Term Description:
A Simple Powerful Extension to Prolog Data Structures

Hideyuki

Electrotechnical
Umezono 1-1-4,

ABSTRACT

Term description is a simple, powerful
extension of terras. For example, functional
notation and lazy execution of a program is
introduced in a very natural manner without
changing the basic mechanism of the computation,
such as wunification and backtracking. Espe-
cially, the readability of functional languages
is introduced without actually introducing func-
tional concepts.

X Introduction
A. Term Description

A term description is an extension to Prolog
data structure. A term description is a term
with some description (constraints) on it:

<term> : <descrtption>
It means that <term> must satisfy <description>
which is a predicate. In other words, whenever
the term is unified with another term, the sub-
stitution must satisfy the description.

B. Motivation

Although unification in Prolog is a wuseful
tool for manipulating structures, it lacks the
ability to express complex patterns and opera-
tions over them. In Prolog, dividing a list into
its first element and the rest, and constructing
a list from its first element and the rest are
very easy. There is no need to call a procedure
to perform the operation. A simple list nota-
tion, [Carl Odr] does both of them. However, it
is not so easy to divide a list into two lists or
construct a single list from two |lists. This
operation is usually called "append" and requires
a special program.

Some operations are expressed as patterns
and others are expressed as procedures. This
destroys the readability and coherence of program
notations. The distinction is not the essential
part of the programming.

Using term description, a pattern for
la described as:

Z:cons(X,Y,Z)
as well as a pattern for the concatenation of two
lists, X and Y:

Z:append(X,Y,Z)

Nakashima

Laboratory

Ibaraki, Japan

The definition of "cons" is:
cons(X,Y,cons(X,Y)).

And the definition of "append" is:
append(nil,X,X).
append(axis(A,X),Y,oons(A,Z):append(X,Y,Z)).

| did not use the list notation, [X, Y], In this

example on purpose. The notation is simply a

syntax sugar for a term cons(X,Y). We could

similarly give a syntax sugar for

Z:append(X,Y,Z), eg. X::Y.

Xl Semantics of Term Description

a term description,
<term>:<constraints> is unified with another term
T, <term> is first unified with T and then <con-
straints> is checked. A constraint is described
as a Prolog program, and executed as if it were
written at the top-level. If the execution of
the constraint fails, the unification also fails.

A constraint is executed only when it is
necessary, ie., only when the term description is
unified with non-variable terms.

When two term descriptions are unified, only
one of them is executed first. For example, when
two term descriptions: X:p(X,Y) and Z:g(Z) are
unified, X is unified with Z:q(Z) first*, and
p(Z:q(Z),Y) is executed. Then Z:q(Z) is in turn

unified with the first argument of 'p'.

A term description may be used to produce a
value. For example, X:plus(l,3,X) behaves just
as 4.

The term description is similar to the macro
In ESP [Chikayama 83] in its effect. ESP pro-
vides two different expansion orders to distin-
guish value-constraining macros and value-
generating macros. The same effect is achieved
Implicitly in term descriptions because of its
demand driven execution.

* The selection is arbitrary and implementa-
tion dependent.

|1l Features Provided by the Term Description
A. Typed Variables

We could type variables by adding a con-
straint as:

X:integer(X)
The above term description is unifiable only with
integers. Hence we oould regard X as having the
type integer.

B. Functional Natations

Theterm description is useful to simulate
"functional” notations, for example, a sequence
of function applications:
~(h (g (f X))
is written as:

W:h(Z:g(Y:f(X,Y),Z),W)

If we follow the convention to place the
result at the last argument position, we can
further introduce a special syntax:

1f(X)
which stands for

Y:f(X,Y).
Now the previous example becomes:

_th(1g(!f(X))) _
This form is ftranslated into a normal term
description at read-in time. A unique variable
names are attached to each pattern.

Using the notation, a function factorial is
defined as:

factorial(0/l).

factorial(N, 'times(N, !factorial(!subl(N)))).

C. Equality for Terms
1. Equality and Reducibility

Termm descriptions introduce equality for
terms in a very efficient way compared with other
approaches [Kahn 81, Kbrnfeld 83]. Checking the
equality is nothing more than executing a pro-
gram.

Let us consider defining more than two terms
equal. To assert that morning star and
eveningstar in fact refer to the same object
"Venus", we may say:

morning_star (venus).

evening_star (venus).

Then the three terms: "I morning-star",
"levening-star" and "venus" become unifiable. A
term description !p may be thought of as an
intention of p (thus ! may be regarded as an
intentional operator).

Let us consider another example. What is
expressed by a program such as:

animal(X) :-bird(X).

animal(X):-mammal(X).

bird(X):-penguin (X).
bird (X):-canary (X).

H. Nakashima 709

panguin(pOOl).

is not equality but reducibijity [Tamaki 84,
Shibayama 84]. A term, l!animal is reducible to
bird, which is further reducible to ! penguin,
which is finally reducible to pOOl. A set of
reducible terms (intentions) of lanimal is a
super set of the set of reducible terms of Ibird.

In tne case of "morningstar" and
"eveningstar", two different terms are unified
through a unique individual "venus". This can be
done very efficiently. In the case of "birds" on
the other hand, the numbers of individual is much
larger than the original terms. Therefore unify-
ing 'animal and lbird usually requires lots of
backtracking. Further research is required here.

2. Equations

In KRC [Turner 81], equations in which the
same term appear on both sides such as

integers = l:(addl integers)
are allowed*. The term description also covers
this kind of equations. Since "integers" is a
function with no argument, it is translated into
Prolog predicate with one argument to return its
value:

integers([1! !'map(addl,lintegers)]).
"Map" is used to apply "addl" to all the elements
of a list, and defined as:

map(Pred, [X, Y], [IPred(X): Imap(Pred,Y)]).

The computation is infinite and hence we
need "lazy execution."

D. Lazy Execution and Infinite Data Structure

A demand driven lazy execution is realized
naturally as "lazy unification" of term descrip-
tions. Since a variable is unifiable to any
term, it is also unifiable to any term descrip-
tions. Therefore, there is no need to execute
the constraint when a term description is unified
with an uninstantiated variable. The description
is executed only when the result is actually
necessary.

As the direct consequence of the lazy execu-
tion, indefinite data structure is manipulatable.
The following example depicts the use of the
infinite list in "Sieve of Eratosthenes".

The predicate "integers" produces an infin-
ite list of integers beginning N.

integers(N, [M lintegers('addI(N))]).
Note the recursive call of "integers" itself as
the term description in the second argument. If
this call is moved to the body, a call for
"integers" runs infinitely and never returns.
When the term description is used, only the
minimum part required is computed (demand driven
computation).

* ":" is the concatenation operator.

710 H.Nakashima

The predicate "sift" filters a list of
integers using "sieve". Only those which are not
products of the previous elements remain in the
second argument.

sift([P! Rest], [P: !sift(!sieve(P,Rest))]).

"Sieve" removes those which are products of P.
sieveEP, [X:remainder(X,P,0)l Y;, Isieve(P,Y)).
sieve(P, [X Y],[X2 !sieve(P,Y)]

Now a call
integers(2,1),sift(l,P).
returns P an infinite list of prime numbers.

There are other, special purpose, primitives
to deal with infinite data structures: Prolog-ll
[Oolmerauer 1982] has 'geler' (freeze) to manipu-
late infinite data structures; Par log [Clark and
Gregory 1984] and Concurrent Prolog [Shapiro
1983] have read only annotations for variables
which provides synchronization among processes.

IV Implementation

A subset of the term description is imple-
mented on Uranus, a successor of Prolog/KR
[Nakashima 82]. Only those which is written in
functional notations are supported. A term
description !p(X) is written in Uranus as [p *x].

This notation is extended to the top-level
of Uranus. A user can type in a predicate call
just as if it is a function. For example,

[+ 13]
echoes back 4. If we define primitive lisp func-
tions as predicates, then the user can use the
system just as if it were Lisp, just by using "["

and "]" instead of "(" and ")". Here are some
examples:

[cons 1 2] - (1.2)

[car [cons 1 2]] > 1

[car {oons 1 2)] - oong

[apperd (1 2) (3 4)] - (1234)
Note that we do not need "'". We can simply use

"(" and ")" to denote a quoted list.

In usual, the description is replaced by the
result once it is executed. Thus the multiple
execution of the same description is avoided.
However, in some cases, it is impossible to
optimize the execution automatically. User
should be careful and responsible for the effi-
ciency.

As the final comment on implementation, it
is worth noting that the implementation of lazy
unification on Prolog with structure sharing is
efficient. Since the form is shared, delaying
the unification does not require extra storage.
The storage required for saving the environment
is just as large as is required for backtracking.

V. Conclusion

Prolog with term description may not be pure
Prolog any more. However, the basic mechanism of
the computation such as wunification and back-
tracking are the same.

If Prolog ever needs any extension such as
introducing functions, it should be kept as small
as possible and that the term description is one
of the smallest solutions.

ACKNONMLEDGVENTS

The author gives many thanks to Satoru Tomura and
Kokichi Putatsugi at ETL, Koichi Furukawa at
ICOT, Taku Takeshima at Fujitsu, Kazunori ueda at
NEC, and members of IOOT WE2, especially Etsuya
Shibayama, for their detailed discussions.

REFERENCES

[1] Takashi Chikayama: ESP — Extended Self-
contained PROLOG — as a Preliminary Kernel
Languages of Fifth Generation Computers New
Generation Computing, Vol. 1, No. 1, pp.11-
24 (1983)

[2] Keith L. Clark, Steve Gregory: PARLOG
Parallel Programming in logic, Research
Report, Dept. of Computing, Imperial College
(1984)

[3] Kenneth M. Kahn: Uniform — A Language
Based upon Unification which Unifies (Much
of) LISP, Prolog and Ret 1, 1JCAI-VII, pp.
933-939, (1981)

[4] William A. Kornfeld: Equality for Prolog,
Proc. of IJCAI-VIII, pp. 514-519 (1983)

[5] Hideyuki Nakashima: Prolog/KR - Language
Features, Proc. of the First International
Logic Programming Conference, pp. 65-70
(1982)

[6] Ehud Shapiro: A Subset of Concurrent PROLOG
and lIts Interpreter, I00T TR-003 (1983)

[7] Etsuya Shibayama: personal communication

(1984)

[8] Hisao Tamaki: Semantics of a Logic Program-
ming Language with a Reducibility Predi-
cate, Proc. of the 1984 International Sym-
;()?ngdl:? on Logic Programming, pp. 259-264

[9] D. A. Turner: The Semantic Elegance of
Applicative Languages, Proc. Conf. on Func-
tional Programming Languages and Computer
Architecture, pp. 85-96 (1981)

[10] David H. D. Warren: Higher-Order Extensions
to Prolog - Are they Needed?, D.A.l
Research Paper No. 154, University of Edin-
burgh (1981)

