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ABSTRACT 

This paper is intended to give a glance at 
some issues involved in implementing an advanced 
proof component based on the connection method. The 
material presented comprises contributions to the 
following problem domains: (a) Dealing with formu
las In non-normal form, (b) The dynamic incor
poration of unif icat ion into a proof procedure, (c) 
Controlling the generation of copies of clauses. 

INTRODUCTION 

In [1] and [4] the theory and architecture of 
LOPS, a system for logical program synthesis, has 
been presented. I ts deductive component consists of 
a theorem prover based on the connection method 
(see [2] or [3 ] ) . The current work in the LOPS-
project focuses on the replacement of this prover 
by a considerably advanced version. 

There is theoretical [2] and experimental [10] 
evidence that the connection method has the poten
t i a l of outperforming any other deductive method 
(such as resolution) due to i t s lack of redundancy, 
i t s appl icabi l i ty to non-normal-form formulas and 
several other unique features. In part icular, the 
deep insight into the nature of proofs provided by 
this approach has opened the view of problems and 
their solutions which have not even been clearly 
ident i f ied in the context of previous methods. Most 
of the material presented here is of that nature. 
It is concerned with three major aspects of theorem 
proving, each presented in one of the following 
three sections. 

With the results reported in the f i r s t section 
we achieve a refinement of a l l our previous work 
concerning the ground-level which is well-balanced 
in view of the present implementation. Although 
(usual f i rs t -order) unif icat ion may be regarded as 
a solved problem, i t s dynamic incorporation into 
the process of proof deserves further considera
tions presented in section 2. Section 3 gives f i r s t 
results on a promising way of control l ing the 
generation of copies of clauses which has never 
been taken into account before. 

Each section highlights a whole paper (v iz . 
[ 8 ] , [6 ] , [7 ] ) . Thus the reader should be aware 
that this note cannot provide more than a few 
condensed excerpts from an extensive body of mate
r i a l . In part icular, the important issue of com

bining these facets to a well-balanced system can
not be explained here in further de ta i l . 

1. GROUND-LEVEL FEATURES 

While in [2] and [5] some techniques have been 
introduced to enhance the performance of the Con
nection Procedure for normal form matrices of pro-
positional logic, their adaptation to non-normal 
form w i l l be dealt with in the following para
graphs. A detailed discussion of these and further 
issues may be found in [8 ] . 
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a r i t e r a l , then p is complementary if (p\N(L )) u 

{L } is complementary, 
(c) If there are occurrences L and -L of l i t e r 

als then p is complementary if both (p\N(L )) U 
{L } and (p\N(-L )) U {-L } are complementary. 

1.3. Theorem: 
Given a part ial path p and a clause c selected for 
extension, then ( l ) - (3 ) hold: 

(1) The continuations of p through the occurrence 
L s o f a l i t e r a l in c need not be checked for com
plementarity if there is an occurrence Lr of the 
l i t e r a l L which appears both among the stored sub-
goals and in the clausal core of a path l i t e r a l . 
(2) If p does not contain an occurrence of the 

l i t e r a l L but c contains an occurrence -Lu and a 
r subgoal L exists which is in the clausal core of a 

path l i t e r a l , then only the continuations of p 
through -Lu must be checked for complementarity. 
(3) If c contains an occurrence K of a l i t e ra l 

and p contains an occurrence Ks of the same l i t e r a l 
then we can exclude c as a clause suitable for 
extension. 

Part (1) and (3) of the theorem are dynamic 
applications of factorizat ion, while (2) is a dy
namic application of a generalized form of 6.1.T in 
[2 ] , which expresses an idea due to Prawitz. 

An unreflected combination of part (1) of the 
theorem and ditchmarking [2] would result in an 
erroneous proof procedure, as pointed out in 15] as 
an open problem. This has now been solved by stor
ing the occurrence Lr together with a l l the infor
mation needed for a future checking for complemen
tar i ty of the paths containing L r . 

2. THE CONCEPT OF WEAK UNIFICATION 

In order to prove a formula F of f i rst-order 
logic using the connection or resolution method it 
i s , in general, necessary to consider, at least 
imp l ic i t l y , several copies (obtained by renamings 
of variables) of each clause. Such a formula F 
which we shal l , for simpl ic i ty, here assume to be 
in normal form is valid i f f there exists a set of 
copies of i ts clauses which can be made proposi-
t ional ly complementary by substitution of varia
bles. So if c and d are two different copies of 
clauses of F then we have to look for unif iable 
connections between l i te ra ls of c' and d ' , respec
t i ve ly , where c' and d' are obtained from c and d 
by applying the current substitution generated so 
far in the proof process. 

It is necessary for an ef f ic ient proof proce
dure to eliminate, before actually establishing the 

-proof, a l l searches for connections which can be 
recognized in advance as not unifiable by taking 
into account a single copy of each clause. This 
leads us to the concept of weak uni f icat ion. A 
similar but weaker concept has been introduced in 
[11] under the name of weak substitut ion. 

2.1 Def ini t ion: 
Two terms or l i te ra ls L and M are called weakly 
unif iable if there are substitutions $ and $ such 
that L$ M$ . 
A set {L,-M} of l i te ra ls occurring in two (not 

necessarily different) clauses of a formula F is 
called a weakly unifiable connection, for short a 
w-connection, if L and M are weakly unif iable. 

Obviously, L and M are weakly unifiable i f f 
two copies L~ and M~ of L and M, respectively, with 
disjoint sets of variables are unif iable. Hence any 
connection between l i te ra ls of clauses c' and d' as 
above must correspond to a w-connection of F. So we 
f i r s t determine, using a unif icat ion algorithm, the 
set of w-connections of F. In the main part of the 
proof procedure we then only need to consider con
nections corresponding to w-connections. 

There is another advantage of weak unif ica
t ion . If we check two l i te ra ls L and M for weak 
un i f i ab i l i t y then the unif ication algorithm gives 
us a most general unif ier uof L~ and M~ as above. 
Let $be the current substitut ion. In order to 
establish a new connection between L and M we have 
to f ind out whether L~$ and M~$ are unif iable. 
Let $ denote the most general unif ier of these two 
l i t e r a l s . Then, after the proof procedure has taken 
into account the connection {L~,M~}, $ t s the 
new current substitution. Now the point is that $ 
can be obtained as a supremum of $and u i n a 
la t t ice of equivalence classes of substitutions by 
the following theorem the non-tr iv ia l proof of 
which is given in [6 ] . There are simi lar i t ies with 
the la t t ice of equivalence classes of terms in t ro
duced in |9] although a direct relationship does 
not seem to exist. 

2.2 Theorem: 
For substitutions $and t l e t $< t i f f there is 
a substitution tsuch that $ r t We say that two 
idempotent substitutions $and tare equivalent to 
each other i f f $< t and t< $. 
Then the set of equivalence classes of idempotent 
substitutions together with an added greatest ele
ment is a complete la t t i ce . 

Determining the supremum of $and uin this 
la t t ice amounts to a unif ication of pairs of terms. 
It takes less time than a unif ication of {L$,M$}. 
Incidentally, if F is valid then i t s set of w-
connections is spanning ( in one copy of F), a fact 
which may be taken advantage of for the elimination 
of useless alternatives In the course of proof. 

Another property which can be checked by look
ing at just one copy of the matrix is whether a 
clause contains a pure l i t e r a l . The simplest case 
is that the clause contains a l i t e r a l which does 
not have a w-connection with any l i t e r a l of the 
matrix. Then we can delete the whole clause (with 
a l l i t s copies) from the matrix. But there are 
other cases in which we can also do th is . 

2.3 Defini t ion: 
Let c be a clause of F, c' an instance of c ( i . e . , 
c' is obtained from c by substituting consistently 
a l l variables of c by closed terms), and L a l i t e r 
al of c ' . Then we ca l l L a pure l i t e r a l of c' in F 
i f , for a l l l i te ra ls M of F and substitutions $ 
{L,M$ is not complementary. Note that L is not a 
l i t e r a l of F. If there is a pure l i t e r a l of c' in F 
then we ca l l c' a pure instance of c in F. c is 
called a p-clause of F if every possible instance 
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3. ON THE NUMBER OF COPIES NEEDED OF A CLAUSE 

In certain special cases bounds can be given 
for the number of copies needed of a clause. Howev
er, this is not true in general since f i rst-order 
logic is undecidable. A few simple estimates are 
the following. 

If F contains no function symbols, k is the 
maximum of 1 and the number of constants occurring 
in F, c is a clause of F and n is the number of 
variables occurring in c then at most kn copies are 
needed of c. This fact is useful if the number n of 
variables occurring in c is small. However, already 
the case where F contains only the three terms x, y 
and fx (and no constants) is undecidable as can be 
seen by Skoleraization of the formulas of the unde
cidable (w. r . t . va l id i ty ) prefix class 

If F has only one clause with more than one 
l i t e r a l and there are no w-connections within this 
clause then only one copy of this clause is needed. 
This is not the case if there is a weak connection 
within the clause as can be seen from 

If a valid matrix F has two clauses with two 
l i te ra ls in each clause then it has the form 

As an example we give the matrix 

For i t s connection proof, shown on the r ight , we 
need two copies of each clause. The dotted l ine 
indicates factorization and the horizontal l ine in 
the fourth clause indicates sp l i t t ing of this 
clause. This example i l lust rates the importance of 
factorization and sp l i t t i ng . Without these features 
we would have to consider four copies of the f i r s t 
clause and three of the second. 

Since a l l these properties apply to very spe
c ia l cases of formulas only, and thus w i l l not be 
applicable direct ly to the input formula in prac
t i ce , their relevance l ies in a dynamic application 
in the course of the proof process. Namely there 
w i l l arise subproblems which may well belong to one 
of these simple cases. 
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