
C o r r e o p o r t d o n c e i n L i n e D r a w i n g s o f 

M u l t i p l e V i e w s o f O b j e c t s 

C h a r l e s T h o r p e a n d S t e v e n S h e f e r 

C a r n e g i e - M e l l o n U n i v e r s i t y 

A b s t r a c t 

As an object moves relative to a viewpoint, its appearance changes. 
In this paper we analyze the topological constraints on the 
changing appearance of line drawings of objects as the objects or 
the camera move. We start with a Huffman-Clowes junction 
dictionary. We show a way of deriving vertex types from junction 
types by inference rather than by table look-up. We then derive 
three constraints on the change in appearance of an object: 
conservation of vertices, conservation of vertex type, and 
conservation of adjacencies. Using these constraints, we develop a 
matching algorithm that traces vertices from one image to the next. 
Examples are given showing correct matching tor simple objects, 
including partially visible objects and multiple objects in the same 
scene. 

1 . I n t r o d u c t i o n 
In this paper we examine the appearance of trihedral vertices 

from different viewpoints. This analysis is used to derive the effects 
cf changing viewing position on the appearance of line drawings of 
trihedral objects, That in turn helps solve the problem of identifying 
the same vertices in different pictures. The objects we consider are 
trihedral blocks; that is three planar sides meet at each vertex. The 
drawings are initially presumed to be perfect. The change in 
viewing position can come either from moving the camera, as in 
stereo vision, or from moving objects. 

The first part of this paper examines the change in appearance of 
a vertex as the viewing angle changes. We start out with Huffman-
Clowes enumeration of junctions, the two-dimensional images of 
three dimensional vertices. We show a way of deriving vertex types 
from junction types by inference rather than by enumeration and 
table look-up. We then develop a "transition table", showing how 
the image of a vertex can change from one type of junction to 
another as the viewpoint changes. 

In the second part we show a matching process that relies on 
topology to identify the same vertices in two line drawings of the 
same scene. The only information used is line labels and 
connectivity. These give us three constraints: conservation of 
vertices, conservation of adjacencies, and conservation of vertex 
types. This process works for scenes with more than one object or 
with only part of an object visible. We discuss extensions and show 
several simple examples. 

This research was sponsored by the Defense Advanced Research Projects 
Agency (DOD), ARPA Order No 3597, monitored by the Air Force Avionics 
Laboratory Under Contract F33615-81-K-1539. The views and conclusions 
contained in this document are those of the authors and should not be interpreted 
as representing the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the US Government. 

2 . T r i h e d r a l V e r t i c e s 

2.1 Introduction: Huffman-Clowes Junction Dictionaries 
Huffman [5] and Clowes [3] independently developed "junction 

dictionaries", lists of possible appearances in line drawings of all 
configurations of trihedral vertices. They first note that there are 
only two types of edges: concave and convex. The two planes that 
form the edge divide space into four sections, with the edge 
appearing topologically different from each section. In the case of 
a concave edge, the edge will be obscured from three of the 
sections and will appear simply as a concave edge from the fourth, 
labeled "-" by Huffman. For a convex edge, the edge will be visible 
from three sections. From the front, it will appear as a convex edge, 
designated with a "+ ". From either side, it will appear as an 
occluding (obscuring) edge, with the nearer surface blocking the 
farther surface from view. Huffman labels occluding edges with an 
arrow along the edge such that the surface on the right of the arrow 
occludes the surface on the left. 

Trihedral vertices are formed by the intersection of three 
surfaces, which is also the intersection of three edges. There are 
two ways of enumerating all possible trihedral vertices. The first 
deals with the types of edges that meet at the vertex. Each of the 
three edges can be either convex or concave. This gives four 
different vertex types: all three edges convex, two convex and one 
concave, one convex and two concave, or all three concave. 

The second method deals with the space filled by an object, and 
gives more geometric intuition. The three planes that form a 
trihedral vertex divide space into octants. Some of the octants can 
be filled and the rest left empty. The combinations of filled and 
empty octants that give single, connected objects with three 
surfaces meeting at the center have one, three, five, or seven filled 
octants. These vertex types are usually named by Roman numerals 
according to the number of filled octants. Each corresponds to one 
of the types enumerated by their edges: type I is all three convex, 
type III is two convex and one concave, type V is one convex and 
two concave, and type VII is all three concave. 

Huffman and Clowes point out that each type of vertex can be 
viewed from each of the empty octants. The image of a vertex is 
called a junction. By viewing all vertex types from all empty octants 
they construct a "junction dictionary" showing all topologically 
different types of junctions that can occur in the trihedral world. 
Table 1 shows all junctions, each listed by type of vertex of which it 
is an image. 

2.2 Reasoning From Junction Type to Vertex Type 
Notice in table 1 that each junction type can result from only one 

kind of vertex. For instance, the arrow-shaped junction with one + 
and two > labels can only be the image of a convex-convex-convex 
(type I) vertex. So if the labels of all lines on a junction are known, it 



960 C. Thorpe and S. Shafer 

As the hidden edge swings around into arc ABD (or, in the mirror 
image, arc CBE), one of the hidden surfaces now becomes partly 
visible (figure 3). The newly visible surface 1 joins the "top" 
surface 2 along edge BC; that edge is then labeled with a plus 
rather than an arrow. The one remaining hidden surface meets 
surface 2 along edge AB and must extend back underneath it. Its 
intersection with surface 1 along (he hidden edge will then be 
concave These must also be formed by vertices with two convex 
and one concave edge. 

Table 1: Summary Of Junction Types 

is possible to tell what three dimensional configuration must be 
pictured. 

This can be explained by edge types Lines with + or arror 
labels must be inages of concave edges Lines with labels are 
images of concave edges. So every junction with three lines visible 
and labeled is easily traceable to the type of vertex that formed it. 
For instance, the Y junction labeled with two arrows and one minus 
must come from the type III configuration, since two of its edges are 
convex and one concave. 

This reasoning from appearance to vertex type takes more 
analysis for L junctions. The key is to find where the hidden third 
edge must be. This gives the location of the hidden surface or 
surfaces, and thus gives the edge types. 

The first case is when the edge is within the angle ABC (figure 1), 
and ABC is the only visible surface. Then AB and BC both appear 
as occluding edges, which means that they are both convex. The 
object must lie below the arc ABC, and the two hidden surfaces 
must meet in a convex edge. So this is the all-convex vertex, type I. 

The final case is two surlaces visible and the third edge hidden 
by surface 1 The hidden edge is formed by the third surface and 
surface 2 Since this edge is under surface 1. surface 1 must be in 
front of surface 2 at that point This means that the intersection of 
surfaces 1 and 2 must be concave, since surface 1 sticks out over 
surface 2. The other edge of surface 1 must then be occluding. 
Then the hidden surface must run from the occluding edge to the 
hidden edge, and must form a concave edge with surface 2. This is 
the one convex two concave case. The two symmetric cases of this 
are shown in figure 4. 

If the hidden edge is within the arc DBE, the opposite situation 
exists. The one visible surface is the area outside of arc ABC 
(figure 2). Edges AB and BC are still occluding, and hence convex, 
but the direction of their labeling arrows is reversed. The object lies 
entirely under the visible surface, and the invisible surfaces must 
meet in a concave edge. This is the two convex and one concave 
vertex type. 

Note that there are a series of constraints that may be 
interchanged. It is not necessary to know line labels, surface 
visibilities, and hidden edge location in order to derive vertex type. 
For instance, in figure 1, it would be sufficient to know that there is 
a surface within arc ABC and none outside. In that case, all the rest 
of the information would be constrained. More information than 
just surface visibility would be needed to distinguish between cases 
like figures 3 and 4, but even there line label information could be 
traded for knowledge of hidden line position. This information 
could come from other sources, such as intensity or orientation. 
For instance, in urban scenes there is very often a vertical edge at 
each vertex. If the camera geometry is known, it is possible to 
predict the direction in the image of the vertical edge. If the vertical 
edge is the missing one in an L junction, it would be possible to 
determine the type of the vertex. 



C. Thorpe and S. Shafer 961 

2.3 Effect of Motion on Appearance of Trihedral Vertices 
As the viewpoint moves relative to the vertex, the appearance of 

the vertex may change. Ac long as the viewpoint stays in one 
octant, the image of that vertex remains the same type of junction. 
But when the viewpoint crosses into another octant, the vertex will 
appear as a different junction type. There are two strong 
constraints on the change in junction type. The first Is conservation 
of vertex type. Since the underlying vertex type remains the same, 
the junctions must all be images of that type of vertex. So, for 
instance, a junction in row I of table 1 can become, due to viewpoint 
change, any other junction in row I, but cannot become a junction 
from rows III, V, or VII. The second constraint is that each octant is 
adjacent to three other octants. As the viewpoint changes, it can 
only go from an octant to one of the three adjacent octants. So the 
junction type can only change to the junction type derived from an 
adjacent octant. These two constraints give a transition graph, 
showing all possible junction type transitions, as in figure 5. The 
conservation of type constraint splits the graph into four disjoint 
parts, one for each type of vertex. Each part of the graph has eight 
nodes, one for each octant, with 1, 3, 5, or 7 of the nodes marked 
"invisible" because they correspond to viewing positions behind 
the object. 

Another constraint comes from the direction of the change. 
Changing octants means crossing one of the three planes that meet 
at the vertex. If the motion of the camera is known to be parallel to 
one of the planes, or is known not to be large enough to cross a 
plane, the possible junction type transitions are constrained. For 
instance, in interpretation of aerial photgraphs of urban scenes it is 
often easy to tell whether the camera has crossed the plane of a 
wall Furthermore, the motion of the camera will be nearly parallel 
to the plane of flat roots. These constraints can greatly reduce the 
possible appearance of vertices. 

3 . C o r r e s p o n d e n c e 
In this part of the paper, we show how to find correspondences 

consistent with the topological and line label constraints. Studying 
topological constraints in isolation will make it easier to incorporate 
them into a full system which makes use of quantitative as well as 
topological information. 

Finding matching points is an essential step in tracking object 
motion and in calculating depth from stereo images. We discuss 
tracking the vertices of trihedral blocks from one line drawing to 
another. The two views can come from either stereo or from object 
motion. We make no assumptions about camera geometry (such as 
known epipolar lines), fixed relations among objects, or magnitude 
of the change between images. We assume that some other 
process has done Huffman-Clowes labeling on each image. This 
carries with it implicit assumptions of completeness of the scene 
and of a "general viewpoint", that is, no coincidental alignments in 
the image. 

3.1 Constraints 
The object of correspondence is find a match in the second 

image for each point in the first image. There are three constraints 
that a complete, consistent set of matches has to satisfy: 
conservation of vertices, conservation of type, and conservation of 
adjacencies. 

Conservation of vertices means that since the same objects are 
in each image, the same vertices must also be present. They may 

not be visible in each image, however. Under perspective 
projection, it would even be possible to have all vertices that are 
visible in one image invisible in the other. 

Conservation of type means that a vertex must always keep the 
same shape. Although its appearance may change, that change is 
constrained (see section 2.3). Since we assume that all lines are 
labeled, every junction's type is known. A junction in one image 
can therefore only match a junction in the recond image that is the 
image of the same type of vertex. 



962 C. Thorpe and S. Shafer 

Conservation of adjacency is really conservation of edges. If two 
junctions in one image are directly connected by an edge, the 
junctions they match in the second image must have a line 
connecting them or the possibility of an invisible edge between 
them. 

These constraints allow some types of noise in the scene. 
Missing lines can be handled by the "invisible edge" criterion. 
Extra lines cannot be handled Changing angles can be tolerated, 
since quantitative geometry is not important, but they must not 
change from concave to convex or vice versa, since vertex types, 
and thus edge types, must remain fixed. Changing line length is 
permitted, which may be especially useful in real scenes. But 
polygonal approximations to curved surfaces will probably not 
work, since it is difficult to guarantee the same number of vertices 
in two different polygon fits. 

3.2 Matching Algorithms 

3.2.1 Correspondence Graph 
Our matching algorithms are based on a central data structure, 

the correspondence graph. Each node in the correspondence 
graph is composed of a junction from one image and a junction 
from the second image, where the two junctions may be images of 
the same actual vertex. Node formation uses the "conservation of 
type" constraint In figure 7, junctions B and T are both images of a 
type I vertex, so BT would be a node. Junction U is an image of a 
type III vertex Since B and U come from different types of vertices, 
they cannot match, so BU would not be a node. 

Invisible vertices must also be allowed for in the graph. Unless 
we know otherwise from outside sources of information, we must 
assume that there can be any number of invisible vertices and that 
they can be of any type. We create the special junction (invisible) 
that can match any or all of the junctions. Figure 8 shows all the 
nodes formed from the L blocks in figure 7. 

Links in the graph connect nodes that are "consistent". 
Consistent means that both nodes could be part of the same overall 
match. Inconsistent means that if one node is correct, the other is 
incorrect. Consistency is defined using the "conservation of 
adjacency" constraint and its logical implications. We define the 
distance between two vertices to be the least number of edges that 
must be traversed to get from one vertex to the other. If all vertices 
and all edges were visible in an image as junctions and lines, it 
would be straightforward to determine the distance between two 
junctions. Then, given two nodes XX' and YY.' they would be 

consistent only if the distance from X to Y in one image was exactly 
the same as the distance from X' to Y" in the other image. For 
instance, node AL is consistent with node IR since the distance 
from A to I (two edges) is the same as the distance from L to R. The 
difficulty with this is that all vertices might not be visible, so it might 
not be possible to toil what the shortest distance is between two 
junctions. The way we handle this is to calculate the upper and 
lower hounds of the distance. The upper bound is the shortest 
distance using only visible lines. The lower bound uses invisible 
lines wherever they could possibly run Then the criterion for 
compatibility is that the range of distances must overlap. That is, 
the lower bound of the distance from X to Y must not exceed the 
upper bound of the distance from X' to Y' and vice versa. 

In figure 7, the upper bound on the distance from A to E is 4. In 
order to calculate the lower bound, we have to decide if there could 
be an edge directly connecting A and E. This takes some reasoning 
about the planes that form the surfaces of an object. If the lines are 
labeled, it is easy to tell which lines and points lie in the same plane. 
A line labeled + or lies in the planes visible on either side of it. An 
occluding line lies in the hidden plane and the occluding plane but 
not the occluded plane. Then in the example, lines FK and KJ lie in 
the same plane. So do lines Jl, IH, and HG. So points F, G, H, I, J, 
and K all lie in a plane, called plane 1. Sim.larly, if there is an edge 
from E to A. then A. E. F, G. and H all lie in a plane, plane 2. Since 
F, G. and H all lie in both plane 1 and plane 2 the planes must be 
identical. ADIH is also a plane, and since A. I, and H are in plane 1, 
B must also be. So must C and D. But then the whole figure lies in 
plane 1, and is not a trihedral figure at all. This argument can be 
formalized and extended to show that in a line drawing of a trihedral 
object there can never be just one junction with only two lines 
accounted for. If there were a line from A to E, G would be the only 
vertex with two known edges. Since this is impossible, we infer that 
there must be at least one hidden vertex, and no direct connection 
from A to E. So the lower bound on the distance from A to E is two. 

The lower bound on the distance from (invisible) to a junction is 
the distance from that junction to the nearest junction with less than 
three lines, plus one. The upper bound is infinite, since the 
connections between invisible junctions are unknown. Figure 
9 shows all the links for node AL. 

3.2.2 Searching the Correspondence Graph 
A complete match consists of a subgraph of the correspondence 

graph such that the nodes contain every junction in each scene and 
are all linked to each other. A completely connected subgraph is 
called a clique. Finding cliques of a given size is NP-complete, 
which suggests that the best algorithms will be exponential. The 
algorithm we use for search makes no claims to optimality. 



C. Thorpe and S. Shafer 963 

Wo define two sets of nodes, the set I of instantiated nodes (the 
clique) and the set P of possible nodes (to extend I). Initially I is 
empty and P is the correspondence graph. At each stop some node 
n from P is considered for being moved to I. There are two cases: 
either n is included in I or it is excluded. If it is excluded, it is 
removed from P. The new I is the old I and the new P is the old P 
minus n. If it is included, the now I is the old I plus n. To generate 
the new P, we take the old P minus n intersected with the links of 
p. This guarantees that all members of P are always linked to all 
members of I, and all members of I are linked to each other. Each 
case (n included and excluded) is generated and passed 
recursively to the search procedure. If at any point the union of I 

and P does not contain nodes that contain each junction, the 
conservation of vertices constraint is violated and that branch of 
the search terminates. Figure 10 summarizes the algorithm, and 
figure 11 traces its execution for a few steps, following the 
"inclusion" branches. 

3.2.3 Invisible Vertices 
In either of these cases invisible vertices must be handled as a 

special case. Normally, a vertex is allowed to have only one match. 
For the special symbol (invisible), however, more than one match 
must be allowed because there may be more than one invisible 
vertex. On the other hand, a visible vertex only has a limited 
number of invisible neighbors. There is a special check that, if X 
matches X' and X has some number i of invisible neighbors, only i of 
the neighbors of X' may match (invisible). Without this check we 
would generate matches such as A matches L and everything else 
matches (invisible). Yet we know that, given A matching L, one of 
L's neighbors must match Br one must match H, and only one of L's 
neighbors can match (invisible). 

3.3 Comments and Extensions 
There may be more than one possible complete, consistent 

match for a pair of objects One cube, for example, can match 
another in 24 legitimate ways One vertex can match any of eight 
others. Having fixed that. the cube can be rotated to 3 different 
positions. These matches are all topologicaly valid. 



964 C. Thorpe and S. Shafer 

The algorithm will also produce 24 incorrect matches for the 
cube, each the mirror image of a correct match. Since the only 
information used is connectivity, and not sidedness, any object with 
a plane of topological symmetry will have spurious mirror image 
matches. These could be removed by using quantitative 
information. We currently use an interactive program. 

The constraints used make no assumptions about all parts of an 
object being visible. So without modification the routines can be 
used to match part of an object with an object template or with 
another partial view of the object. There are two caveats. First, 
incomplete images are usually harder to label with Huffman Clowes 
line labels. This may cause ambiguities in the matching (see 
below). Second, incomplete images have more invisible vertices 
and more invisible edges. This allows lots of matches where only a 
few vertices are matched and all the rest match (invisible). These 
are all legitimate possibilities, and examples can Deconstructed in 
which they are the only correct matches. Put if it is known in 
advance that most of the vertices in the incomplete image are 
visible in the other image, either the search can return matches with 
the fewest "invisibles" matches or an upper bound can be set on 
the number of invisibles. 

It is not always possible to assign unique Huffman'Clowes labels 
to an image. If more than one possible labeling exists, the 
correspondence process can be run separately with each possible 
labeling. Then incorrect labelings may have no possible match, or 
only the match all(invisible). So correspondence can be used to 
refire line labels if multiple views arc available. 

Trihedrality is at the basis of the assumptions about invisible 
lines. Extending the algorithm to deal with non-trihedral objects 
would be possible, but the number of complete, correct matches 
possible for a pair of images would increase unmanageably unless 
other constraints were added. Additional information could 
include, for example, knowing which vertices were non-trihedral, or 
knowing how many non-trihedral vertices there were. 

If quantitative data is available, it can be used in several ways. 
Conceptually, the matching process could be run just using 
topological data, and the quantitative information used in a post
processing step to find the most likely match or matches. It would 
be equivalent, but probably more efficient, to include all the data 
from the beginning. One scenario is that vertex positions are 
known to within some distance, or to within so many pixels of an 
epipolar line. Then the possible matches are constrained, and 
many fev/er nodes would have to be created and searched. If 
positions are known precisely, they can be used to check the 
validity of the match. Ullman [7], Aggarwal and his group [1,8], 
Ganapathy [4], and Lawton 16], have all worked with various 
numbers of points visible in two or more images, and the available 
constraints. Asada, Yachida, and Tsuji present a partial transition 
table use it with quantitative data in [2]. 

3.4 Examples 
We have implemented and tested the correspondence algorithm. 

Here we show the results for a few simple figures. In each case, the 
images were labeled (with Huffman-Clowes line labels) by hand. 
Each of these simple images has a plane of symmetry, so the 
mirror-image program was run to remove reflections from the 
output. All the resulting matches are topologically correct. 

For the L blocks of figure 7, the program found five possible 
matches (see table 2). The first match is the obvious one, which 
can be visualized as rotating the block approximately thirty degrees 
about a vertical axis. The second match is the same as the first, 

except that it presumes that there are additional invisible vertices 
seen in neither view. The third match can be thought of as tipping 
the block onto its back, so that the horizontal rjart of the L becomes 
the vertical part and vice versa, then rotating it some 60 degrees. 
The last two matches have no vertices visible in both images. The 
difference between these two is that the last one allows for vertices 
that are not visible in either image. 

Figure 12 shows the same L-shaped blocks as figure 7, but with 
only part of the left-hand block visible. The additional constraint 
was given that there was a total of 6 invisible vertices. This 
eliminated matches in which one or two vertices from the partial 
block matched visible junctions in the right hand image and all 
other vertices matched (invisible). The first two matches 
correspond to match 1 in table 2, and the second two to match 3. 
The difference between matches 1 and 2 is in the match for 
H Without quantitative information, it is impossible to tell whether H 
matches S (as in match 2) or T (as in match 1). The same holds for 
matches 3 and 4. 

Figure 13 shows a block with a corner cut out. It was matched 
against itself, with the extra constraint given to the program that 
there were no invisible type VII vertices. This is a strong constraint, 
since it forces M to match itself. The results are shown in table 4. 

Finally, in figure 14 each image contains two objects, the L block 
and the block with the corner cut out. The program was told that 
there were no more than seven invisible vertices. It generated 18 
matches: the three for the cutout block, times three for the L blocks 
(the last two L-block matches were eliminated because of the limit 
on invisible vertices), times a factor of two for different 
interpretations of the hidden part of the cutout block in the left 
image. There were three incorrect mirror images for each correct 
match, since the L block and the cutout block each have their own 
plane of symmetry. 



C. Thorpe and S. Shafer 965 

1.L(inv) M(inv) N(inv) OF PK OJ Rl S(inv) TH UC VD 
(inv)(inv) 

2. L(inv) M(inv) N(inv) OF PK OJ Rl SH T(inv) UC VD 
(inv)(inv) 

3 LF M(inv) N(inv) O(inv) PH QC RD S(inv) TK UJ VI 
(inv)(inv) 

4. LF M(inv) NH O(inv) P(inv) OC RD S(inv) TK UJ VI 
(inv)(inv) 

Table 3: Matches for Figure 12 

Figu re 1 3: Block With One Corner Cut Out 

1Aa Bb Cc Dd Ee Ff Gg Hh li Jj Kk LI Mm 
(invisible)(invisible) 

2. Ac Bd Ce Df Ea Fb Gi Hj Ik Jl Kg Lh Mm 
(invisible)(invisible) 

3. Ae Bf Ca Cb Ec Fd Gk HI Ig Jh Ki Lj Mm 
(invisible)(invisible) 

Table 4: Matches for Figure 13 

R e f e r e n c e s 

1. J. K. Aggarwal and W. N. Martin. Analyzing Dynamic Scenes 
Containing Multiple Moving Objects. In image Sequence Analysis, 
T. S. Huang, Ed.SpringerVerlag, 1981. 
2. M. Asada, M. Yachida, and S. Tsuji. Three Dimensional Motion 
Interpretation for the Sequence of Line Drawings. Fifth 
International Joint Conference on Pattern Recognition, IEEE, 1980. 
3. M. B. Clowes. "On Seeing Things." Artificial Intelligence 2 
(1971). 
4. Sundaram Ganapathy. Reconstruction of Scenes Containing 
Polyhedra From Stereo Pair of Views. Ph.D. Th., Stanford 
University, January 1976. 
5. D.A.Huffman. Impossible Objects as Nonsense Sentences. In 
Machine Intelligence 6, B. Meltzer and D. Michie, Ed..American 
Elsevier, 1971. 
6. Daryl T. Lawton. Constraint-Based Inference From Image 
Motion. Proceedings of the AAAI, AAAI, 1980. 
7. Shimon Ullman. The Interpretation of Visual Motion. The MIT 
Press, Cambridge. Massachusetts, and London, England, 1979. 
8. Jon A. Webb and J. K. Aggarwal. Structure from Motion of Rigid 
and Jointed Objects. Proceedings of the Seventh International 
Joint Conference on Artificial Intelligence, 1981. 

A c k n o w l e d g e m e n t s 
Many people, especially members of the CMU Image 

Understanding group, provided helpful comments and discussions. 
Thanks to Marty Herman, Rich Korf, Leslie Thorpe, and Jon Webb. 
Special thanks to Takeo Kanade, the IUS group leader, for 
encouragement and advice. 


