Func­
t ional complexity confers two properties that 
functionally simple grammars do not have: 
mu l t ip l i c i t y and masking. Condition vectors can 
convey multiple constraints. For example, PREP 
(condition 0001) cannot occur unt i l the f i r s t 
three features have been reversed in value. 
Moreover, result vectors can produce multiple 
ef fects: PREP (result 1112) re-enables a l l 
NP-opening productions. Note also that disjoint 
categories (e.g. N and PR0N) share the same 
position in ordering vectors, so that they 
mutually exclude each other. That i s , the result 
of N and PRON both disable the same feature 
(governing the HEAD posit ion). (PRON (result 
0000) also rules out having a post-modifying 
prepositional phrase.) 

Masking is a consequence of ternary values. 
The th i rd possible value (2) matches any value and 
does not change any value. Thus constraints may 
be passed through intervening states. For 
example, the category N is oblivious to whether or 
not the categories DET or ADJ have already 
occurred, since i t s condition vector (2212) 
matches the i n i t i a l state (1111) or the state 
after DET (0111) or after ADJ (0011). Thus we can 
represent options as well as obligations. (Note 
that the ordering of optional productions is 
enforced by having successive categories also 
disable the constraining features, e.g. the 
result of N is 0002.) Moreover, i tera t ion may be 
treated as a special case of opt ional i ty. Whereas 
a one-occurrence category disables i t s e l f (e.g. 
the result of DET is 0111), an i terat ive category 
does not (the result of ADJ is 0211). Like an 
optional category, an i terat ive category is 
disabled by successive categories up to the next 
obligatory category (e.g. the result of N is 
0002). Final ly, masking features allows con­
straints to be held through any number of 
intervening states—as w i l l be demonstrated when 
we consider long-distance dependencies. 

Fini te functional complexity can thus increase 
the expressiveness of a grammar considerably. It 
is not to be confused with "complex symbols" found 
elsewhere in l ingu is t i c theory. The sub-
categorization symbols of Chomsky 1965 allow for 
context-sensitive power; the features of Gazdar 
and Pullum 1982 ca l l for recursive elaboration of 
symbols. Features attached to GP3G phrase 
structure nodes themselves take the form of 
open-ended trees or directed graphs. The feature 
vectors of RVG, on the other hand, are f i n i t e and 
do not expand. Moreover, RVG is not an 
attr ibute-value system requiring piecemeal inter­
pretation of individual features. Whole vectors 
(a ternary vector can be implemented as a pair of 
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b i t vectors), rather than l i s t s of symbols, are 
the operational unit of on-line processing. 

In any case, other researchers have used 
oomplex features to govern categorization, but 
never to describe syntactic states. 

I l l WH-QUESTIONS 

Wh-questions are perhaps the long-distance 
dependency par excellence. A wh-word (who, what, 
etc.) provokes the grammar to watch and wait for a 
'gap'—an expected but missing noun phrase. The 
gap may be f i l l e d wherever a noun phrase is 
expected in a clause: 

What is the robot seeking? 
WH:what; AUX:is; SUBJ:NP:DET:the; N:robot; 
VTRANS:seeking; OBJ:NGAP:CCLOSE:?; 

What is the wrench on? 
WH:what; AUX:is; SUBJ:NP:DET:the; 
N:wrench; PREPion; NGAP:CCLOSE:?; 

What did the robot f ind the wrench on? 
WH:what; AUX:did; SUBJ:NP:DET:the; 
N:robot; VTRANS:find; OBJ:NP:DET:the; 
N:wrench; PREPPOST:on; NGAP:CCLOSE:?; 

What is a robot? 
WH:what; AUX:is; SUBJ:NP:DET:a; N:robot; 
PREDNP:NGAP:CCLOSE:?; 

What did the robot f ind the wrench? 
Synindex search f a i l s a t : ? 

Delaying, for the moment, discussion of embedded 
clauses, we can see that wh-questions can be 
modelled straightforwardly. 

Synindex for Wh-Questions 

CCLOSE requires that GAP have been turned of f . 
The last sentence above f a i l s because GAP is never 
disobligated. 

It should be observed that in RVG the 
recurrence of noun phrases at various positions 
within a clause does not involve cal l ing a 
subnetwork. Eschewing recursion, we instead 
allocate separate sections of the ordering vector 
type to deal with clause matters and phrase 
matters. Ternary masking allows the CSSR to 
preserve i t s clause-level status while i t 
traverses a phrase. A number of boundary 
productions—SUBJ, OBJ, IOBJ, PREP, etc.—set a 
feature which at once temporarily disables 
subsequent clause-level productions, and enables 
the boundary production NP. If NP is chosen— 
there are other possib i l i t ies—al l of the features 
ordering a phrase w i l l be reset. One alternative 
is NGAP, whose condition requires that both the NP 
and GAP be on, and i t s result turns both of these 
features of f . Thus NP and NGAP are d is jo in t . 

IV EMBEDDING 

Clause embedding was the primary evidence cited 
by Chomsky 1957 for claiming that natural 
languages are at least context-free. He 
discusses, for example, the following kinds of 
structures: 

if S1 then S2 
if [either S3 or S4]S1- then S2 
if [either [George said that S5]S3 

or S4]S1 then S2 

The argument goes: i) f in i te-s ta te automata cannot 
handle anbn (or "mirror image") grammars because 
they do not have the memory to keep track of n; 
i i ) i f . . t hen , ei ther. .or constructions suggest 
that natural languages are of this type; i i i ) 
therefore natural languages cannot be f i n i t e -
state. 

There are, however, severe constraints on 
embedding. The most well-known case is that of 
object relat ive constructions: 

The mouse the cat chased squeaked. 
The mouse the cat the dog b i t chased squeaked. 

Embedding object relatives once is not unusual, 
but twice is boggling. The most common 
explanantion for this problem is that center-
embedding causes an overload of short-term memory 
processing. But as Kac 1980 has pointed out, this 
cannot be the whole story. For if it were we 
would expect embedding to break down at a 
predictable depth. But it does not. For example, 
though one clause can embed another of a di f ferent 
type, there is no self-embedding: 

If if the Pope is Catholic then pigs have 
wings then Napoleon loves Josephine. 

That that Dan l ikes Sue annoys Bob bothers me. 

These sort of constructs are plausible, of course, 
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in truly context-free languages such as Pascal or 
LISP. 

Nor are relat ive clauses a uniform phenomena. 
First of a l l , subject relat ives are possible 
indef in i te ly : 

The fellow who saw the dog that b i t the cat 
that chased the mouse is w i l l i ng to tes t i fy . 

Object relat ives appear to be l imited to a depth 
of one, but combinations of an object relat ive and 
a noun complement are not: 

The statement that the election which he lost 
ended his career dismays him. 

The only one who the fact that George resigned 
pleased was Tom. 

Embedding also goes to deeper levels in order to 
attach suspended arguments or adverbial adjuncts: 

A teacher who wants students who persuade 
their classmates who don't know the material 
to help them to ask him instead must make 
himself available. 

Do you see why I wanted to deny that grammar 
is recursive so vehemently now? 

In the f i r s t sentence, each i n f i n i t i v e clause i.s 
projected as an argument of an earl ier predicate 
(wants persuade). Al l of the relat ives are 
subject relat ives, so for each no gap is 
suspended, only an argument. In the second 
sentence, adverbs are attached to predicates after 
intervening complement clauses—so vehemently to 
deny and now a l l the way back to the main clause's 
predicate, see. 

Though short-term memory is related to the 
shallowness of center-embedding generally, it is 
not an adequate account for the variety of 
specif ic constraints. Typically, memory l im i ta ­
tions have been regarded as an aspect of 
performance rather than competence. The perfor­
mance processor, with l imited memory, is said to 
"approximaten competence, which is said to 
" ideal ize" the unlimited memory of a CF automaton. 
Thus when Church 1982 talks about f in i te -s ta te 
processing, his aim is just "to design a parser 
that approximates competence with rea l i s t i c 
resources." But one wonders: since memory 
constraints are universal to the species, why 
aren't they of import to models of competence? 
The various constraints on center-embedding argue 
against the functionally simple notation for 
denoting clauses (e.g. S or S-bar), which seems to 
imply that a l l clauses are (almost) a l ike. The 
ve rsa t i l i t y possible with the f i n i t e functional 
complexity of RVG re-opens the question whether CF 
power is needed. 

I f . . t hen and ei ther. .or are better treated as 
discontinuous constraints than as "mirror-image" 
syntax. A single feature allocated for each 
paired construct can give us the obligations and 
options we want, with the help of a production to 

This fragment effectively enforces these con­
s t ra in ts : i) IF obligates a THEN clause before 
Dclose; i i ) EITHER obligates an EITH-OR clause 
before DCLOSE; i i i ) IF forbids another IF un t i l a 
THEN re-options i t ; iv) EITHER forbids another 
EITHER unt i l EITH-OR re-options i t ; v) EITHER 
forbids IF unt i l EITH-OR re-options i t . The last 
case ensures a constraint that Kac 1980 notes but 
cannot explain: 

Either if [clause] then [clause] or [clause] 

(A possible explanation for this constraint is 
that it avoids many ambiguities that might 
otherwise be brought on by the conjunction or.) 

In general, embedding can be modelled by any FS 
automata so long as the maximum depth is f i n i t e . 
Conceivably even a simple FS automaton can manage 
embedding, by duplicating clause syntax at every 
possible entry point. But such a grammar would be 
enormous, and is perhaps jus t i f i ab ly scorned as 
lacking "explanatory adequacy." 

But ternary vectors can consolidate matters 
considerably. Rather than having to respecify for 
every possible si te of embedding, an RVG need only 
keep track of the current level of embedding. 

The data reviewed in this paper can be managed 
by keeping track of up to three levels of 
embedding. The top, or main clause leve l , is 
treated di f ferent ly from the bottom two. Where 
the grammar does allow us to embed more deeply 
(e.g. right-embedded complements, subject re la­
t ives, e tc . ) , i t w i l l begin to i terate in the 
space of the bottom two clauses. Thus we can 
adjoin arguments or adverbials to the current 
clause, or one clause higher, or to the main 
clause, which is always kept. E.g.: 

Do you see [why I wanted [ to deny [ that 
grammar is recursive] so vehemently]] now? 

The adverbial so vehemently is attached back over 
an intervening clause; now to the main clause. 

There are two styles in which one might 
implement clause embedding in RVG. They are 
v i r tua l l y equivalent in terms of computational 
eff iciency, but reviewing both w i l l perhaps 
elucidate RVG methodology. The f i r s t is in the 
same s p i r i t as NP embedding. Just as ordering of 
phrasal constituents is managed by a segment of 
the complete ordering vector, so each clause level 
might be treated as a separate segment of a long 
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ordering vector type. Just as several boundary 
productions (SUBJ, PREP, etc.) suspend further 
clause-level productions while enabling NP, so 
other boundary productions may sh i f t attention 
from one clause level to another. Al l of the 
segments are part of the same vector type, so that 
there is no need for storage beyond the CSSR, 
which holds a complete vector. Yet it is 
possible, because of ternary masking, for boundary 
productions to, as it were, open and close 
"windows" on relevant segments. The drawback of 
th is technique is that, for each level , the 
grammar must replicate the features for clauses 
(the ordering vectors a l l get wider), and also 
repl icate most of the clause-level productions 
(the Synindex table gets longer). Replicating 
productions such as SUBJ, CADJ, et a l . , is 
necessary in order to apply different condition 
and result vectors at each clause level . 
Increased size is not necessarily a clinching 
drawback, since it is by a factor somewhat less 
than three (phrasal and discourse-level features 
and productions need not be replicated). The 
alternative approach makes for a smaller Synindex, 
to be manipulated by a s l ight ly more complicated 
algorithm. 

Instead of widening the ordering vector, we add 
depth to the CSSR. The new CSSR is mult i- leveled: 

The state register is s t i l l f i n i t e and fu l l y 
v i s ib le ; no external memory is needed. Only now 
it has ordered levels as well as features. It is 
as if we broke up a long vector, masking inactive 
segments with an array subscript rather than 
ternary values. To embed a clause, the shi f t ing 
f a c i l i t y increments ClauseLevel, and i n i t i a l i zes 
the lower clause from the higher (so that features 
l i ke GAP can be passed down). To return, it 
simply decrements ClauseLevel. 

This scheme captures generalizations about what 
clause levels hold in common. It also allows 
specialized productions to distinguish clause 
types—with di f ferent result vectors. E.g., the 
complementizer that sets up a complete clause, but 
the i n f i n i t i v e part icle to arranges for a clause 
start ing with a non-finite verb. Similarly, the 
complex NP constraint (Ross 1967) is easily 
modelled by dif ferent result codes. After 
sh i f t ing clause leve l , change applies as usual. 
Complement productions allow feature GAP to be 
passed down (by masking), whereas relatives reset 
i t : 

Who were you persuaded to f ind the wrench by? 
WH:who; TENSE:-past,BE:be; SUBJ:NP:PRON:you; 
NPCLOSE: PASSIVE:-past par t.VDITRANS: persuade; 
COMPINF:to; NONFIN:-inf, VTRANS:f ind; OBJ:NP: 
DET:the; NUMBER:-sing,N:wrench; NPCLOSE: 
PASSGAP: PASSIVEBY:by; NGAP:CCLOSE:?; 

CIause-closing productions may or may not ins is t 
that GAP be off. RELCLOSE makes th is requirement, 
but does not affect the higher clause, whereas 
FILLEDGAP does turn off GAP in the higher clause, 
and PASSGAP leaves GAP alone. 

After the sh i f t ing f a c i l i t y has embedded two 
clauses, it resorts to re-use. That i s , the 
second embedded clause is shifted up to the f i r s t . 
Thus right-embedding can i terate in two registers, 
but preserves the main clause. Two embedded 
clause registers are enough to allow the parser to 
resume suspended arguments or adverbials, as in 

A teacher who wants students who persuade 
their classmates who don't know the material 
to help them to ask him instead must make 
himself available. 

But i t s center-embedding capacity has now has been 
reached. The parser is baffled by this sentence: 

Pamela persuaded the robot who wanted to give 
the pyramid which was on the blocks which 
it found to her very much to f ind a wrench 
instead. 

By the time it encounters very much, the clause to 
which the adverbial might have been attached 
(wanted...) has been lost to re-use. But such a 
sentence is beyond the tolerance of many human 
speakers as wel l . 

Superficially this embedding scheme resembles a 
bounded stack. But there are some crucial 
differences. First of a l l , a bounded stack scheme 
(such as that of Church 1982) typical ly cal ls for 
a great deal more storage than just three 
registers, since it w i l l have to keep track of the 
f u l l gamut of embedding implied by PS rules—NPs, 
VPs, X-bars and the l i ke . Second, whereas 
functionally simple systems treat every level of 
embedding al ike, in RVG each level of embedding is 
marked—main clause, f i r s t embedded, re-usable. 
Thus in RVG there is no self-embedding. Third, 
CSSR levels are not really organized l i ke a stack, 
since the lower two registers are re-used 
i te ra t ive ly , and the main clause register is 
always preserved. In fact there is nothing which 
prevents a RVG from accessing clause levels in 
another order. For example, we could model 
cross-serial dependencies in Dutch (see Bresnan et 
a l . 1982), by allowing boundary productions to 
access storage registers in a queue-like order. 
(Assuming that cross-serial dependency, l i ke 
center-embedding, is l imited.) 
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V TOWARD A COMPLETE RVG SYSTEM 

RVO syntax may be thought of a general-purpose 
scheduler, with potential applications wherever 
such a device would be desirable. Generally, 
non-syntactic procedures can be scheduled by 
association with Synindex productions. Indeed, 
syntactic productions are motivated by non-
syntactic requirements. For example, nouns, 
pronouns and names are very similar poslt ionally, 
but they are treated as d ist inct categories 
because of semantics. In this section I w i l l 
br ie f ly describe how an RVO oan, while maintaining 
modular autonomy to a considerable degree, support 
integration of processes. 

Categories. In earl ier versions of RVG, 
categories, l ike syntactic ordering and semantic 
constraints, were represented in terms of ternary 
feature vectors. Ternary values supported 
cross-categorization well—lexemes in more than 
one category could allow them with 2 's. But since 
RVG holds down duplication of productions, it is 
feasable to associate, with each lexeme, a l i s t of 
Synindex production numbers. Moreover it is 
possible, with some pre-processing, to le t these 
production numbers be generated from labels, and 
also to infer the set of non-lexioal productions 
that could precede each lex ical production. Thus, 
for example, the lexeme k i t ten is categorized by 
the label N, which is converted to a production 
number; the non-lexioal production numbers for 
SUB J, OBJ, NP, etc . , are kept in a precedes set 
associated with the Synindex entry for N. This 
approach is at once more convenient, because 
categories are kept functionally simple with 
respect to notation, and more e f f ic ient , because 
the lexicon is 'wired' d irect ly to the Synindex, 
obviating any on-line processing of categories. 

Semantics. RVG syntax can in fact support Just 
about any form of semantics. But I present our 
biases. Since RVG permits a relat ively f l a t , 
direct treatment of permutations of order, there 
is no reason to complicate matters—as trees do, 
since they imply recursion. Rather than transform 
syntactic structures, or propose meta-rules or 
lexical-dependency subtrees which have similar 
effect, why not l e t categorized actions operate 
upon semantic structures directly? The problem of 
mapping constituent structures into lexical 
structures is simplif ied by just eliminating 
context-free constituent structures. There is no 
need to move or unify sub-trees in RVG; there are 
no trees at a l l . Moreover, semantic and 
morphological agreement can be s impl i f ied: there 
is no need to 'percolate' or ' i nhe r i t ' features up 
and down trees, nor to design special f i l t e r s or 
powerful constraints to regulate such ac t iv i ty . 
Functional complexity allows RVG to be sensitive 
to context without being context-sensitive in the 
sense of the Chomsky hierarchy. 

In RVG, we allocate a f ixed configuration of 
registers (the Current Predication State 
Registers, or CPSR) for managing grammatical 
relat ions. The CPSR and CSSR together comprise 

the state of a clause (or a phrase in a clause), 
and as shown above, RVG keeps track of up to three 
clauses. Permanent semantic representation is 
bu i l t up dynamically ( i t is here that we allow 
open-ended structures); CPSR slots hold addresses 
of proposed semantic referents. 

Categorized actions (associated with syntactic 
productions) have the responsibi l i ty of mapping 
new lex ica l material into exist ing semantic 
structure. In the sp i r i t of RVG, lexemes are 
viewed as standardized in structure. Al l semantic 
features are organized in a single vector type, 
the f i rs t -order semantic vector. Every lexeme has 
an INTRINSIC f i rs t -order code. Constraints on 
arguments of predicates are specif ied, as needed, 
in terms of additional f i rs t -order vectors. 
First_Order__Pred, a generalized procedure called 
by many categorized actions, for a l l arguments, 
f i r s t matches vectors (thus checking selectional 
res t r ic t ions) , then unif ies them. E.g., 22201 
matches 01202 and yields 01201. Thus in RVG 
features are not used merely to validate, but also 
to define semantic structures. 

Morphology. Kunst and Blank (1982) show that 
morphology oan be ef f ic ient ly implemented as a 
ret r ieval tree, with provision for morphological 
paradigms as nodes encountered during lex ical 
lookup. Currently, we represent morphemes as 
lexemes in their own r ight , each with i t s own l i s t 
of Synindex production numbers and semantic 
structure. Thus, for example, lookup recognizes 
oats as two lexemes: -plur and cat. The lexeme 
-p lur has an INTRINSIC vector (distinguishing it 
from-sing ). It also l i s t s the subscript for the 
Synindex production NumberER, which maps the 
INTRINSIC of the lexeme (-.plur) to CPSR[Head], and 
then calls First__Order_Pred: thus enforcing number 
agreement. Another morphologically categorized 
production, TENSE, enforces 'subject-verb' agree­
ment. Actually, The kittens is playing f a i l s at 
TENSE, whereas The bricks are playing violates 
constraints at VTRANS. But note that a l l 
agreement is managed by uniform operations upon a 
single vector type. 

Letters must have been being wr i t ten. 
SUBJ:NP:NUM3ER:-plur,N:letter; NPCLOSE: 
TENSE:-pres,MODAL:must; NQNFIN:-inf,HAVE:have; 
PERF:-pastpart,BE:be; PROG:-progpart,BE:be; 
PASSIVE:-pastpart,VTRANS:write; CCL0SE:.; 

Discourse, etc. RVG does not require that 'S ' 
be the root of syntax. The examples in this paper 
suggest that a disco use-level syntax could be 
integrated as part of the Synindex, or as a 
separate production table interfacing with the 
Synindex. Paired particles were modelled as 
disoourse-level discontinuity, and wh-questions 
are marked by a feature switched on by the 
production WH. Generalizations about syntax, 
expressed by features in vectors rather than by 
complex rule patterns, are thus more readily 
available to other systems. 

RVGs are highly reversible. A parser and a 
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generator can be implemented (and have been) using 
the same Synindex and basic table-driving 
algorithm. Indeed, a l l of the major data 
structures of RVG work in either direction as i s ; 
only the procedures need actually be reversed. 
While parsing, discourse-level features are set by 
syntax for higher-level consideration. While 
generating, discourse-level features are set from 
above to choose particular sentence forms. 

RVGs are computationally simple and compact. 
The basic algorithm is that of a table-driven 
f in i te -s ta te device, modified to invoke ternary 
match and change functions. Ternary vectors can 
be represented on a binary computer by paired b i t 
vectors. Ternary match and change are implemented 
by combining logical operations (exploit ing the 
low-level parallelism of bi ts in computer words). 
The most recent version of RVG, in Pascal (earl ier 
versions were in SNCBOL and Icon), does so, with 
great gains in speed. On a DEC-20, the syntactic 
parser averages about 5 milliseconds per lexeme. 
Further improvement is possible—on ternary 
c i rcu i t ry . 

Expansion to fu l le r coverage (a substantial 
fragment of English syntax has been implemented) 
w i l l have a minimal slowing effect, since each new 
category motivates one new production, rather than 
many new rules (or a meta-rule that generates many 
rules) . Each revision is on features already 
allocated in a l l productions. Occasionally new 
features must be allocated, but most frequently 
early in grammar-making, and least frequently 
la te. 

Ambiguous parsing to be sure slows processing 
down, though not unbearably. The combination of 
well-specif ied category vectors, semantic con­
straints and possibly a form of bounded 
parallelism (under investigation) can hold syntac­
t i c processing time to a small l inear time. Thus 
parsing of natural languages appears to be 
feasable by machines in real time. Indeed, syntax 
should; be fast, if it is to f ac i l i t a te the many 
other processes—from phonology to reasoning— 
which a l l go on in real time. 
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