
Para l l e l i sm i n A I P r o g r a m s 

ABSTRACT 

A folk theorem is developing which suggests that 
parallel solution of AI programs wil l not afford a speedup 
of more than one order of magnitude. We critically review 
this folk theorem by analyzing some of the problems used 
to "prove" i t , and then cite work that provide examples of 
better than one order of magnitude improvement for these 
problems. We examine two representative AI algorithms 
where parallelism would achieve speedups of two orders of 
magnitude wi th a reasonable number of processors. 

I. Introduction 
A few years ago the combination of rapidly decreasing 

prices for microprocessors along wi th their increasing com­
putational power spawned the belief that massive amounts 
of parallelism would greatly enhance the power of com­
putational models of intelligence. Early experiences wi th 
multiprocessor architectures dampened this belief. In par­
ticular Lenat found that up to four processors could be 
efficiently used to speedup the execution of his Eurisko 
program, but beyond that additional processors were not 
useful [ l ] . Fennell and Lesser's multiprocessor implemen­
tat ion of Hearsay II gave a speedup of 3.8 w i th 4 proces­
sors, 4.2 w i th 16 processors, and an estimated 14.7 wi th 
an infinite number of processors [2]. An empirical analysis 
of a forward chaining rule-based expert systems by Forgy 
suggested an upper l imi t of a speedup of 35 by parallel 
rule execution [3]. A generalization of these experiences 
has led to the emergence of a folk theorem which states 
that the amount of achievable or effective parallelism in 
AI programs wi l l be limited to a factor of ten. 

In this paper we show the flaws in arguments sup-
port ing the above-mentioned folk theorem. We do this 
by providing examples from the literature of parallel algo­
rithms for rule-based systems and intelligent search. These 
algorithms are capable of leading to better than one order 
of magnitude speedup through the use of a "reasonable" 
number of processors. By "reasonable" we mean a speedup 
of a factor of N should be obtained from approximately 
N log N processors, not N * N processors. 
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The folk theorem addresses itself to problems that are 

dominated by global search, and our critique is based on 
parallel algorithms for just these sorts of tasks. For other 
types of AI programs, for example perceptual tasks such as 
scene analysis and speech recognition, effective parallelism 
on the order of four orders of magnitude can be achieved, 
and are essential (see Duff [4]). 

Finally, we should point out that the folk theorem 
puts an upper bound on the asymptotic speedup of AI pro-
grams. Our response is in the same vein, showing where 
asymptotic increases in execution time may be obtained 
through different algorithms. We do not address the engi­
neering problems of communication costs and load balanc­
ing that must be taken into account when implementing 
the algorithms on a multiprocessor. 

II. Folk Theorem 
The most expensive portion of most AI programs 

occurs during some type of search. Search is apparently 
parallel; a branch in the search space is a natural place 
to apply multiple processors. When tr ied, however, the 
speedup was not proportional to the number of added 
processors, but leveled off after a speedup of a factor of 4-6 
times, regardless of the number of additional processors. 

The argument for this lack of speedup follows: unlike 
a data base program which (perhaps) must follow all paths 
of a search, most AI programs involve heur is t i c search 
where Borne paths are not explored fully. The output of 
heuristic search is usually neither the optimal solution nor 
all solutions, but some "satisfactory" solution. In such 
cases, additional processors, after the first few, tend to in­
crease the size of the search space explored, but fruitlessly. 
Resources are devoted to unimportant paths, increasing 
the total number of computations performed, but not de­
creasing, in proportion, the time to find a solution. The 
argument is that a clever sequential algorithm which se­
lects the most promising paths wi l l perform nearly as well 
(or better) than a naive parallel algorithm that explores 
all paths. 

Although practical experience supports this argu­
ment, both the argument and the experience are seri­
ously misleading. The argument makes implementation 
assumptions about the way in which parallelism ought to 
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be achieved, and these assumptions are mirrored in the ac­
tual implementation. Consequently the flawed argument is 
merely repeated in the implementation. A correct imple­
mentation of parallelism would execute the same opera­
tions as the sequential algori thm, only w i th some compu­
tations carried on simultaneously. For a correct analysis of 
the l imits of the potential speedup due to parallelism we 
need to introduce some concepts. 

Let a computation C be specified by a sequence of 
pr imit ive operations. The nodes of the c o m p u t a t i o n 
g r a p h associated w i th C are the pr imit ive operations. A 
directed arc is drawn between operation f 1 and operation 
f2 if f 1 enables f 2 , e.g. it produces some information 
needed by f 2. To make this analysis automatic it is useful 
to have a functional language. For logic programs the cre­
ation of this computation graph can be done using methods 
developed by Conery and Kibler [5,6], 

We can now make a number of simple inferences 
about computation graphs. The computation graph is 
always acyclic. The depth of the graph gives the min imum 
completion time for the computation. The size of the 
graph, as measured by the number of nodes, gives the 
completion t ime for a uniprocessor (which effectively does 
a depth first traversal, never visi t ing a node unt i l all of 
its ancestors have been visited). The maximum effective 
parallelism, i.e. the maximum number of processors that 
can be simultaneously working, is a function of the breadth 
of the graph. The maximum speedup is the rat io of the 
size to the depth. 

The difficulty for achieving a large amount of par­
allelism in AI programs, wi thout incurring exponentially 
growing costs, is that the particular computation graph is 
hidden wi th in a much larger, broader computation graph 
of all potential operations. In other words, a "trace" of a 
sequential execution gives one possible graph. Consequent­
ly it is very difficult to distribute the computation amongst 
the various processors so that a speedup proportional to 
the number of processors is achieved, since additional pro-
cessors are visit ing nodes that were not even part of the 
graph in the sequential computation. Indeed very surpris-
ing effects of parallelism have been noted: using k pro­
cessors, one may achieve a speedup of greater than k, or 
conversely a speedup of less than 1, i.e. a slow-down over 
uniprocessor speeds. Li and Wah analyzed necessary con­
ditions for these anomalies [7]. 

In l ight of these unexpected results one can under­
stand why the first approaches to achieving parallelism 
were inconclusive. Indeed, a simple parallel search (called 
OR parallelism) allows for no parallelism wi th in deter­
ministic subcomputations. Research on functional pro-
gramming languages has shown substantial speedups can 
be achieved for such tasks as sort ing, matr ix mult ipl ica­
t ion , summing a vector, etc. Moreover these speedups can 
be realized wi thout the programmer specifying when and 

where the parallelism should be instigated [5,6]. One of 
our points is that even though the time complexity of an 
AI program is dominated by search t ime, there may be 
substantial speedup from executing deterministic subcom­
putations in parallel. The execution of these computations 
in parallel is referred to as A N D parallelism. 

Relying on both A N D and OR parallelism, we ex­
amine two representative AI algorithms and show that the 
amount of speedup is orders of magnitude beyond that 
suggested by the folk theorem. 

III. Alpha-Beta 
Consider the standard alpha-beta algorithm that is 

the basis of most chess programs. Note that this algorithm 
lies w i th in the purview of the argument developed in the 
folk theorem, so one might be led to expect a maximum 
speedup of one order of magnitude. Finkel and Fishburn 
developed a special parallel algori thm for alpha-beta search 
which achieves a speedup of k w i th k processors [8]. 
Al though this approach gives unbounded speedup, it takes 
10,000 processors to yield a speedup of 100. We shall 
demonstrate a different approach to gain a factor of 100 
which uses roughly 500 processors. For concreteness, let us 
suppose that the terminal evaluation function is the sum 
of 16 features and that the branching factor is exactly 32. 
The effective branching factor, due to alpha-beta search, 
is about 10. 

Following a naive approach to achieve parallelism, 
we would take 32 processors and give each of them one 
branch of the tree to search. Since the effective branching 
factor is 10, most of the computations performed by this 
parallel search would not be done by a sequential processor 
and, in fact, are unimportant to the final result. The 
overall net gain would be a factor of 10, as predicted by 
the folk theorem. Carrying this process three levels into 
the tree, we see that 32,768 processors are used, w i th only 
1000 searching useful paths; the effective speedup (as a 
percentage of the number of processors used) soon levels 
off. 

Now let us achieve the parallelism in another way. 
We wi l l not allocate processors unt i l the next- to- last ex­
pansion in the tree, while growing the tree w i th the usual 
sequential algori thm, pruning as we go. When we reach 
the next to last expansion, we spread 32 processors out 
amongst the terminal nodes. For each terminal node we 
allocate an additional 16 processors, one processor for each 
feature in the evaluation function. We have now allocated 
a total of 512 processors to the task. The amount of 
speedup depends on the total number of useful computa­
tions that this allocation scheme provides. Again the fact 
that the effective branching factor is 10 implies that only 
10*16 of the processors are doing useful work. In addit ion 
the in i t ia l tree generation is done sequentially, but once 
the search has depth more than 2, this has l i t t le effect on 
computation t ime, as can easily be computed. (We wi l l 
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examine the effect of inherently sequential subcomputa-
t ion in a later section.) Thus we have achieved a speedup 
of more than two orders of magnitude wi th a comparable 
number of processors. 

Another parallel alpha-beta algorithm is the "key 
node" method of Lindstrom [9]. No asymptotic perfor­
mance bounds are given, but simulation results (which 
take into account message passing and memory contention 
effects) show a speedup of better than 10 wi th only 20 
processors. 

IV. Rule Interpreter 
Let us suppose we have a standard forward chaining 

rule-based interpreter w i th 2,000 rules. The predicates or 
conditions for these rules come out of a language wi th 
100 predicates. We further suppose that rules have an 
average of 6-8 conditions and 2-4 actions. A standard 
rule-interpretation cycle is: 

1. Find all rules that can fire 
2. Choose "best" rule 
3. Apply selected rule 

Now one could achieve a speedup of nearly a factor of 150 
over this simple rule interpreter by dedicating a processor 
to each rule, as step 1 is the time-dominating portion of the 
computation. Roughly, the argument is: Step 1 requires 
about 15,000 operations (2000 rules wi th 6-8 conditions); 
Step 2 requires about 90 operations (scoring each of about 

30 rules and finding the "best" one); and Step 3 requires 
about 10 operations (doing 2-4 actions). The last two steps 
take 100/15,000% of the t ime, ergo the speedup of about 
150. However, it is not necessary to dedicate one proces­
sor to each rule in order to achieve a substantial speedup. 
The Rete algorithm, developed by Forgy, uses changes to 
the working memory to determine possible changes to the 
conflict set [10]. His measurements indicate that each mod­
ification to the working memory enabled or disabled about 
35 rules. W i t h an average of 3 modifications to memory 
per rule execution, we should have to check the lefthand 
sides of roughly 100 rules, not all 2000. Furthermore, these 
figures (3 changes, 35 rules) appear to be independent of 
the number of rules in the system. 

These observations have led some to believe that 
there is minimal effective parallelism in production sys­
tems. Since not all rules have to be checked on each cycle, 
adding processors to check rules wi l l not help. Beyond the 
speedup in the execution of Rete (at most an order of mag­
nitude) there is no more possible parallelism in production 
systems. 

However, as Ofiazer points out, the analysis is based 
on production systems wri t ten in the OPS5 language, and 
his conclusions about minimal parallelism should be l im­
ited to systems wr i t ten in that language [11]. Thus taking 
a set of rules designed for a sequential production system 
interpreter, and then looking for parallelism in that set, 

wi l l lead one to erroneous conclusions about production 
systems in general. A similar line of thinking for numeri­
cal applications would lead one to conclude that since there 
is minimal parallelism in any given FORTRAN program, 
the problem solved by that program cannot be solved in 
parallel. 

As an example of a rule interpreter that is not orga­
nized along the lines of the test-select-execute cycle, con­
sider the "suspension interpreter" defined in STAMMER 
[12]. This interpreter associates a process w i th each par­
t ial ly instantiated rule. The conditions of each rule are 
regarded as a set of tasks to be completed. Moreover, 
associated w i th each condition is the list of processes (par­
t ial rule instantiations) that involve the condition. When 
new facts are added to working memory, all of the rel­
evant rules (processes) can t ry to complete their execu­
t ion. Those processes that complete their tasks belong to 
the conflict resolution set. (Processes are also returned 
to earlier points in their computation if elements of work­
ing memory are deleted, but this is a rarer occurrence). 
Depending on the number of processors available, one can 
distribute suspended processes to processors. The over­
head for this activity can be very high, but a speedup for 
two-orders of magnitude is not out of the question. 

The selection of the best rule f rom the conflict reso-
lut ion set involves either finding the maximum or sorting. 
It is, perhaps, surprising that both finding the maximum 

or sorting n items can be done in 0( lg(n)) t ime by n/2 
processors. This is the second most costly operation in the 
rule interpreter and, w i th parallelism, can be effectively 
eliminated. The overall increase in efficiency is sti l l domi­
nated by the two-order of magnitude speedup in computing 
the conflict resolution set. 

Another approach towards achieving parallelism for 
rule interpreters is that suggested by Stolfo and Shaw, 
which uses the tree-machine architecture of the D A D O 
machine [13,14]. The Rete algorithm was invented to ef­
ficiently execute production systems on a standard von 
Neumann machine. Two of the l imitations assumed by 
the Rete algorithm, that working memory not contain vari­
ables and that working memory change slowly, are avoided 
by the DADO architecture. The achievable speedup of 
the architecture proposed by Slolfo and Shaw is not yet 
known [14]. More recently Shaw has proposed the NON-
VON architecture [15], which mixes simple and complex 
processors. Simulations of NON-VON on productions sys­
tems have yielded speedups of a factor of 100, based on 
the same examples as examined by Forgy and Gupta. 

Lastly, we should mention that sequential assump­
tions and constraints have already been buil t into our ab-
stract formulation of a rule-interpreter. If we have a pure 
inference system where there is no need to retract deduc­
tions, then why should we bother to decide which inference 
is the most fruitful? If a rule (process) becomes fireable, let 
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it fire. There is no need to segment execution into finding 
fireable rules, selecting a rule, and then executing i t . W i th 
a pure inference system rule instantiation can be tested 
and fired in parallel. 

The point of these discussions is that there are many 
ways to implement parallelism and the effectiveness of par­
allel processing for AI has not yet been determined. In the 
next section we examine the speedup l imitat ion due to in­
herently sequential subcomputations. 

V. Amdahl's Law 
A deep concern for unexcelled computational speed 

led Amdahl to examine the potential speedups arising from 
parallel computation. Amdahl supposed that he had P 
processors to allocate to a computation which contained an 
inherently sequential subcomputation. He supposed that 
the sequential port ion of the computation required a frac­
t ion / of the total computation. Under these assumptions, 
the upper l imi t on the amount of speedup S possible is 
given by the formula: 

In particular we see that even w i th an unlimited number 
of processors this computation cannot be spedup by more 
than a factor of 1 / / . For example, if 1% of a computation 
is inherently sequential, then the maximum speedup is a 
factor of 100. Thus, even if only a marginal port ion of 
the computation is sequential, the maximum achievable 
speedup is severely l imited. 

We must be careful in applying Amdahl's law, as 
demonstrated by the preceding section. It is not enough to 
show that a particular algorithm has an inherently sequen­
t ial subcomputation. We must ensure that the algorithm 
has not already been conceptualized in a sequential man­
ner. 

VI. Conclusions 
This papers argues that the apparently small gains 

due to parallelism are an at tr ibute of a naive approach to-
wards parallelism. Several examples were developed which 
demonstrate that both the conclusion and the argument 
for the folk theorem are wrong. A means for estimating 
the effects of sequentiality on parallelism was given. An ac­
curate method for evaluating the speedup and the number 
of processors required, based on the concept of a compu­
tat ion tree, was developed. To achieve this parallelism is 
not simple, but holds promise for AI computations. Let us 
avoid AI's history of jumping to conclusions and turning 
first impressions into strongly held beliefs/prejudices. We 
are st i l l gathering evidence on the effectiveness of parallel 
processing for A I . 
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