
Para l l e l i sm i n A I P r o g r a m s

ABSTRACT

A folk theorem is developing which suggests that
parallel solution of AI programs wil l not afford a speedup
of more than one order of magnitude. We critically review
this folk theorem by analyzing some of the problems used
to "prove" i t , and then cite work that provide examples of
better than one order of magnitude improvement for these
problems. We examine two representative AI algorithms
where parallelism would achieve speedups of two orders of
magnitude wi th a reasonable number of processors.

I. Introduction
A few years ago the combination of rapidly decreasing

prices for microprocessors along wi th their increasing com­
putational power spawned the belief that massive amounts
of parallelism would greatly enhance the power of com­
putational models of intelligence. Early experiences wi th
multiprocessor architectures dampened this belief. In par­
ticular Lenat found that up to four processors could be
efficiently used to speedup the execution of his Eurisko
program, but beyond that additional processors were not
useful [l] . Fennell and Lesser's multiprocessor implemen­
tat ion of Hearsay II gave a speedup of 3.8 w i th 4 proces­
sors, 4.2 w i th 16 processors, and an estimated 14.7 wi th
an infinite number of processors [2]. An empirical analysis
of a forward chaining rule-based expert systems by Forgy
suggested an upper l imi t of a speedup of 35 by parallel
rule execution [3]. A generalization of these experiences
has led to the emergence of a folk theorem which states
that the amount of achievable or effective parallelism in
AI programs wi l l be limited to a factor of ten.

In this paper we show the flaws in arguments sup-
port ing the above-mentioned folk theorem. We do this
by providing examples from the literature of parallel algo­
rithms for rule-based systems and intelligent search. These
algorithms are capable of leading to better than one order
of magnitude speedup through the use of a "reasonable"
number of processors. By "reasonable" we mean a speedup
of a factor of N should be obtained from approximately
N log N processors, not N * N processors.

Dennis F. Kibler*
Irvine Computational Intelligence Project

Information and Computer Science Department
University of California at Irvine

John Conery
Department of Computer and Information Science

University of Oregon
The folk theorem addresses itself to problems that are

dominated by global search, and our critique is based on
parallel algorithms for just these sorts of tasks. For other
types of AI programs, for example perceptual tasks such as
scene analysis and speech recognition, effective parallelism
on the order of four orders of magnitude can be achieved,
and are essential (see Duff [4]).

Finally, we should point out that the folk theorem
puts an upper bound on the asymptotic speedup of AI pro-
grams. Our response is in the same vein, showing where
asymptotic increases in execution time may be obtained
through different algorithms. We do not address the engi­
neering problems of communication costs and load balanc­
ing that must be taken into account when implementing
the algorithms on a multiprocessor.

II. Folk Theorem
The most expensive portion of most AI programs

occurs during some type of search. Search is apparently
parallel; a branch in the search space is a natural place
to apply multiple processors. When tr ied, however, the
speedup was not proportional to the number of added
processors, but leveled off after a speedup of a factor of 4-6
times, regardless of the number of additional processors.

The argument for this lack of speedup follows: unlike
a data base program which (perhaps) must follow all paths
of a search, most AI programs involve heur is t i c search
where Borne paths are not explored fully. The output of
heuristic search is usually neither the optimal solution nor
all solutions, but some "satisfactory" solution. In such
cases, additional processors, after the first few, tend to in­
crease the size of the search space explored, but fruitlessly.
Resources are devoted to unimportant paths, increasing
the total number of computations performed, but not de­
creasing, in proportion, the time to find a solution. The
argument is that a clever sequential algorithm which se­
lects the most promising paths wi l l perform nearly as well
(or better) than a naive parallel algorithm that explores
all paths.

Although practical experience supports this argu­
ment, both the argument and the experience are seri­
ously misleading. The argument makes implementation
assumptions about the way in which parallelism ought to

* Partial support for this research was provided by Hughes AI Research Center, Calabaaas, CA.

54 D. Kibler and J. Conery

be achieved, and these assumptions are mirrored in the ac­
tual implementation. Consequently the flawed argument is
merely repeated in the implementation. A correct imple­
mentation of parallelism would execute the same opera­
tions as the sequential algori thm, only w i th some compu­
tations carried on simultaneously. For a correct analysis of
the l imits of the potential speedup due to parallelism we
need to introduce some concepts.

Let a computation C be specified by a sequence of
pr imit ive operations. The nodes of the c o m p u t a t i o n
g r a p h associated w i th C are the pr imit ive operations. A
directed arc is drawn between operation f 1 and operation
f2 if f 1 enables f 2 , e.g. it produces some information
needed by f 2. To make this analysis automatic it is useful
to have a functional language. For logic programs the cre­
ation of this computation graph can be done using methods
developed by Conery and Kibler [5,6],

We can now make a number of simple inferences
about computation graphs. The computation graph is
always acyclic. The depth of the graph gives the min imum
completion time for the computation. The size of the
graph, as measured by the number of nodes, gives the
completion t ime for a uniprocessor (which effectively does
a depth first traversal, never visi t ing a node unt i l all of
its ancestors have been visited). The maximum effective
parallelism, i.e. the maximum number of processors that
can be simultaneously working, is a function of the breadth
of the graph. The maximum speedup is the rat io of the
size to the depth.

The difficulty for achieving a large amount of par­
allelism in AI programs, wi thout incurring exponentially
growing costs, is that the particular computation graph is
hidden wi th in a much larger, broader computation graph
of all potential operations. In other words, a "trace" of a
sequential execution gives one possible graph. Consequent­
ly it is very difficult to distribute the computation amongst
the various processors so that a speedup proportional to
the number of processors is achieved, since additional pro-
cessors are visit ing nodes that were not even part of the
graph in the sequential computation. Indeed very surpris-
ing effects of parallelism have been noted: using k pro­
cessors, one may achieve a speedup of greater than k, or
conversely a speedup of less than 1, i.e. a slow-down over
uniprocessor speeds. Li and Wah analyzed necessary con­
ditions for these anomalies [7].

In l ight of these unexpected results one can under­
stand why the first approaches to achieving parallelism
were inconclusive. Indeed, a simple parallel search (called
OR parallelism) allows for no parallelism wi th in deter­
ministic subcomputations. Research on functional pro-
gramming languages has shown substantial speedups can
be achieved for such tasks as sort ing, matr ix mult ipl ica­
t ion , summing a vector, etc. Moreover these speedups can
be realized wi thout the programmer specifying when and

where the parallelism should be instigated [5,6]. One of
our points is that even though the time complexity of an
AI program is dominated by search t ime, there may be
substantial speedup from executing deterministic subcom­
putations in parallel. The execution of these computations
in parallel is referred to as A N D parallelism.

Relying on both A N D and OR parallelism, we ex­
amine two representative AI algorithms and show that the
amount of speedup is orders of magnitude beyond that
suggested by the folk theorem.

III. Alpha-Beta
Consider the standard alpha-beta algorithm that is

the basis of most chess programs. Note that this algorithm
lies w i th in the purview of the argument developed in the
folk theorem, so one might be led to expect a maximum
speedup of one order of magnitude. Finkel and Fishburn
developed a special parallel algori thm for alpha-beta search
which achieves a speedup of k w i th k processors [8].
Al though this approach gives unbounded speedup, it takes
10,000 processors to yield a speedup of 100. We shall
demonstrate a different approach to gain a factor of 100
which uses roughly 500 processors. For concreteness, let us
suppose that the terminal evaluation function is the sum
of 16 features and that the branching factor is exactly 32.
The effective branching factor, due to alpha-beta search,
is about 10.

Following a naive approach to achieve parallelism,
we would take 32 processors and give each of them one
branch of the tree to search. Since the effective branching
factor is 10, most of the computations performed by this
parallel search would not be done by a sequential processor
and, in fact, are unimportant to the final result. The
overall net gain would be a factor of 10, as predicted by
the folk theorem. Carrying this process three levels into
the tree, we see that 32,768 processors are used, w i th only
1000 searching useful paths; the effective speedup (as a
percentage of the number of processors used) soon levels
off.

Now let us achieve the parallelism in another way.
We wi l l not allocate processors unt i l the next- to- last ex­
pansion in the tree, while growing the tree w i th the usual
sequential algori thm, pruning as we go. When we reach
the next to last expansion, we spread 32 processors out
amongst the terminal nodes. For each terminal node we
allocate an additional 16 processors, one processor for each
feature in the evaluation function. We have now allocated
a total of 512 processors to the task. The amount of
speedup depends on the total number of useful computa­
tions that this allocation scheme provides. Again the fact
that the effective branching factor is 10 implies that only
10*16 of the processors are doing useful work. In addit ion
the in i t ia l tree generation is done sequentially, but once
the search has depth more than 2, this has l i t t le effect on
computation t ime, as can easily be computed. (We wi l l

D. Kibler and J. Conery 55

examine the effect of inherently sequential subcomputa-
t ion in a later section.) Thus we have achieved a speedup
of more than two orders of magnitude wi th a comparable
number of processors.

Another parallel alpha-beta algorithm is the "key
node" method of Lindstrom [9]. No asymptotic perfor­
mance bounds are given, but simulation results (which
take into account message passing and memory contention
effects) show a speedup of better than 10 wi th only 20
processors.

IV. Rule Interpreter
Let us suppose we have a standard forward chaining

rule-based interpreter w i th 2,000 rules. The predicates or
conditions for these rules come out of a language wi th
100 predicates. We further suppose that rules have an
average of 6-8 conditions and 2-4 actions. A standard
rule-interpretation cycle is:

1. Find all rules that can fire
2. Choose "best" rule
3. Apply selected rule

Now one could achieve a speedup of nearly a factor of 150
over this simple rule interpreter by dedicating a processor
to each rule, as step 1 is the time-dominating portion of the
computation. Roughly, the argument is: Step 1 requires
about 15,000 operations (2000 rules wi th 6-8 conditions);
Step 2 requires about 90 operations (scoring each of about

30 rules and finding the "best" one); and Step 3 requires
about 10 operations (doing 2-4 actions). The last two steps
take 100/15,000% of the t ime, ergo the speedup of about
150. However, it is not necessary to dedicate one proces­
sor to each rule in order to achieve a substantial speedup.
The Rete algorithm, developed by Forgy, uses changes to
the working memory to determine possible changes to the
conflict set [10]. His measurements indicate that each mod­
ification to the working memory enabled or disabled about
35 rules. W i t h an average of 3 modifications to memory
per rule execution, we should have to check the lefthand
sides of roughly 100 rules, not all 2000. Furthermore, these
figures (3 changes, 35 rules) appear to be independent of
the number of rules in the system.

These observations have led some to believe that
there is minimal effective parallelism in production sys­
tems. Since not all rules have to be checked on each cycle,
adding processors to check rules wi l l not help. Beyond the
speedup in the execution of Rete (at most an order of mag­
nitude) there is no more possible parallelism in production
systems.

However, as Ofiazer points out, the analysis is based
on production systems wri t ten in the OPS5 language, and
his conclusions about minimal parallelism should be l im­
ited to systems wr i t ten in that language [11]. Thus taking
a set of rules designed for a sequential production system
interpreter, and then looking for parallelism in that set,

wi l l lead one to erroneous conclusions about production
systems in general. A similar line of thinking for numeri­
cal applications would lead one to conclude that since there
is minimal parallelism in any given FORTRAN program,
the problem solved by that program cannot be solved in
parallel.

As an example of a rule interpreter that is not orga­
nized along the lines of the test-select-execute cycle, con­
sider the "suspension interpreter" defined in STAMMER
[12]. This interpreter associates a process w i th each par­
t ial ly instantiated rule. The conditions of each rule are
regarded as a set of tasks to be completed. Moreover,
associated w i th each condition is the list of processes (par­
t ial rule instantiations) that involve the condition. When
new facts are added to working memory, all of the rel­
evant rules (processes) can t ry to complete their execu­
t ion. Those processes that complete their tasks belong to
the conflict resolution set. (Processes are also returned
to earlier points in their computation if elements of work­
ing memory are deleted, but this is a rarer occurrence).
Depending on the number of processors available, one can
distribute suspended processes to processors. The over­
head for this activity can be very high, but a speedup for
two-orders of magnitude is not out of the question.

The selection of the best rule f rom the conflict reso-
lut ion set involves either finding the maximum or sorting.
It is, perhaps, surprising that both finding the maximum

or sorting n items can be done in 0(lg(n)) t ime by n/2
processors. This is the second most costly operation in the
rule interpreter and, w i th parallelism, can be effectively
eliminated. The overall increase in efficiency is sti l l domi­
nated by the two-order of magnitude speedup in computing
the conflict resolution set.

Another approach towards achieving parallelism for
rule interpreters is that suggested by Stolfo and Shaw,
which uses the tree-machine architecture of the D A D O
machine [13,14]. The Rete algorithm was invented to ef­
ficiently execute production systems on a standard von
Neumann machine. Two of the l imitations assumed by
the Rete algorithm, that working memory not contain vari­
ables and that working memory change slowly, are avoided
by the DADO architecture. The achievable speedup of
the architecture proposed by Slolfo and Shaw is not yet
known [14]. More recently Shaw has proposed the NON-
VON architecture [15], which mixes simple and complex
processors. Simulations of NON-VON on productions sys­
tems have yielded speedups of a factor of 100, based on
the same examples as examined by Forgy and Gupta.

Lastly, we should mention that sequential assump­
tions and constraints have already been buil t into our ab-
stract formulation of a rule-interpreter. If we have a pure
inference system where there is no need to retract deduc­
tions, then why should we bother to decide which inference
is the most fruitful? If a rule (process) becomes fireable, let

56 D. Kibler and J. Conery

it fire. There is no need to segment execution into finding
fireable rules, selecting a rule, and then executing i t . W i th
a pure inference system rule instantiation can be tested
and fired in parallel.

The point of these discussions is that there are many
ways to implement parallelism and the effectiveness of par­
allel processing for AI has not yet been determined. In the
next section we examine the speedup l imitat ion due to in­
herently sequential subcomputations.

V. Amdahl's Law
A deep concern for unexcelled computational speed

led Amdahl to examine the potential speedups arising from
parallel computation. Amdahl supposed that he had P
processors to allocate to a computation which contained an
inherently sequential subcomputation. He supposed that
the sequential port ion of the computation required a frac­
t ion / of the total computation. Under these assumptions,
the upper l imi t on the amount of speedup S possible is
given by the formula:

In particular we see that even w i th an unlimited number
of processors this computation cannot be spedup by more
than a factor of 1 / / . For example, if 1% of a computation
is inherently sequential, then the maximum speedup is a
factor of 100. Thus, even if only a marginal port ion of
the computation is sequential, the maximum achievable
speedup is severely l imited.

We must be careful in applying Amdahl's law, as
demonstrated by the preceding section. It is not enough to
show that a particular algorithm has an inherently sequen­
t ial subcomputation. We must ensure that the algorithm
has not already been conceptualized in a sequential man­
ner.

VI. Conclusions
This papers argues that the apparently small gains

due to parallelism are an at tr ibute of a naive approach to-
wards parallelism. Several examples were developed which
demonstrate that both the conclusion and the argument
for the folk theorem are wrong. A means for estimating
the effects of sequentiality on parallelism was given. An ac­
curate method for evaluating the speedup and the number
of processors required, based on the concept of a compu­
tat ion tree, was developed. To achieve this parallelism is
not simple, but holds promise for AI computations. Let us
avoid AI's history of jumping to conclusions and turning
first impressions into strongly held beliefs/prejudices. We
are st i l l gathering evidence on the effectiveness of parallel
processing for A I .

Acknowledgements
Some of the arguments presented here were fine-

tuned in conversations w i th Gary Lindstrom, Chip Maguire
and David Shaw.

References
[l] Lenat, D.B., "Computer Software for Intelligent Sys­

tems'', Scientific American, Sept. 1984, 204-213.

[2] Fennell, R.D. and V.R. Lesser, "Parallelism in A r t i ­
ficial Intelligence Problem Solving: A Case Study of
Hearsay II", IEEE Trans. Computers, Vol. C-26, No.
2, Feb. 1977,98-111.

[3] Forgy, C, A. Gupta, A. Newell, and R. Wedig, " In i ­
t ia l Assessment of Architectures for Production Sys­
tems", AAAI-84, 116-120.

[4] Duff, M.J.B, "Review of the CLIP image process­
ing system", Proc. National Computer Conference,
1978, 1055-1060.

[5] Conery, J.S. and D.F. Kibler, "Parallel Interpretation
of Logic Programs", Functional Languages and Com­
puter Architecture Proceedings, March 1981, 163-
174.

[6] Conery, J.S. and D.F. Kibler, "AND Parallelism in
Logic Programs", IJCAI-83, 539-543.

[7) L i , G. and B.W. Wah, "How to Cope w i th Anoma­
lies in Parallel Approximate Branch-and-Bound A l ­
gori thms", AAAI-84, 212-215.

(8) Finkel, R.A. and J.P. Fishburn, "Parallelism in Alpha-
Beta Search", Artificial Intelligence Journal, volume
19, number 1, September, 1982, 89-106.

[9] Lindstrom, G. "The Key Node Method: A Highly
Parallel Alpha-Beta A lgor i thm", Technical Report
UUCS 83-101, University of Utah.

[10] Forgy, C.L., "Rete: A Fast Algor i thm for the Many
Pat tern/Many Object Pattern Match Problem", Ar­
tificial Intelligence Journal, volume 19, number 1,
September, 1982, 17-37.

[11] Oflazer, K. "Part i t ioning in Parallel Processing of
Production Systems", 1984.

[12] Bechtel, R., D. Kibler, and P. Morr is, "Incremental
Deduction in a Real-Time Environment", CSCSI/III,
May 1980, 26-33.

[13] Stolfo, S.J. and D.E. Shaw, "DADO: A Tree-Struct­
ured Machine Architecture for Production Systems",
AAAI-82, 242-246.

[14] Stolfo, S.J., "Five Parallel Algorithms for Production
System Execution on the Dado Machine", AAAI-84,
300-307.

[15] Shaw, David, "NON-VON Architecture", colloquium
at University of California, Irvine, Apr i l , 1985.

