
THE ORIGIN OF THE BINARY-SEARCH PARADIGM 

Zohar M a n n a 
Compu te r Science D e p a r t m e n t 
S tan fo rd Un ive rs i t y 

ABSTRACT 

In a binary-search algorithm for the computation of a numerical 
function, the interval in which the desired output is sought is 
divided in half at each iteration. The paper considers how such 
algorithms might be derived from their specifications by an au­
tomatic program-synthesis system. The derivation of the binary-
search concept has been found to be surprisingly straightforward. 
The programs obtained, though reasonably simple and efficient, 
are quite different from those that would have been constructed 
by informal means. 

INTRODUCTION 

Some of the most efficient algorithms for the computation of nu­
merical functions rely on the technique of binary search; accord­
ing to this technique, the interval in which the desired output is 
sought is divided in half at each iteration until it is smaller than 
a given tolerance. 

For example, let us consider the following program for find­
ing a real-number approximation to the square root of a nonneg-
ative real number r. The program sets z to be within a given 
positive tolerance e less than 

This is a classical square-root program based on one that ap-
peared in Wensley [59]. The program establishes and maintains 
the loop invariant that z is within v less than , that 
belongs to the half-open interval [z, z + v). At each iteration, 
the program divides this interval in half and tests whether √r is 
in the right or left half, adjusting z and v accordingly, unti l v is 
smaller than the given tolerance e. The program is reasonably 
efficient; it terminates after iterations. 

Analogous programs provide an efficient means of comput­
ing a variety of numerical functions. It is not immediately obvi­

This research was supported in part by the National Science 
Foundation under grants MCS-82-14523 and MCS-81-05565, by 
the Defense Advanced Research Projects Agency under contract 
N00039-84-C-0211, by the United States A i r Force Office of Sci­
entific Research under contract AFOSR-81-0014, by the Office 
of Naval Research under contract N00014-84-C-0706, and by a 
contract from the International Business Machines Corporation. 

R i c h a r d Wald inger 
A r t i f i c i a l In te l l igence Center 
S R I I n te rna t i ona l 

ous how such programs can be developed by automatic program-
synthesis systems, which derive programs to meet given specifica­
tions. Some researchers (e.g., Dershowitz and Manna [77], Smith 
[85]) have suggested that synthesis systems be provided with sev­
eral general program schemata, which could be specialized as re-
quired to fit particular applications. Binary search would be one 
of these schemata. The system would be required to discover 
which schema, if any, is applicable to a new problem. 

It may indeed be valuable to provide a synthesis system wi th 
general schemata, but this approach leaves open the question 
of how such schemata are discovered in the first place. To our 
surprise, we have found that the concept of binary search emerges 
quite naturally and easily in the derivations of some numerical 
programs and does not need to be built in. The programs we 
have obtained in this way are reasonably simple and efficient, 
but bizarre in appearance and quite different from those we would 
have constructed by informal means. 

The programs have been derived in a deductive framework 
(Manna and Waldinger [80], [85b]) in which the process of con­
structing a program is regarded as a task of proving a math­
ematical theorem. According to this approach, the program's 
specification is phrased as a theorem, the theorem is proved, and 
a program guaranteed to meet the specification is extracted from 
the proof. If the specification reflects our intentions correctly, no 
further verification or testing is required. 

In this paper we outline the derivation of a numerical pro­
gram up to the point at which the binary-search concept emerges 
and discuss what it indicates about the prospects for automatic 
program synthesis. 

We assume familiarity wi th the deductive-tableau approach 
to program synthesis; readers who would like an introduction are 
referred to the full version of this paper (Manna and Waldinger 
[85a]). In the full paper, we also show several analogous binary-
search programs that have been developed by the same method, 
including quotient programs for the nonnegative reals and inte­
gers. 

THE DERIVATION 

In the theory of real numbers, the specification for the real-

number square-root program is 

In other words, we want to find an estimate z that is within a 
tolerance less than the exact square root of r, where we 
may assume that r is nonnegative and e is positive. > 



Z. Manna and R. Waldinger 223 

We begin accordingly with the tableau 

The assertion and goal of this tableau are the input and output 
conditions, respectively, of the given specification; the output 
entry of the goal is the output variable of the program. 

The Discovery o f B i n a r y Search 

We are about to apply the resolution rule to goal 2 and itself. 
To make this step easier to understand, let us write another copy 
of goal 2. 

We have renamed the variable of the second copy of the goal, so 
that the two copies have no variables in common. 

The boxed subsentences of the two copies of the goal are 
unifiable; a most-general unifier is 

Therefore, we can apply the resolution rule between the two 
copies of goal 2 to obtain 

By application of transformation rules, including the rule 

this goal can be reduced to 

According to goal 3, it suffices to find a rougher estimate i, 
which is within a tolerance 2E less than √r, the exact square root 
of r. For then either £ + E or z itself wi l l be within c less than 
√r, depending on whether or not z + E is less than or equal to 
Jr. The two possibilities are illustrated below: 

Goal 3 contains the essential idea of binary search as applied 
to the square-root problem. Although the idea seems subtle to 
us, it appears almost immediately in the derivation. The step 

is nearly inevitable: any brute-force search procedure would dis-
cover it. 

The derivation of goal 3 is logically straightforward, but the 
intuition behind it may be a bit mysterious. Let us paraphrase 
the reasoning in a more geometric way. Our initial goal 2 ex­
presses that it suffices to find a real number z such that √r 
belongs to the half-open interval [z, z + e). Our rewritten goal 
2' expresses that it is equally acceptable to find a real number z 
such that √r belongs to the half-open interval We shall 
be content to achieve either of these goals; i.e., we shall be happy 
if √r belongs to either of the two half-open intervals. In taking 
z to be z + e, we are concatenating the two intervals, obtaining a 
new half-open interval twice the length of the original. 
It suffices to find a real number z such that √r belongs to this 
new, longer interval, because then √r must belong to one or the 
other of the two smaller ones. 

I n t r o d u c t i o n o f the Recursive Cal ls 

Let us continue the derivation one more step. By the well-
founded induction rule, we may introduce the induction hypoth­
esis 

In other words, we assume inductively that the output 8qrt(x, v) 
of the program wil l satisfy the input-output condition for any 
inputs x and v such that The boxed subsentences 
of goal 3 and the induction hypothesis are unifiable; a most-
general unifier is 

We obtain (after true-false transformation) 

Note that at this point three recursive calls sqrt have 
been introduced into the output entry. The condition 
and ensures that the arguments r and 2E of these recursive 
calls will satisfy the input condition for the program, that r is 
nonnegative and 2c is positive. The condition 
ensures that the newly introduced recursive calls cannot lead to 
a nonterminating computation. The well-founded relation <w 

that serves as the basis for the induction is as yet unspecified. 

We omit those portions of the derivation that account for the 
introduction of the base case and the choice of the well-founded 
relation. The final program we obtain is 

A few words on this program are in order. 

Discussion o f t he P r o g r a m 

The program first checks whether the error tolerance e is 
reasonably small. If is very big, that is, if max(r, 1) < then 



224 Z. Manna and R. Waldinger 

the output can safely be taken to be 0. For, because we 
have 

And because and hence 
— that is, 

Thus, 0 satisfies both conjuncts of the output condition in this 
case. 

If e is small, that is, the program finds a 
rougher estimate sqrt which is w i t h i n l e s s than √r. The 
program asks whether increasing this estimate by wi l l leave it 
less than If so, the rough estimate is increased by if not, 
the rough estimate is already close enough. 

The termination of the program is a bit problematic, because 
the argument e is doubled with each recursive call. However, the 
argument r is unchanged and recursive calls are evaluated only 
in the case in which max(r, 1), so there is a uniform upper 
bound on these increasing arguments. More precisely, the well-
founded relation selected in the proof is one such that 

If the multiple occurrences of the recursive call are 
combined by eliminating common subexpressions, the program 
we obtain is reasonably efficient; it requires 
recursive calls. 

Our final program is somewhat different from the iterative 
program we considered in the beginning. The iterative program 
divides an interval in half at each iteration; the recursive program 
doubles an interval with each recursive call. Division of the in­
terval in half occurs implicitly as the recursive program unwinds, 
i.e., when the recursive calls yield output values. 

It is possible to obtain a version of the iterative program by 
formal derivation within the deductive-tableau system. Although 
the derivation and the resulting program are more complex (it 
requires two additional inputs), it was this derivation we discov­
ered first, because we were already familiar wi th the iterative 
program. 

We first found the recursive program in examining the con­
sequences of purely formal derivation steps, not because we ex­
pected them to lead to a program but because we were looking 
for strategic considerations that would rule them out. When 
we examined the program initially, we suspected an error in the 
derivation. We had not seen programs of this form before, and 
we certainly would not have constructed this one by informal 
means. 

DISCUSSION 

The derivations were first discovered manually; the real-
number square-root derivation was subsequently reproduced by 
Yellin in an interactive program-synthesis system. The only au­
tomatic implementation of the system (Russell [83]) is unable to 
construct the derivation for a simple reason: it never attempts 
to apply the resolution rule to a goal and itself. 

The results of this investigation run counter to our usual ex­
perience. It is common for a bit of reasoning that seems simple 
and intuitively straightforward to turn out to be difficult to for­
malise and more difficult stil l to duplicate automatically. Here 

the opposite is true: an idea that requires a substantial leap of 
human ingenuity to discover is captured in a few easy formal 
steps. We may hope that truly original ideas wil l arise from the 
fortunate application of simple mechanisms. 

Acknowledgments 

We would like to thank Mart in Abadi, Yoni Malachi, Eric 
Muller, Mark Stickel, Jonathan Traugott, and Frank Yellin for 
discussions and helpful suggestions on the subject of this paper. 

REFERENCES 

Dershowitz and Manna [77] 
N. Dershowitz and Z. Manna, The evolution of pro-
grams: Automatic program modification, IEEE Trans­
actions on Software Engineering, Vol. SE-3, No. 6, Novem­
ber 1977, pp. 377-385. 

Manna and Waldinger [80] 
Z. Manna and R. Waldinger, A deductive approach to 
program synthesis, ACM Transactions on Programming 
Languages and Systems, Vol. 2, No. 1, January 1980, pp. 
90-121. 

Manna and Waldinger [85a] 
Z. Manna and R. Waldinger, The origin of the binary 
search paradigm, Technical Report, Computer Science 
Department, Stanford University, Stanford, CA and Ar­
tificial Intelligence Center, SRI International, Menlo Park, 
CA (April 1985). 

Manna and Waldinger [85b] 
Z. Manna and R. Waldinger, Special relations in auto­
mated deduction, Journal of the ACM, 1985, to appear. 

Manna and Waldinger [85c] 
Z. Manna and R. Waldinger, The Logical Basis for Com­
puter Programming, Volume 1: Dedutive Reasoning, 
Addison-Wesley, Reading, Mass., 1985. 

Murray [82] 
N. V. Murray, Completely nonclausal theorem proving, 
Artificial Intelligence, Vol. 18, No. 1, 1982, pp. 67-85. 

Robinson [79] 
J. A. Robinson, Logic: Form and Function, North-Holland, 
New York, N. Y., 1979. 

Russell [83] 
S. Russell, PSEUDS'. A programming system using de­
ductive synthesis, unpublished report, Computer Sci­
ence Department, Stanford University, Stanford, Calif., 
September 1983. 

Smith [85] 
D. R. Smith, Top-down synthesis of simple divide-and-
conquer algorithms, Artificial Intelligence, 1985, to ap­
pear. 

Wenaley [59] 
J. H. Wensley, A class of nonanalytical iterative pro­
cesses, Computer Journal, Vol. 1, January 1959, pp. 
163-167. 


