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ABSTRACT 

We describe an integrated programming environment for develop 
ing knowledge-based systems. The environment contains a variety 
of general-purpose tools: a rule interpretation system, a semantic 
integrity manager, a task representation system and a file 
manager. Although the tools have different origins (e g . rule 
based systems, database management, process control), an 
obiect-oriented foundation lends modularity and consistency to 
the tool kit. 

This paper describes a rule interpretation system, a semantic in­
tegrity manager, a task representation system, and a file manager 
for storing and retrieving objects These tools implement the inter 
pretation of the declarative representations for the entities they 
manage rules integrity constraints, tasks, files The salient fea 
tures of Strobe needed for the presentation of the tools are intro 
duced in the next section Each tool is then described first 
through examples of the declarations it supports - drawn primarily 
from Crystal - and then by showing the obiects that implement it 

I. INTRODUCTION 

By now the value of powerful tool kits for developing knowledge 
based systems is well-understood. Such tools act as 
substrates - computational bases that allow system builders to 
concentrate on the problems of acquiring and formalizing domain 
knowledge. In this paper we discuss a number of specific tools 
that we have found to be useful. We also argue for the utility of an 
object-oriented foundation that ties the individual tools together in 
a coherent fashion 

The foundation for our tool kit is an object-oriented knowledge 
representation system called Strobe [5. 6]. It has been used in a 
variety of applications, most recently in Crystal [9], a system that 
supports interactive manual and automatic interpretation of well 
logs, (i e , measurements made in boreholes) This system was 
developed for two main classes of users, end users (/ e log 
interpreters) doing interactive well log interpretation, and inter 
pretation program developers. It combines graphic display and 
manipulation of logs with graphic editors and menus It controls 
distributed execution of interpretation programs either on the 
Xerox workstations or on Ethernet connected Vaxes These 
programs have been written from a variety of computational 
perspectives (e.g.. statistical, pattern recognition, symbolic) and in 
a variety of programming languages. Strobe and Crystal provide 
the glue that binds these heterogeneous components together. 

The Crystal knowledge bases incorporate a number of subsystems 
that are neither specific to the Crystal application nor to well-log 
interpretation. These subsystems are the tools of a modular, 
general-purpose knowledge-management tool kit that can be used 
to extend Strobe. Each tool is incorporated into a basic Strobe 
knowledge base by adding slots to one of the initial domain-
independent objects, or by adding one or a few objects. Each tool 
is modular in that it doesn't require modifying slots or functions 
defined by other tools. 

II. STROBE 

A Strobe knowledge base is a collection of objects of two types 
classes which can be specialized, and individuals which cannot 
Obiects are organized into taxonomic hierarchies (which may be 
tangled) along which properties are inherited (alternative in 
heritance paths are also supported) 

A Strobe obiect has properties called slots, and a slot has 
properties called facets Both slots and facets may be inherited 
Some facets namely. Value and Datatype, are system-defined and 
exist for all slots, others are user defined Message-passing and 
event-oriented computation are supported. 

Strobe supports multiple knowledge bases in the same address 
space Also, messages can be sent to objects in any knowledge 
base, even if that knowledge base is on another machine con 
nected by Ethernet. (Indeed, any Strobe operation can be per 
formed across the network.) To further support distribution and 
computational heterogeneity, Strobe had been implemented in a 
variety of languages' Interlisp-D on Xerox workstations. Mainsail. 
CommonLisp and C on Vaxes. This paper concentrates on the 
Interlisp-D version. 

Interlisp-D Strobe has a display-oriented editor called Impulse [4]. 
This editor is itself built as a collection of Strobe objects. As a 
result, it can be specialized to suit the needs of Strobe applica­
tions, based on the types of declarations supported by the tools 
discussed here. An example of such a specialization is presented 
in [9]. 

A. User-defined Datatypes 
A datatype in Strobe is itself implemented as an object. Datatyping 
provides another form of inheritance in that a slot may inherit 
some of its facets, typically operations, from its datatype. More 
precisely, receivers for messages sent to facets may be inherited 
from slots in the datatype object. Such slots are characterized by 
the fact that their name starts with the atom "DATUM ". For in 
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Figure I I -1 : Initial Strobe Knowledge Base Objects1 

III. RULE INTERPRETATION 

The rule interpreter [7] included in our tool kit applies rules in a 
forward-chained manner. The rule syntax supports a number of 
types of match variable instantiation in the left-hand side In ad­
dition, the system provides support for user extensions to the syn­
tax. A form of rule compilation can be used to generate code and 
speed up rule application. Rules can be grouped into Ruiesets 
and control structures defined for attempting and firing rules as­
sociated with ruiesets. Uncertainty is currently handled according 
to the EMYCIN model [10). There is also a simple mechanism for 
generating natural language rule translations Finally, and most 

important, rules written for this system can access domain 
knowledge encoded as Strobe objects.2 

A. Declarations For Rule Interpretation 
Each rule in the system is itself a Strobe object - an instance of the 
class Rule Figure III 1 shows a sample rule (taken in concept 
from the Dipmeter Advisor system [8]) 

Figure 111-1: Late Fault Rule 

Clauses may refer to Strobe objects (e.g., via the THE function, in 
Figure 111-1, which accesses a slot of an object) as well as other 
Lisp data structures. They may also bind variables that can be 
accessed during the matching and execution of the rule. We have 
defined an initial rule language of approximately 50 left-hand-side 
predicates and 10 right-hand-side actions. The rule language may 
be augmented as desired by end-users by defining Interlisp func 
tions (and translation templates, if desired) 

To match Norma IFau H9 against the database, the rule inter­
preter attempts to find a normal fault zone and a zone charac 
terized by a signal pattern known as a red pattern, such that the 
two zones together satisfy the predicates associated with 
Condit ion2. The rule interpreter attempts to match the rule by 
sequentially instantiating the match variables. As each match vari­
able is instantiated, the truth value of the clause is tested. If true. 
then the instantiation process continues, but if false, then the 
process backtracks to the last variable instantiated that has un 
tried values in its domain and reinstantiates it to its next value.3 

Figures showing objects are to be read as follows General information about 
the obiect (such as its synonyms, whether it is a class or an individual, its 
immediate generalizations) is shown first. Slots are then shown indented with 
respect to the object information, and when shown, the facets of a slot are 
indented with respect to the slot name. The value (if any) is printed following the 
slot name. Names in curly brackets are synonyms for the slot with which they are 
associated. 

2The ability to integrate rules and structured objects as well as the ability to 
extend the rule syntax in a flexible way are not easily managed in existing rule 
interpreters, like OPS5[1 ] We have opted for the flexibility end of the 
flexibility/speed spectrum 

Mark of Schlumberger 

3 
Note that there may be several zone pairs for which the conditions are 

satisfied. To find them all, some form of iteration is required This is performed 
automatically, as desired, by the rule interpreter. 

stance, a message sent to the Put facet of a slot is forwarded to 
the DATUM-Put slot of the object implementing the datatype of the 
slot if no receiver can be found through standard taxonomic in 
hentance. 

B. User-defined Facets 
User-defined facets are useful for metadata encoding. They have 
been used extensively in Crystal to support communication be 
tween knowledge bases By agreeing on the meaning of a rela 
tively small number of facets, knowledge bases can interpret each 
other's objects and slots without detailed knowledge of each 
other's domain of application (e g . object and slot names). For 
example, a part of an entity may be identified based on a Role 
facet set to Part rather than on the name of the part Each of our 
tools defines some facets and incorporates an interpreter for 
them 

C. Initial Objects 
A Strobe knowledge base starts with a few general objects which 
are organized in the generalization hierarchy shown in Figure II 1. 
DATATYPE is the ancestor of all datatype objects. Initially, it comes 
with a few slots that contain functions for implementing basic 
operations such as putting a value into a slot, getting, printing or 
editing a slot value The message handlers for some of these slots 
(eg, DATUM-Edit or DAIUM Pr int.) are defined in the descen­
dants of DAIATYPL: BITMAP. TEXT, LISP (for Interlisp D 
functions and lambda expressions). EXPR (for arbitrary s 
expressions) and OBJECT (for slots whose value points to Strobe 
objects) 
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There are several forms of quantified-condition clauses. In the 
standard case, the domain of a match variable is the set of in 
stances of a specified class (as in Figure III-1). Alternatively, it can 
be the set of instances of a class and of all its subclasses Other 
possibilities can be defined by the user Another type of 
quantified-condition clause that we have found useful is illustrated 
by the rule in Figure III-2 This rule expresses the fact that a tidal 
flat is characterized by a number of signal patterns known as blue 
patterns, that have alternating azimuth. We do not know a prion 
how many such patterns there will be - their number depends on 
the thickness of the flat. Set quantification in a single rule appears 
to provide a useful match to the way that variable thickness units 
are conceptualized and detected by our domain specialists 

Rules are grouped into Rulesets A ruleset defines the control 
structure to attempt and fire the rules it contains It can eliminate 
the need for clauses often found in flat rule systems that are aimed 
at setting the context for rule application. Figure III 3 shows a 
ruleset used for stratigraphic interpretation of dipmeter data 

The simplest ruleset contains a single list of rules called 
NORMAL -RULES. These rules are attempted one at a time accord 
ing to their order in the list. Each time a rule fires, the content of 
the CONTROL-STRATEGY slot determines whether scanning is to 
continue with the next rule (Cont inueAf te rF i r ing) or is to 
begin again with the first rule (ReS ta r tA f t e rF inng ) 4 This 
iteration continues until no rules can be successfully fired (This 
default termination condition can be overridden in particular 
rulesets.) 

A ruleset can also contain the following lists of rules 
FIRE-ONCE-RULES can only be fired once for each invocation of 
the ruleset. They can be used to initialize the execution of a 
ruleset. FIRE-ALWAYS-RULES are attempted on each iteration 
regardless of the control strategy. They can be used to respond to 
the firing of other rules (e g . to update dependent relationships). 
Unlike NORMAL-RULES and FIRE-ONCE-RULES, FIRE-ALWAYS-
RULES can be fired more than once with the same match variable 
bindings within a single ruleset invocation. 

To assist in explanation and debugging, the execution history of 
each ruleset invocation is recorded as an instance of the ruleset 
class. It retains information such as the rules that were attempted 
and fired (together with their match variable bindings and the ob­
jects created or modified as a result of their firing). 

B. Rule Interpretation Subsystem 
The rule interpreter is implemented via the Rule object and the 
Ru leset object (Figure III 4) (Not all of their slots are shown ) 

An additional feature has proved quite useful for hypothesis test 
ing. In applying a ruleset (or a rule), the caller is allowed to pass in 
a set of bindings. These bindings are analogous to lambda bind­
ings and allow ruleset invocation to be considered as a form of 
function invocation. Match variable bindings may be included in 
this list, in which case, the rule interpreter tries to fill in the remain­
ing instantiations. 

Object : DEEP-MARlNE -RUI ESEI 
Type: INDIVIDUAL 
General izations- Ru lese t 

NORMAL-RULES: MARINF-20 MARINE -2 I MAR INF -?2 MARINE-23 
MARINE 24 MARINE -27 

CONTROL-STRATEGY- ReS ta r tA f t e rF if mq 

Figure 111-3: Deep Marine Ruleset 

Object : Rule 
Type:CIASS 
Generalizations ROOT 

IF 
THEN. 
RULESET 
TRANSLATE: translate Rule 
TRANSLATION 
Apply: ApplyRule 
Match: MatchRuIe 
MatchAl i . MatchRuleAl l 
Execute. ExecuteRule 

Object . Ru lese t 
Type-CLASS 
General izat ions: ROOT 

NORMAL RULES: 
FIRE-ONCE RULES. 
FIRE-ALWAYS-RULES: 
CONTROL STRATEGY: 
TERMINATION-CONDITION 
KNOWLEDGE BASE: 
Apply App lyRu lese t 

The R e S t a r t A f t e r F i r i n g option is useful when the actions of an individual 
rule could interact with the conditions of other rules It is often used in combina 
tion with a rule ordering that places the most specific rules before the most general 
rules. The Cont inueAf t e r F i r i n g option is useful when individual rule actions 
are independent or additive (It is the default strategy.) 

Figure 111-4: Rule Interpretation Objects 

IV. SEMANTIC INTEGRITY MANAGEMENT 

The integrity management system allows the user to define con­
straints on slots of objects, and to define actions to be taken in 
case of constraint violation or satisfaction (with appropriate 
defaults). The system analyzes the constraints and derives the in­
formation it needs to check them at run time (i.e., the constraint 
variables and the operations that require checking). Currently, 
our constraint language is a combination of Interllsp-D and 
Strobe. 
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A. Declarations For Integrity Management 
We distinguish several types of integrity constraints. A single-slot 
constraint involves a single-slot. A datatype constraint applies to 
all slots having a particular datatype. A multi-slot constraint in­
volves several slots, in one or several objects. Since slots can be 
set-valued, constraints are divided into element constraints (that 
apply to the elements of a slot value) and set constraints (that 
apply to a slot value as a set). 

Two alternatives for encoding a constraint are supported. 0) as 
slots of an obiect and (n) as facets of a slot In this section, we 
discuss constraints encoded as objects For a presentation of slot 
encoding, and criteria for choosing between the two alternatives, 
see [2] and [3) 

Figure IV 1 shows the object that defines a well location in terms 
of a town, county, state, country and continent. The Cont inent 
slot is subject to a (single-slot) constraint that its value must 
belong to the set of names enumerated in the Candidates facet 
The constraint is implemented in the Cont inentConst ra in t ob­
iect (Figure IV 2) whose Condition slot encodes the constraint 
definition and Correction slot the correction of violations (here, 
simply an error message) 

Object . We i I l oca t ion 
Type Class 
Generalizations OBJECT 

Well 
TOWN { Township } 
COUN {County P a r i s h } 
STAT (S ta te P rov ince } 
NATI {Na t ion Count ry } 
CONT { C o n t i n e n t } 

Datatype. IXPR 
Candidates- (Europe Nor th-Amer ica South-America Asia A f r i c a 

A u s t r a I i a ) 
PutElementCondit ions. C o n t i n e n t C o n s t r a i n t 
AddElementCondit ions: C o n t i n e n t C o n s t r a i n t 

Figure IV-1: The WellLocation Obiect 

Object C o n t i n e n t C o n s t r a i n t 
Type: Class 
Generalizations: S i n g l e S l o l C o n s l r a i n t 

Condit ion. (MEMBER Value Cand idates) 
Correct ion: ( E r r o r Value " i s not one of " Candidates) 
SetOrElementConstraint. EIement 
ConstrainedObject . Wel l l o c a t i o n 
ConstrainedSlot: Con t i nen t 
Facets: Candidates 

Figure IV-2: Single-Slot Constraint On Continent 

Figure IV-3 shows the Measurement datatype object and one of 
its constraints: the In te rna lUn i tsCons t ra in t , implemented in 
the object shown in Figure IV-4. The constraint states that if slots 
whose datatype is a measurement specify the units for their 
values-their i n t e r n a l u n i t s - t h e values they are assigned 
must be in those units. The Correction slot contains the code to 
make the conversion if necessary. 

Object : Measurement 
Synonyms: D imens ionedQuant i ty 
Type: Class 
General izat ions: DATATYPE 

Uni tsConvers ion: 
InternalUni tsConstra int : I n t e rna lUn i t s C o n s t r a i n t 

Datatype: D a t a t y p e C o n s t r a i n t 
PutElementCondit ions. I n te rna lUn i t s C o n s t r a i n t 
AddElementCondi t ions: I n t e r n a lUn i t sCons t ra i n t 

Figure IV-3: The Measurement Object 

Figu re IV-4: Datatype Constraint For Internal Units 

Figure IV-5 shows the Condition slot of an object that implements 
a multi-slot constraint involving several objects The constraint is 
between different regions, or components, of a geological fault, 
referred to as the upper and lower distortion regions (or blocks) 
and the breccia region (the zone between the blocks charac­
terized by crushed rocks) It states that the upper distortion 
region of a fault is above its breccia region which, in turn, is above 
its lower distortion region. It assumes that there exist (i) Fau l t 
objects with UpperDistort ionRegion, LowerD is to r t ion -
Region and BrecciaRegion slots, and (n) D is to r t ionReg ion 
and Brecc laRegion objects with Faul t, Top and Bottom slots. 

Figure IV-5: Multi-Slot Constraint Between Fault Regions 

The user fills the Condition slot and optionally, the Correction and 
Action slots (the latter states a side effect of constraint 
satisfaction). These slots can contain function names, lambda ex­
pressions or s-expressions. They can reference slots and facets as 
free variables rather than by using Strobe access functions. In 
single-slot and datatype constraints, Value refers to the current 
slot value. In multi-slot constraints involving several objects, the 
THE function references slots in relation to their objects. 

The checking declarations generated and used by the system 
basically consist of identifiers of the constraint variables to allow 
d) insertion of triggers from the variables to the constraints at 
analysis time and (n) efficient binding of the variables at run time. 

A single-slot constraint object has a ConstramedQbject slot and a 
ConstrainedSlot slot. A datatype constraint object has a 
DatatypeObject slot and a ConstraintSlot slot. Since these con­
straints can involve facets other than Value (e.g.. I n t e rna lUn i t s 
in In te rna lUn i t sCons t ra in t ) such facets are declared in a 
Facets slot. A Slots slot in a datatype constraint declares the slots 
of the datatype object involved in the constraint, and in a multi-slot 
constraint, it declares the constrained slots together with their 
respective objects. 

A trigger associated with a slot is implemented by a facet that 
points to single or multi-slot constraints. The facet name indicates 
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the operations on the slot that require checking {Put, Add, 
Remove)5. It also indicates whether the constraints are set or ele 
ment constraints This allows the user to reset the order in which 
constraints are checked (e g element constraints before set 
constraints) and the system to efficiently order the constraints to 
check at run time For example, the PutElementConditions facet of 
the Cont inent slot (Figure IV-1) indicates that 
Cont inen tCons t ramt must be checked when a value is put in 
the slot. 

A trigger associated with a datatype object is a slot that points to 
the constraints for the datatype. Its name encodes the same infor­
mation as trigger facets The AddElementConditions slot of 
Measurement shows that I n t e r n a l U n i t s C o n s t r a m t must be 
checked when a value is added to a slot whose datatype is some 
measurement. 

B. Integrity Management Subsystem 
The integrity management system consists of slots added to the 
DATATYPE obiect (Figure IV-6) and of constraint obiects. The con­
straint objects are organized in a taxonomic hierarchy. The 
Constraint object is shown in Figure IV-7. 

The DATUMPut, DATUM Add. and DATUM-Remove slots of 
DATATYPE contain the operations for which integrity may be 
checked. These operations are also declared in the 
OperationsWithlntegnty slot of Constraint DefauitOperations 
declares the default operations for which integrity is checked 

Figure IV-6: DATATYPE Obiect For Integrity Management 

Figu re IV- 7: The Constraint Object 

The DATUM-AnalyzeConstramts slot of DATATYPE and the 
Analyze slot of Constraint provide alternative ways of analyzing 
constraints. The former is a message handler for analyzing con­
straints encoded in slots. The latter is a message handler for 
analyzing constraint objects. For example, an AnalyzeConstramts 
message sent to the PutElementCondit ions slot of 
Measurement results in filling the DatatypeObiect, ConstramtSlot 

and Facets slots of An Analyze 
message to the I n te rna lUni tsConstra in t object results in fill­
ing the same slots as well as the PutElementConditions and 
AddEiementConditions slots of Measurement. 

The Verify slot in Constraint verifies whether a hypothetical value 
for a slot violates the constraints that apply to the slot. Instead of 
executing the corrections associated with the violated constraints, 
it returns an association list of the names of those constraints and 
the bindings of their variables. The ConstraintCheckingOrder slot 
declares the default order in which constraints are checked and 
can be reset in any datatype. 

V. TASK REPRESENTATION 

Declarative task representation has been successfully used to 
capture component function and structure in a number of 
domains1 hardware design, fault detection, well-log interpretation 
Our motivation for task declaration is to provide a structure within 
which (1) a knowledge-based system can reason about tasks, (n) a 
unified mechanism can control task execution, and (III code writ 
ten from a variety of computational perspectives and in a variety of 
programming languages can be integrated An example is 
described in [9]. It shows how the Crystal knowledge base respon­
sible for the user interface interprets information about tasks to 
guide the user through their execution and how it prompts him for 
the necessary input To date, we have concentrated on 
task/subtask relationships, data description and control flow 

A. Declarations For Task Representation 
In our formalism, task declarations are made in subclasses of the 
Module object. The execution history of a task is recorded as an 
instance of its class (analogous to ruleset invocation) Figure V 1 
shows some of the slots of a task called Eigen which represents a 
principal component analysis on the logs identified in the 
ActiveLogs slot for the well identified in Well from TopDepth to 
BottomDepth. Among the outputs are principal component logs, 
represented by the PCLogs slot 

A task can be a substask of another task, which is called its 
abstraction. It points to that abstraction via a slot whose Role 
facet is set to Abstraction For example, the Fac io log slot of an 
Eigen instance points to an instance of a module, called 
facio log" - a program that finds zones of similar log responses 
in a well, and whose first subtask is the principal component 
analysis carried out by Elqen Conversely, a task points to its 
subtasks via slots whose Role facet is set to Expansion. Slots 
representing expansions also have an Order facet that indicates 
the relative (partial) order in which each expansion is normally to 
be executed. (E i gen has no expansions.) 

The slots representing input and output parameters of a task are 
denoted by a Role facet set to Port and a Direction facet set to In, 
Out or (In Out). These slots also have an Order facet that indicates 
to the system the relative (partial) order in which each input 
parameter should get its value. The Origin facet identifies where 
the value for the slot can be obtained. It may (i) identify the user 
(which in Crystal causes the user interface knowledge base to 
take charge); (ii) specify a slot of another object; or (HI) indicate 

Currently, the identification of the operations that may cause a constraint 
violation is based on heuristic, rather than formal, analysis, and can be overridden 
by the user Mark of Schlumberger 
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that the task will compute the value itself The Default facet con-
tains an s-expression that evaluates to a default value, and the 
Candidates facet evaluates to a set of possible values. These two 
facets are used by the user interface knowledge base in its 
prompting of the user (e.g., by presenting a menu if there are 
candidate values). Other facets are discussed in [9]. 

The other facets associated with an input port are for integrity 
management. The Act i veLogs slot, for example, is subject to an 

P 

Figure V-1 : Eigen Module 

element constraint that each value be drawn from the logs as­
sociated with the Well, and to a set constraint such that no more 
than one log can be of type GammaRay. Furthermore, its 
C a r d i n a l i t y is limited to 30. 

B. Task Declaration Subsystem 
The mechanism to control task execution is implemented in the 
Modu 1 e object (Figure V-2). (Only some slots are shown.) 

Figure V-2: Module Object 

The computation carried out by a task may execute either on the 
Xerox workstation or on a remote machine, in a language other 

than Interlisp-D. In the former case, the computation is specified in 
the Code slot, which typically contains a function name. In the 
latter case, it is specified in the RemoteExecutionObject slot 
The value of that slot points to a Strobe object on the remote 
machine (identified in the Host facet) which is responsible for call­
ing the foreign language program That object (written in Mainsail. 
CommonLisp, or C Strobe if it resides on a Vax) exchanges input 
and output parameters with the current module obiect written in 
Interlisp-D Strobe. 

The ReturnControl slot identifies where control is to be passed 
next (in terms of a host, knowledge base, object, slot and facet) 

A task executes when its Contro I slot receives a message. This 
slot contains the function that implements the task execution con­
trol mechanism. Basically, that function (/) acquires the input 
parameters; (n) instantiates and executes expansions as required, 
if there are expansions, or else executes the task computation, 
and (m) passes control to the next module. Dynamic alteration of 
control flow is supported by resetting ReturnControl slots on 
the fly. Note also that the Contro 1 slot has facets to modify con 
trol flow (e g., to iterate through a task or to pause for interaction 
before starting a task) Of course, the default values for these 
facets defined in the Module object can be overridden in its 
specializations 

VI. FILE MANAGEMENT 

Strobe manages objects in virtual memory At the end of a session, 
all objects in a knowledge base are generally stored on the same 
file. Subsets of objects from a knowledge base may also be 
loaded and stored. The file management tool extends this basic 
capability in that (i) it allows more generality in specifying the sub­
sets of objects (by description as well as by name), and (n) it keeps 
track of the files on which such collections are stored. Our goal is 
to provide DBMS like facilities to cope with increasing numbers of 
objects as knowledge bases scale up. 

A. Declarations For File Management 
The filing mechanism is implemented via file indexes. A file index 
is defined as a conjunction of slot names. It maps values of that 
conjunction into file names. For example, a file index may be 
defined by the conjunction (Well Creat i onDate) and an index 
value may be (WellA 23-Oct-84). The object implementing 
that file index associates (WellA 23-Oct-84) with the name of 
one or several files that contain objects whose We 11 slot value is 
WellA and whose Creat ionDate slot value is 23-0ct-84. 

Figure VI-1 shows a file index whose conjunction, defined in the 
Index slot, is (Well Creat ionDate). The slots IndexVa lue l . 
IndexValue2 and IndexValue3 represent index entries, i.e., 
tuples of the mapping between index values and file names. The 
Value facet of such a slot is an index value, e.g., (WellA 
23-0c t -84) , and its Files facet points to the files that contain 
objects corresponding to its value6. Slots implementing index 
entries are created and managed automatically by the system and 
are of no more concern to the user than the implementation of 

An index value may point to several tiles because it is our policy to avoid 
duplication of objects on several files As a result, an object corresponding to two 
index values (for two different indexes) is stored in only one of the two correspond­
ing files, and that file must be pointed to by the other index value. 
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B trees in a DBMS. The user need only be concerned with loading 
and storing objects, not with the system's implementation of those 
operations 

B. File Management Subsystem 
The file management subsystem is implemented in the 
F ileeIndex object (Figure VI 2) Its specializations are individual 
user defined obiects representing file indexes such as 
Well Index Address specifies the host, device, and directory 
where the files are actually found. LoadObjects contains a func 
tion that takes an index value as argument and loads the objects 
corresponding to that index value Similarly, StoreObjects 
stores the objects corresponding to an index value. 

VII. CONCLUSION 

We have described the implementation of knowledge manage­
ment tools for Strobe knowledge bases and presented examples 
of the capabilities they offer. Each tool is confined to a few 
general domain independent objects which can be added to an 
initial knowledge base. The addition of a new tool is modular in 
that it consists only of defining new objects or new slots of an 
existing object. Figure VII-1 shows the initial taxonomic hierarchy 
of a knowledge base incorporating all tools described in this 
paper 

Figure VII-1: Initial Objects For Knowledge Management Tools 

Implementation of the tools has been unified through an object-
oriented foundation. This foundation also helps to unify access to 
the tools - through invocation via message. This is a simple, yet 
powerful concept that helps to integrate objects, rules, tasks, and 
procedures. 

Tool kits such as ours offer a number of alternative styles of pro­
gramming: Rulesets, modules, constraints, and procedures. 
While they do help integrate these various styles, criteria for 
selecting among the alternatives for any given task are not always 
clear. For instance, a computation to be carried out as the result 
of an operation on a slot could be encoded as a constraint 
(possibly with maintenance actions), or as a ruleset, or as a 
module whose invocation is triggered by a demon associated with 
that slot. Our intention, then, is to use the tool kit both as a 
development vehicle for knowledge based systems and as an ex­
ploration vehicle for seeking selection principles. 
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