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ABSTRACT

We describe an integrated programming environment for develop
ing knowledge-based systems. The environment contains a variety
of general-purpose tools: a rule interpretation system, a semantic
integrity manager, a task representation system and a file
manager. Although the tools have different origins (e g . rule
based systems, database management, process control), an
obiect-oriented foundation lends modularity and consistency to
the tool kit.

I. INTRODUCTION

By now the value of powerful tool kits for developing knowledge
based systems is well-understood. Such tools act as
substrates - computational bases that allow system builders to
concentrate on the problems of acquiring and formalizing domain
knowledge. In this paper we discuss a number of specific tools
that we have found to be useful. We also argue for the utility of an
object-oriented foundation that ties the individual tools together in
a coherent fashion

The foundation for our tool kit is an object-oriented knowledge
representation system called Strobe [5. 6]. It has been used in a
variety of applications, most recently in Crystal [9], a system that
supports interactive manual and automatic interpretation of well
logs, (i e, measurements made in boreholes) This system was
developed for two main classes of users, end users (/e log
interpreters) doing interactive well log interpretation, and inter
pretation program developers. It combines graphic display and
manipulation of logs with graphic editors and menus It controls
distributed execution of interpretation programs either on the
Xerox workstations or on Ethernet connected Vaxes  These
programs have been written from a variety of computational
perspectives (e.g.. statistical, pattern recognition, symbolic) and in
a variety of programming languages. Strobe and Crystal provide
the glue that binds these heterogeneous components together.

The Crystal knowledge bases incorporate a number of subsystems
that are neither specific to the Crystal application nor to well-log
interpretation. These subsystems are the tools of a modular,
general-purpose knowledge-management tool kit that can be used
to extend Strobe. Each tool is incorporated into a basic Strobe
knowledge base by adding slots to one of the initial domain-
independent objects, or by adding one or a few objects. Each tool
is modular in that it doesn't require modifying slots or functions
defined by other tools.
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This paper describes a rule interpretation system, a semantic in-
tegrity manager, a task representation system, and a file manager
for storing and retrieving objects These tools implement the inter
pretation of the declarative representations for the entities they
manage rules integrity constraints, tasks, files The salient fea
tures of Strobe needed for the presentation of the tools are intro
duced in the next section Each tool is then described first
through examples of the declarations it supports - drawn primarily
from Crystal - and then by showing the obiects that implement it

I1. STROBE

A Strobe knowledge base is a collection of objects of two types
classes which can be specialized, and individuals which cannot
Obiects are organized into taxonomic hierarchies (which may be
tangled) along which properties are inherited (alternative in
heritance paths are also supported)

A Strobe obiect has properties called slots, and a slot has
properties called facets Both slots and facets may be inherited
Some facets namely. Value and Datatype, are system-defined and
exist for all slots, others are user defined Message-passing and
event-oriented computation are supported.

Strobe supports multiple knowledge bases in the same address
space Also, messages can be sent to objects in any knowledge
base, even if that knowledge base is on another machine con
nected by Ethernet. (Indeed, any Strobe operation can be per
formed across the network.) To further support distribution and
computational heterogeneity, Strobe had been implemented in a
variety of languages' Interlisp-D on Xerox workstations. Mainsail.
CommonLisp and C on Vaxes. This paper concentrates on the
Interlisp-D version.

Interlisp-D Strobe has a display-oriented editor called Impulse [4].
This editor is itself built as a collection of Strobe objects. As a
result, it can be specialized to suit the needs of Strobe applica-
tions, based on the types of declarations supported by the tools
discussed here. An example of such a specialization is presented
in [9].

A. User-defined Datatypes

A datatype in Strobe is itself implemented as an object. Datatyping
provides another form of inheritance in that a slot may inherit
some of its facets, typically operations, from its datatype. More
precisely, receivers for messages sent to facets may be inherited
from slots in the datatype object. Such slots are characterized by
the fact that their name starts with the atom "DATUM ". For in



stance, a message sent to the Put facet of a slot is forwarded to
the DATUM-Put slot of the object implementing the datatype of the
slot if no receiver can be found through standard taxonomic in
hentance.

B. User-defined Facets

User-defined facets are useful for metadata encoding. They have
been used extensively in Crystal to support communication be
tween knowledge bases By agreeing on the meaning of a rela
tively small number of facets, knowledge bases can interpret each
other's objects and slots without detailed knowledge of each
other's domain of application (e g . object and slot names). For
example, a part of an entity may be identified based on a Role
facet set to Part rather than on the name of the part Each of our
tools defines some facets and incorporates an interpreter for
them

C. Initial Objects

A Strobe knowledge base starts with a few general objects which
are organized in the generalization hierarchy shown in Figure Il 1.
DATATYPE is the ancestor of all datatype objects. Initially, it comes
with a few slots that contain functions for implementing basic
operations such as putting a value into a slot, getting, printing or
editing a slot value The message handlers for some of these slots
(eg, DATUM-Edit or DAIUM Pr int.) are defined in the descen-
dants of DAIATYPL: BITMAP. TEXT, LISP (for Interlisp D
functions and lambda expressions). EXPR (for arbitrary s
expressions) and OBJECT (for slots whose value points to Strobe
objects)

TEXT
?b;:c!c ||::;ESMYFI oBECT
¥ —_— LiSp
Generalizations. ROOI ROCT DATATYPE
DATUM Edit EXPA
DATUM Pnint, BDITMAP

DATUM Get sys/mgetvalue
OATUM Put sys/mputvalue

Figure I1-1: Initial Strobe Knowledge Base Objects’

I1l. RULE INTERPRETATION

The rule interpreter [7] included in our tool kit applies rules in a
forward-chained manner. The rule syntax supports a number of
types of match variable instantiation in the left-hand side In ad-
dition, the system provides support for user extensions to the syn-
tax. A form of rule compilation can be used to generate code and
speed up rule application. Rules can be grouped into Ruiesets
and control structures defined for attempting and firing rules as-
sociated with ruiesets. Uncertainty is currently handled according
to the EMYCIN model [10). There is also a simple mechanism for
generating natural language rule translations Finally, and most

Figures showing objects are to be read as follows General information about
the obiect (such as its synonyms, whether it is a class or an individual, its
immediate generalizations) is shown first. Slots are then shown indented with
respect to the object information, and when shown, the facets of a slot are
indented with respect to the slot name. The value (if any) is printed following the
slot name. Names in curly brackets are synonyms for the slot with which they are
associated.
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important, rules written for this system can access domain
knowledge encoded as Strobe objects.2

A. Declarations For Rule Interpretation

Each rule in the system is itself a Strobe object - an instance of the
class Rule Figure Il 1 shows a sample rule (taken in concept
from the Dipmeter Advisor system [8])

Object: Narmallaulty
Type: individual
Generahzatians Hyle
IF (Conditianl tondirapn?)
THEM: {Actioni &rtinng}
Condifton1- {THIRE [ X[51S Y Normdltaulilong)
Conthtian2 [ IHERE | X151S 7 RedPaltern
¢S tSLENGIH /)y Redlengiht)

(SAROYT F ¢ Overlap Lap)

(SPERPENDICUI AR fTIT A7 imuth Fl
PIME Strke Y
Toigtanre)

Actonl ({SSPLCIAIIZE ¥ Lo be a Lalebdudtions)
Aclton2 (SASSICN DorectionTolowntheowntitock af ¥ 1o be
[THE Asimuth /)
TRANSLATION-
IF
{1) thers exi1sts an nstance of the class
Normaltaultione { ¥y, and
{2) there exisls an insldnce of the class HadPattern { /)
Suth rhal the tength of ¢ ¢ Rediength and
such Lhat / as above ¥ within |Overlap Gap|., and
suth Lhat Lhe Az mulh of 7 1s parpendicular to
the Strakg of ¥ within lTolerance degrees
THER
{1} speciatize Y Lo be a latefaultiona
{2) the DirectronlolownthrownHlock of ¥ _the Azwmuth of 7

Figure 111-1: Late Fault Rule

Clauses may refer to Strobe objects (e.g., via the THE function, in
Figure 11141, which accesses a slot of an object) as well as other
Lisp data structures. They may also bind variables that can be
accessed during the matching and execution of the rule. We have
defined an initial rule language of approximately 50 left-hand-side
predicates and 10 right-hand-side actions. The rule language may
be augmented as desired by end-users by defining Interlisp func
tions (and translation templates, if desired)

To match Norma IFau H9 against the database, the rule inter-
preter attempts to find a normal fault zone and a zone charac
terized by a signal pattern known as a red pattern, such that the
two zones together satisfy the predicates associated with
Condition2. The rule interpreter attempts to match the rule by
sequentially instantiating the match variables. As each match vari-
able is instantiated, the truth value of the clause is tested. If true.
then the instantiation process continues, but if false, then the
process backtracks to the last variable instantiated that has un
tried values in its domain and reinstantiates it to its next value.®

2The ability to integrate rules and structured objects as well as the ability to
extend the rule syntax in a flexible way are not easily managed in existing rule
interpreters, like OPS5[1] We have opted for the flexibility end of the
flexibility/speed spectrum

Mark of Schlumberger
Note that there may be several zone pairs for which the conditions are

satisfied. To find them all, some form of iteration is required This is performed
automatically, as desired, by the rule interpreter.



48 G. Lafue and R. Smith

There are several forms of quantified-condition clauses. In the
standard case, the domain of a match variable is the set of in
stances of a specified class (as in Figure llI-1). Alternatively, it can
be the set of instances of a class and of all its subclasses Other
possibilities can be defined by the user  Another type of
quantified-condition clause that we have found useful is illustrated
by the rule in Figure Ill-2 This rule expresses the fact that a tidal
flat is characterized by a number of signal patterns known as blue
patterns, that have alternating azimuth. We do not know a prion
how many such patterns there will be - their number depends on
the thickness of the flat. Set quantification in a single rule appears
to provide a useful match to the way that variable thickness units
are conceptualized and detected by our domain specialists

Rules are grouped into Rulesets A ruleset defines the control
structure to attempt and fire the rules it contains It can eliminate
the need for clauses often found in flat rule systems that are aimed
at setting the context for rule application. Figure Ill 3 shows a
ruleset used for stratigraphic interpretation of dipmeter data

The simplest ruleset contains a single list of rules called
NORMAL -RULES. These rules are attempted one at a time accord
ing to their order in the list. Each time a rule fires, the content of
the CONTROL-STRATEGY slot determines whether scanning is to
continue with the next rule (ContinueAfterFiring) or is to
begin again with the first rule (ReStartAfterFinng)* This
iteration continues until no rules can be successfully fired (This
default termination condition can be overridden in particular
rulesets.)

A ruleset can also contain the following lists of rules
FIRE-ONCE-RULES can only be fired once for each invocation of
the ruleset. They can be used to initialize the execution of a
ruleset. FIRE-ALWAYS-RULES are attempted on each iteration
regardless of the control strategy. They can be used to respond to
the firing of other rules (e g . to update dependent relationships).
Unlike NORMAL-RULES and FIRE-ONCE-RULES, FIRE-ALWAYS-
RULES can be fired more than once with the same match variable
bindings within a single ruleset invocation.

To assist in explanation and debugging, the execution history of
each ruleset invocation is recorded as an instance of the ruleset
class. It retains information such as the rules that were attempted
and fired (together with their match variable bindings and the ob-
jects created or modified as a result of their firing).

B. Rule Interpretation Subsystem
The rule interpreter is implemented via the Rule object and the
Ru leset object (Figure Il 4) (Not all of their slots are shown )

An additional feature has proved quite useful for hypothesis test
ing. In applying a ruleset (or a rule), the caller is allowed to pass in
a set of bindings. These bindings are analogous to lambda bind-
ings and allow ruleset invocation to be considered as a form of
function invocation. Match variable bindings may be included in
this list, in which case, the rule interpreter tries to fill in the remain-
ing instantiations.

The ReStartAfterFiring option is useful when the actions of an individual
rule could interact with the conditions of other rules It is often used in combina
tion with a rule ordering that places the most specific rules before the most general
rules. The ContinueAf terFiring option is useful when individual rule actions
are independent or additive (It is the default strategy.)

Otject: Trdall
Type: [ndividoal
Generahzations: Rule
IF {Conditron] Condition2}
THEN. (Actipnl ActignZ #ctiond Aetiond)
Condition¥: {THERE FXIS1S X Trapsition/InnerShalflone
($= (THE influence X} 'Wave/1ideDominated))
Conditian2: (THERE-EXISTS-SET ¢ HiusPattern
{SWIIHIN (SHEW T} %)
(SABOVI [SLAST ! (SNIW [} Dverlap Gap)
{SOPPOSITL-OIAECTION (THE Arimuth (SNEW 7))
{IHt Azumuth (SIAST 7))
lol)
FINALLY (5 (LENGIH 77 1))
Acthionl [SCRYAIT 7/ as a lLidalttallone
Actron2 [(SASSIGN Tap af /4 to ke [THF Uepth {STTR%1  Fi)
Acltond [SASSIGH Bottom of  F4 to be (IHL Depuh ($18%1 ()
Aclvond [ SASSIGN Awas of /7 tp be (THI Azwmuth (3] AST 7))
TRANSLATION:
I
{1} thera #x15ts 4n instance of the class
[ransttions [nnei bhelflone { K

such that the Intiuence of X - Wave/l1deDominaled, and
[2)] thera exisls a4 sel ot instances of Lhe class BlyePatlern
[
such that tha cuvrent candidate for 2 s withain % and
suych that the Fa<t :iem aof 7 15 ahove 1he curreat
cangiudale for / wetnon |Gwerlap.Gap], and

such Lhat the Asimuth of the current candidate for 7 oy
apposite to lhe Aswmuth of Lhe tast tem of / within
fol degiees, ang
such bhat the si:a of the sel 7 o 1
[EEIN.]
{1y creale a Ladalflatfons 729
{2) the lop of 2 the Leplh of the Tirst 1tan of /
{1) the dottom of /7 the Dapth of tha last 1tem of 7
{4) the Axas of f) the Arimuth of the Jast item of /7

Object: DEEP-MARINE -RUI ESEI
Type: INDIVIDUAL
Generalizations- Ruleset
NORMAL-RULES: MARINF-20 MARINE -2 | MAR INF -?2 MARINE-23
MARINE 24 MARINE -27
CONTROL-STRATEGY- ReStartAfterF if mq

Figure 111-3: Deep Marine Ruleset

Object: Rule Object. Ruleset

Type:CIASS Type-CLASS

Generalizations ROOT Generalizations: ROOT
IF NORMAL RULES:
THEN. FIRE-ONCE RULES.

RULESET

TRANSLATE: translate Rule
TRANSLATION TERMINATION-CONDITION
Apply: ApplyRule KNOWLEDGE BASE:
Match: MatchRule Apply ApplyRuleset
MatchAli. MatchRuleAl |

Execute. ExecuteRule

FIRE-ALWAYS-RULES:
CONTROL STRATEGY:

Figure 1114: Rule Interpretation Objects

IV. SEMANTIC INTEGRITY MANAGEMENT

The integrity management system allows the user to define con-
straints on slots of objects, and to define actions to be taken in
case of constraint violation or satisfaction (with appropriate
defaults). The system analyzes the constraints and derives the in-
formation it needs to check them at run time (i.e., the constraint
variables and the operations that require checking). Currently,
our constraint language is a combination of Interllsp-D and
Strobe.



A. Declarations For Integrity Management

We distinguish several types of integrity constraints. A single-slot
constraint involves a single-slot. A datatype constraint applies to
all slots having a particular datatype. A multi-slot constraint in-
volves several slots, in one or several objects. Since slots can be
set-valued, constraints are divided into element constraints (that
apply to the elements of a slot value) and set constraints (that
apply to a slot value as a set).

Two alternatives for encoding a constraint are supported. 0) as
slots of an obiect and (n) as facets of a slot In this section, we
discuss constraints encoded as objects For a presentation of slot
encoding, and criteria for choosing between the two alternatives,
see [2] and [3)

Figure IV 1 shows the object that defines a well location in terms
of a town, county, state, country and continent. The Continent
slot is subject to a (single-slot) constraint that its value must
belong to the set of names enumerated in the Candidates facet
The constraint is implemented in the Cont inentConstraint ob-
iect (Figure IV 2) whose Condition slot encodes the constraint
definition and Correction slot the correction of violations (here,
simply an error message)

Object. Weillocat ion

Type Class
Generalizations OBJECT
Well

TOWN {Township}

COUN {County Parish}

STAT (State Province}

NATI {Nation Country}

CONT {Continent}

Datatype. IXPR

Candidates- (Europe North-America South-America Asia Africa
Australia)

PutElementConditions. ContinentConstraint

AddElementConditions: ContinentConstraint

Figure IV-1: The WellLocation Obiect

Object ContinentConstraint

Type: Class

Generalizations: SingleSlolConslraint
Condition. (MEMBER Value Candidates)
Correction: (Error Value "is not one of "
SetOrElementConstraint. Element
ConstrainedObject. Well location
ConstrainedSlot: Continent
Facets: Candidates

Candidates)

Figure IV-2: Single-Slot Constraint On Continent

Figure IV-3 shows the Measurement datatype object and one of
its constraints: the InternalUnitsConstraint, implemented in
the object shown in Figure IV-4. The constraint states that if slots
whose datatype is a measurement specify the units for their
values-their internal wunits-the values they are assigned
must be in those units. The Correction slot contains the code to
make the conversion if necessary.

Object: Measurement

Synonyms: DimensionedQuantity

Type: Class

Generalizations: DATATYPE
UnitsConversion:
InternalUnitsConstraint: InternalUn itsConstraint

Datatype: DatatypeConstraint

PutElementConditions. InternalUn itsConstraint
AddElementConditions: Interna IUnitsConstra int

Figure 1V-3: The Measurement Object
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Object: InternalUnilsionsiraint
Type: Class
Generahizahons DatatypeConstraint
Condhon: (t0 (fetch UNIIS of Walue) InternalUnils)
Correchion: (M SSAGE Datatype "UnitsConverstan
{1151 (ratch UNIIS of Value) Internailnits))
SetOrElementConstraint { laiment
DatatypeOhject Measuremgnl
ConsiramtSlot [nternalUnitsConstraint
Facets: Internaiunies

Figure IV-4: Datatype Constraint For Internal Units

Figure IV-5 shows the Condition slot of an object that implements
a multi-slot constraint involving several objects The constraint is
between different regions, or components, of a geological fault,
referred to as the upper and lower distortion regions (or blocks)
and the breccia region (the zone between the blocks charac-
terized by crushed rocks) It states that the upper distortion
region of a fault is above its breccia region which, in turn, is above
its lower distortion region. It assumes that there exist (i) Fault
objects with UpperDistortionRegion, LowerDistortion -
Region and BrecciaRegion slots, and (n) DistortionReg ion
and Brecc laRegion objects with Faul t, Top and Bottom slots.

Objact: histortiondrecciaConstraint
Type L[lass
Generaizations  Multi15letConslramt
Condihon:
(DR {F [THE Fault Distortionieyion)
{THf Fault BreccraRegion))
{1f { = Distertionkagion {THE UpparMistortionRegien
{THt tauit Brecciaflagion))}
then {SAHONWE {THE Betiom DistortionRegion)
{THE Top BrecciaRegion)))
(if { = DistorticnRegion (THE LowerDistortiionflégicn
{THE lault Brecc:aRegion}}}
Lthen (IABOVE {THF 8ottom HracciaRegion)
{THE Tep DistortienRegion)}))

Figure IV-5: Multi-Slot Constraint Between Fault Regions

The user fills the Condition slot and optionally, the Correction and
Action slots (the latter states a side effect of constraint
satisfaction). These slots can contain function names, lambda ex-
pressions or s-expressions. They can reference slots and facets as
free variables rather than by using Strobe access functions. In
single-slot and datatype constraints, Value refers to the current
slot value. In multi-slot constraints involving several objects, the
THE function references slots in relation to their objects.

The checking declarations generated and used by the system
basically consist of identifiers of the constraint variables to allow
d) insertion of triggers from the variables to the constraints at
analysis time and (n) efficient binding of the variables at run time.

A single-slot constraint object has a ConstramedQbject slot and a
ConstrainedSlot slot. A datatype constraint object has a
DatatypeObject slot and a ConstraintSlot slot. Since these con-
straints can involve facets other than Value (e.g.. InternalUnits
in InternalUnitsConstraint) such facets are declared in a
Facets slot. A Slots slot in a datatype constraint declares the slots
of the datatype object involved in the constraint, and in a multi-slot
constraint, it declares the constrained slots together with their
respective objects.

A trigger associated with a slot is implemented by a facet that
points to single or multi-slot constraints. The facet name indicates
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the operations on the slot that require checking {Put, Add,
Remove)®. It also indicates whether the constraints are set or ele
ment constraints This allows the user to reset the order in which
constraints are checked (e g element constraints before set
constraints) and the system to efficiently order the constraints to
check at run time For example, the PutElementConditions facet of
the  Continent slot  (Figure IV-1) indicates  that
ContinentConstramt must be checked when a value is put in
the slot.

A trigger associated with a datatype object is a slot that points to
the constraints for the datatype. Its name encodes the same infor-
mation as trigger facets The AddElementConditions slot of
Measurement shows that InternalUnitsConstramt must be
checked when a value is added to a slot whose datatype is some
measurement.

B. Integrity Management Subsystem
The integrity management system consists of slots added to the
DATATYPE obiect (Figure IV-6) and of constraint obiects. The con-
straint objects are organized in a taxonomic hierarchy. The
Constraint object is shown in Figure IV-7.

The DATUMPut, DATUM Add. and DATUM-Remove slots of
DATATYPE contain the operations for which integrity may be
checked. These operations are also declared in the
OperationsWithintegnty slot of Constraint DefauitOperations
declares the default operations for which integrity is checked

Object: DATATYPE
Type: Class
Generalizations: ROGT
DATUM.Edtt:
DATUM. Print:
OATUM-Get. sys/mgetvaiue
DATUM-Put' Datatypeiul
DATUM-Add: DatatypeAdd
DATUM-Remove- DalatypeRemove
DATUM- AnalyzeConstraints DatatypeAnalyzefonstraints
ConsiraintChackingQrder {Latatypet lementConstraints
| lumentConstraints
NaLatypeietlonsiraints
SatConstraints)

Figure IV-6: DATATYPE Obiect For Integrity Management

Obyect: {onstrainl

Type: {lass

Generalizabons: DATATfBF

Speciaizabons: (SiagtestotLonstraint UatatypeConstraint

Mult iSlotLonstraint)

OperationsWithiniegrty (I'ut Add Remove)
DetauttOperalions ({Ful &qgd)
Analyza:
Venty:

Figure IV-7: The Constraint Object

The DATUM-AnalyzeConstramts slot of DATATYPE and the
Analyze slot of Constraint provide alternative ways of analyzing
constraints. The former is a message handler for analyzing con-
straints encoded in slots. The latter is a message handler for
analyzing constraint objects. For example, an AnalyzeConstramts
message sent to the PutElementConditions slot of
Measurement results in filling the DatatypeObiect, ConstramtSlot

Currently, the identification of the operations that may cause a constraint
violation is based on heuristic, rather than formal, analysis, and can be overridden
by the user

and Facets slots of InternalUnitsConstraint. An Analyze
message to the Interna IUnitsConstra int object results in fill-
ing the same slots as well as the PutElementConditions and
AddEiementConditions slots of Measurement.

The Verify slot in Constraint verifies whether a hypothetical value
for a slot violates the constraints that apply to the slot. Instead of
executing the corrections associated with the violated constraints,
it returns an association list of the names of those constraints and
the bindings of their variables. The ConstraintCheckingOrder slot
declares the default order in which constraints are checked and
can be reset in any datatype.

V. TASK REPRESENTATION

Declarative task representation has been successfully used to
capture component function and structure in a number of
domains’ hardware design, fault detection, well-log interpretation
Our motivation for task declaration is to provide a structure within
which (1) a knowledge-based system can reason about tasks, (n) a
unified mechanism can control task execution, and (/ll code writ
ten from a variety of computational perspectives and in a variety of
programming languages can be integrated An example is
described in [9]. It shows how the Crystal knowledge base respon-
sible for the user interface interprets information about tasks to
guide the user through their execution and how it prompts him for
the necessary input To date, we have concentrated on
task/subtask relationships, data description and control flow

A. Declarations For Task Representation

In our formalism, task declarations are made in subclasses of the
Module object. The execution history of a task is recorded as an
instance of its class (analogous to ruleset invocation) Figure V 1
shows some of the slots of a task called Eigen which represents a
principal component analysis on the logs identified in the
ActivelLogs slot for the well identified in Well from TopDepth to
BottomDepth. Among the outputs are principal component logs,
represented by the PCLogs slot

A task can be a substask of another task, which is called its
abstraction. It points to that abstraction via a slot whose Role
facet is set to Abstraction For example, the Faciolog slot of an
Eigen instance points to an instance of a module, called
facio log" - a program that finds zones of similar log responses
in a well, and whose first subtask is the principal component
analysis carried out by Elgen Conversely, a task points to its
subtasks via slots whose Role facet is set to Expansion. Slots
representing expansions also have an Order facet that indicates
the relative (partial) order in which each expansion is normally to
be executed. (E igen has no expansions.)

The slots representing input and output parameters of a task are
denoted by a Role facet set to Port and a Direction facet set to In,
Out or (In Out). These slots also have an Order facet that indicates
to the system the relative (partial) order in which each input
parameter should get its value. The Origin facet identifies where
the value for the slot can be obtained. It may (i) identify the user
(which in Crystal causes the user interface knowledge base to
take charge); (ii) specify a slot of another object; or (Hl) indicate
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that the task will compute the value itself The Default facet con-
tains an s-expression that evaluates to a default value, and the
Candidates facet evaluates to a set of possible values. These two
facets are used by the user interface knowledge base in its
prompting of the user (e.g., by presenting a menu if there are
candidate values). Other facets are discussed in [9].

The other facets associated with an input port are for integrity

management. The Activelogs slot, for example, is subject to an
Object: £ igen

Typa: Class
Generalizations: Medula
Faciolog:
Datatype: Faciolog Robe: Abstracticn
Well:
Datatype: wait Role: Port Direction: {n
Activaloga:
Datatype: Log Rota: Fort Direction: In
QOrder 2 Ongin. lsar
Cardinabty- (1 10}
Candidates: {MESSAGE Wall 'logs)

Condtign. [MEMBEE vatue Candigdates)

Facets: Candidales

Operations: {Put Add)

Carrection: [Retry Value “1s0°L " Well}

SetCandition:( > 1| {for Lag n Value count | gg when
{Genaralaization® | oy "Gamnalay)))

SelCorreciion (letry "You cannol select more than ong

Gamma Ray Tgg ")
SetQperatiens: {Put Add}

TapDepth:
Dalatype: Depth Rale fort Direction In
Qrder: 4 Ongmne User

PutMultiSiotCondibians  TopkolLomConstraint
Default: (MESSAGH Actiwelogs 'TopDepthn)

BoltomDepth:
Datatype: Depth Rcle. Port Oireclion: [n
Order: 4 ongin User

PulMultiSlotCondilions. Topiottomionstiraint

Defaull- (MESSAGF Activelsgs "Bottombepth)
TopBottomConstraint: (> Bottomdapth Toplapth)

Datatype: 1 1sp Role: Mylti$lotCondition

Slots: {TepDepth llotiomDeptn)

Correction: (Retry “Bottom depth must ba greater than tep

depth “}

PCLogs:

Dalatype: Log

Rale: Port Diwrection: Qut

Figure V-1: Eigen Module

element constraint that each value be drawn from the logs as-
sociated with the Well, and to a set constraint such that no more
than one log can be of type GammaRay. Furthermore, its
Cardinality is limited to 30.

B. Task Declaration Subsystem
The mechanism to control task execution is implemented in the
Modu 1 e object (Figure V-2). (Only some slots are shown.)

Object: Module
Type: Class
Generalizations: OBJECT
Code:
Dutatype: Lisp File:
Address: {(crystal§node}oryatalSaisk:<crystal.usars?
RemoteExeculionDbisct:
Host: crystalfnode
ReturnControl:
Control: ModuleControl
Datalype: Lisp Itermte: NIL Interactive: T PauseOnEntry: N1L

KB: VLDB

Figure V-2: Module Object

The computation carried out by a task may execute either on the
Xerox workstation or on a remote machine, in a language other
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than Interlisp-D. In the former case, the computation is specified in
the Code slot, which typically contains a function name. In the
latter case, it is specified in the RemoteExecutionObject slot
The value of that slot points to a Strobe object on the remote
machine (identified in the Host facet) which is responsible for call-
ing the foreign language program That object (written in Mainsail.
CommonlLisp, or C Strobe if it resides on a Vax) exchanges input
and output parameters with the current module obiect written in
Interlisp-D Strobe.

The ReturnControl slot identifies where control is to be passed
next (in terms of a host, knowledge base, object, slot and facet)

A task executes when its Contro | slot receives a message. This
slot contains the function that implements the task execution con-
trol mechanism. Basically, that function (/) acquires the input
parameters; (n) instantiates and executes expansions as required,
if there are expansions, or else executes the task computation,
and (m) passes control to the next module. Dynamic alteration of
control flow is supported by resetting ReturnControl slots on
the fly. Note also that the Contro 1 slot has facets to modify con
trol flow (e g., to iterate through a task or to pause for interaction
before starting a task) Of course, the default values for these
facets defined in the Module object can be overridden in its
specializations

VI. FILE MANAGEMENT

Strobe manages objects in virtual memory At the end of a session,
all objects in a knowledge base are generally stored on the same
file. Subsets of objects from a knowledge base may also be
loaded and stored. The file management tool extends this basic
capability in that (i) it allows more generality in specifying the sub-
sets of objects (by description as well as by name), and (n) it keeps
track of the files on which such collections are stored. Our goal is
to provide DBMS like facilities to cope with increasing numbers of
objects as knowledge bases scale up.

A. Declarations For File Management

The filing mechanism is implemented via file indexes. A file index
is defined as a conjunction of slot names. It maps values of that
conjunction into file names. For example, a file index may be
defined by the conjunction (Wel CreationDate) and an index
value may be (WellA 23-Oct-84). The object implementing
that file index associates (WellA 23-Oct-84) with the name of
one or several files that contain objects whose We 11 slot value is
WellA and whose CreationDate slot value is 23-0ct-84.

Figure VI-1 shows a file index whose conjunction, defined in the
Index slot, is (Well CreationDate). The slots IndexValuel.
IndexValue2 and IndexValue3 represent index entries, ie.,
tuples of the mapping between index values and file names. The
Value facet of such a slot is an index value, e.g., (WellA
23-0ct-84), and its Files facet points to the files that contain
objects corresponding to its value®. Slots implementing index
entries are created and managed automatically by the system and
are of no more concern to the user than the implementation of

An index value may point to several tiles because it is our policy to avoid
duplication of objects on several files As a result, an object corresponding to two
index values (for two different indexes) is stored in only one of the two correspond-
ing files, and that file must be pointed to by the other index value.
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B trees in a DBMS. The user need only be concerned with loading
and storing objects, not with the system's implementation of those
operations

Object: Walllndes
Type: Individual
Generahzations: ) 1lelndsx
ngex: (Wall CrealionDate)
IndaaVatue1: (Welth 22-0ct-84)
Datatypes FXAPR Fites- wWelld ops .t
IndexValue2: (Walia 2-Dec-3d;
Datatype }XPR Files {WellA nbs | Lruc ohs, 1)
IndexValugd): (WellB 2-Dec-R4}
Oalatype FIPA Filas. WelIB oos !

Figure V¥i-1: Weillndex object

B. File Management Subsystem

The file management subsystem is implemented in the
F ileelndex object (Figure VI 2) lIts specializations are individual
user defined obiects representing file indexes such as
Well Index Address specifies the host, device, and directory
where the files are actually found. LoadObjects contains a func
tion that takes an index value as argument and loads the objects
corresponding to that index value Similarly, StoreObjects
stores the objects corresponding to an index value.

Object: Frlelndes
Type. {lass
Generalizations: AQOT
Indax:
Address: (crystaiSoode} crystalddisk ccrystal wetts:
LoadObjects: filelnogx! vadlbjecls
StoraObjects: Fiislngeadtoratbjacts

Figure Vi-2: Fileindex Chject

VII. CONCLUSION

We have described the implementation of knowledge manage-
ment tools for Strobe knowledge bases and presented examples
of the capabilities they offer. Each tool is confined to a few
general domain independent objects which can be added to an
initial knowledge base. The addition of a new tool is modular in
that it consists only of defining new objects or new slots of an
existing object. Figure VII-1 shows the initial taxonomic hierarchy
of a knowledge base incorporating all tools described in this

paper

BNTMAP
PR
Liap
DATATYPE ounnnht< DatatypeConatraint
ooy OBIEDT MultiotConstraint
Module
e
Rulenst
TEXT

Figure VII-1: Initial Objects For Knowledge Management Tools

Implementation of the tools has been unified through an object-
oriented foundation. This foundation also helps to unify access to
the tools - through invocation via message. This is a simple, yet
powerful concept that helps to integrate objects, rules, tasks, and
procedures.

Tool kits such as ours offer a number of alternative styles of pro-
gramming: Rulesets, modules, constraints, and procedures.
While they do help integrate these various styles, criteria for
selecting among the alternatives for any given task are not always
clear. For instance, a computation to be carried out as the result
of an operation on a slot could be encoded as a constraint
(possibly with maintenance actions), or as a ruleset, or as a
module whose invocation is triggered by a demon associated with
that slot. Our intention, then, is to use the tool kit both as a
development vehicle for knowledge based systems and as an ex-
ploration vehicle for seeking selection principles.
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