A BREADTH-FIRST PARSING MODEL

John Bear

Linguistics Research Center
University of Texas
Austin, Texas 78712 U.S.A.

ABSTRACT

Recent attempts at modeling humans' abilities
at processing natural language have centered
around depth first parsing algorithms, and control
strategies for making the best choices for
disambiguation and attachment. This paper
proposes a breadth-first algorithm as a model.
The algorithm avoids some of the common pitfalls
of depth-first approaches regarding ambiguity, and
by using more pre-ccmputed information about the
grammar, avoids same of the usual problems of
parallel parsing algorithms as well.

1. Parsing Models

In the study of computational models of human
language processing, cognitive scientists seem to
have given little attention to all-paths parsers,
focusing instead on depth-first algorithms. This
restriction is imposed so that the models will be
consistent with the fact that people do not
generally perceive ambiguities. In addition, it
is an attempt to stay in line with the hypothesis
that people parse sentences in linear time. The
idea is that the fewer alternatives considered,
the faster the parse time should be. The fastest
way, of course, would be a depth first parse which
made the right choice at every step of the way,
hence the interest in deterministic parsers. The
attempt to find principles which would guide a
parser correctly through a depth-first search, led
(Kimball, 1973) to formulate the principles of
Right Association and Closure. (Frazier and
Fodor, 1978) propose their own principles: Minimal
Attachment and Local Association. In addition
(Church, 1980) proposes the A-over-A Early Closure
Principle, and (Ford, Bresnan, and Kaplan, 1981)
propose the principles of Lexical Preference and
Final Arguments. All of these principles try to
account for how a top-down depth-first parser
could get the preferred readings of sentences.
However, the point | would like to make here is
that for each choice point in an ambiguous
example, there is a second alternative which the
parser needs to be able to get at least some of
the time. As (Crain and Steedman, 1981) point
out, the fact that people generally only perceive
one reading of a sentence is perfectly consistent

with a parsing model which finds all the possible
syntactic ramifications from looking at a word,
does some contextual filtering to decide which
alternative(s) to keep, and then looks at a new
word and repeats. Given this, it is not obvious
that the breadth-first approach is inferior.

2. A Breadth First Parser

Since (Earley's, 1970) and (Pratt's, 1975)
demonstrations of a parser can work both
bottom-up, and top-down, there have been several
proposals for how this information might be used
to good effect in a psychological model.
(Chester, 1980) proposes a depth-first left-corner
parser which uses top-down information. (Martin,
Church, and Patil, 1981) propose an all paths
parser very similar to the one presented here.
Both of the parsers just mentioned fit roughly
into the framework presented in (Kay, 1980) , which
allows for intelligent left-corner parsers which
can be bottom-up or top-down, or anything in
between. The basic idea behind these parsers is
that they always have access to two kinds of
information: what categories may come next (top-
down), and what word actually is next (bottom-up).
The modification suggested here is the
incorporation of two look-ahead buffers, and the
abolishment of all inactive edges.

2.1. Reachability

We start with a discussion of what (Pratt,
1975) calls "precedence", and (Kay 1980) calls
"reachability". A category A is reachable from a
category R iff there is a derivation tree of R
which has A on its left branch. In addition, a
left corner of a rule [X —> Y4, Y, Y.] is the
first element on the right side of the arrow, Y.
In the example below, A, B, and C are all
reachable from R.

y g

2.2. Basic Algorithm

The parser uses a chart as in (Kay, 1980) .
The junctures between the words are called
vertices and are labelled with numbers.

The parser stores information on the vertices
in the form of edges. These edges represent
partially completed constituents. In Kay's terms,
they would be "active". Each edge contains a
category, a completion, and a start vertex. The
category tells what the constituent will build up
to when the rest of the daughters have been found.
The completion, to use a term from (Winograd,
1983), indicates which of the daughters still need
to be found. The start vertex shows the left end
of the partial constituent. For instance consider
the example below.

2‘
51 vep

@ like swallows that fly

Vo Vi V2 V3 v

Given that "ducks" can build to an NP, and
that there is a rule [S —> NP VP] in the grammar,
the example shows that an edge may be stored at VI
going back to VO, and representing an S missing a
VP.

The algorithm uses three main functions,
Parse, Extend-Edges, and New-Constit. The
function Parse looks at the words in the input
string one word at a time, considering all the
ramifications from one word before going on to the
next. It keeps track of where it is with the
Current Vertex, the vertex immediately to the
right of the newest word looked at. The Previous
Vertex is the vertex immediately before it. For
each word, Parse calls New-Constit.

Informally, for words and for each new
constituent built, the procedure New-Constit does
three things. 1) It builds edges which are
incomplete but which have just found their first
daughter. 2) It tries to add the new-constituent
as a daughter to other incomplete constituents to
its left via the function Ext end-Edges. And 3)
for unit productions which can build up the
constituent, the procedure New-Constit calls
itself recursively.

The function Extend-Edges combines an

incomplete constituent with a completed
constituent to its right. If the result is a
completed constituent, it calls New-Constit. If
the new constituent still lacks one or more

daughters, a new edge is created and stored at the
vertex just beyond the word the parser has most
recently scanned. An edge is always stored at the
vertex representing its right end. At the time it
is stored this is always the Current Vertex.
Newly completed constituents always end at that
Vertex too.

When a new constituent is built that spans the

J. Bear 697

whole string, it is put into a list of
interpretations, not on the chart. Only
incomplete constituents are stored on the chart.

2.3. Top-down Filtering

To incorporate top-down information, the
vertices also need to keep track of which symbols
could come next, based on the edges stored at a
given vertex, and the precomputed information
about reachability. Given a constituent going
from V; to V;, and a list of edges stored at V;,
we can restrict the construction of constituents
and edges even further. Now an edge is only
proposed for a rule, if the root of the rule is
reachable from a category which is first on the
completion of one of the edges at V;. Similarly,
a constituent starting at V; is only built by some
unit production if the root of the rule is
reachable from a category which is first on the
completion of one of the edges at V.

3.
NP I N
® men love their wives,
Vo Vi 2 V3 va
At least some of the time, [men] can build to
an NP. However in the example in (3), a

constituent starting from VI nay only be built if
it will build to an N, or to something which is
reachable from N. Since an NP is presumably not
reachable from N, the NP [men] does not get built.

So far, the procedure outlined fits within the
schemata that (Kay, 1980) describes. The next
modification goes a little further. In addition
to the machinery already described, two one-word
look-ahead buffers are added. Now the word to the
right of the Current Vertex is in the W-buffer
(Word-buffer). The other buffer, the M-buffer
(Meaning-buffer) is initially empty for each word,
and is a receptacle for information about a word's
syntactic category or categories.

Now before the parser decides that it can
build a new edge or extend an old one, it checks
the completion against the word in the W-buffer.
If the word is not reachable from what would be
the first element of the new completion, the edge
does not get constructed. If the word in the
buffer is syntactically ambiguous, i.e. has more
than one possible syntactic category, then the
category which allows the edge to be constructed
is saved in the M-buffer. So by the time the

parser is ready to advance, it has already
narrowed down the lexical ambiguity somewhat. If
there is still more than one possible category for

the word by the time the parser gets to it, the
new word in the look-ahead buffer could
conceivably filter out all the edges which would
be proposed for one or more of the undesirable
readings. If such is not the case, then the
parser must resort to some sort of contextual
filtering as alluded to above.

698 J. Bear

The fact that the parser is breadth-first
allows the parser to dispense with inactive edges.
This turns out to have an interesting effect.
Although the parser may build constituents that it
cannot use in the final parse tree, it does not

keep them around. For instance in the sentence,
"Bill likes the woman who jogs," the parser will
build up the VP [likes the woman] and then combine
it with [Bill] to form a sentence. If there are

no rules in the grammar of the form, [X —> S Y],
though, nothing more happens to the S. It simply
never gets saved.

3. Conclusion

The fact that regular languages may be parsed
in linear time is due to the fact that for every
nondeterministic finite state machine, there is an
equivalent deterministic one. Or put in terms of
grammars, for every regular language there is an
unambiguous linear grammar that generates it. The
problem with natural language, though, is that it
has ambiguities. One may point out the need, in
any model, to resort to contextual information to
choose between different alternatives when
ambiguity is encountered. To do this however,
requires that the different choices exist in the
model, i.e., in terms of finite state machines it
requires that the states of the machine have not
been expanded to get rid of the nondeterminism.
In terms of grammars again, even though there
exists a linear grammar for any regular language,
it is certainly not true that all grammars of
regular languages are linear. Hence, the claim
that natural language is regular cannot really be
said to account for the fact that people seem to
be able to parse natural languages in linear time.
One needs to make the stronger claim that linear
grammars can adequatly describe natural language.
This precludes the existence of any ambiguity at
all, and seems to be excessive considering the
facts.

As an alternative to the deterministic parsers
that have been proposed, we have suggested a
breadth-first parser for context-free languages.
It only pursues alternatives which are consistent
with information about what has come before, and
with what the next word is. If the grammar taken
as a whole specifies that there is only one
alternative at some point, even though locally
there might be more than one, then the parser only
pursues that one alternative. If there is global
ambiguity, the parser allows for it. To account
for the observation that ambiguity is usually not
perceived, the parser only needs to have access to
the same sort of contextual information that
depth-first parsers need.

4. REFERENCES

[1] Kimball, John (1973) Seven Principles of Sur-
face Structure Parsing in Natural Language.
Cognition, Vol 2, pp. 15-47.

[2] Frazier, Lyn and Janet Fodor (1979) The Sau-
sage Machine: A New Two-Stage Parsing Model.
Cognition 6, pp.291-325.

[3] Church, Kenneth (1980) On Memory Limitations
in Natural Language Processing. MIT Laboratory
for Computer Science: Cambridge, Mass.

[4] Ford, Marilyn, Joan Bresnan, and Ronald Kaplan
(1981) A Competence-Based Theory of Syntactic
Closure. Paper presented at the Symposium on
Modelling Human Parsing Strategies. Center for

Cognitive Science, University of Texas,
Austin.
[5] Crain, Steven and Mark Steedman (1981) The

Use of Context by the Psychological Parser.
Paper presented at the Symposium on Model-
ling Human Parsing Strategies. Center for
Cognitive Science, University of Texas,
Austin.

[6] Earley, Jay (1970) An Efficient Context-Free
Parsing Algorithm. Communications of the ACM,
Vol 13, No 2.

[7] Pratt, Vaughn (1975) Lingol-A progress report.
UCAI 4.

[8] Chester, Daniel (1980) A Parsing Algorithm
that Extends Phrases. American Journal of Com-
putational Linguistics, Vol 6, No 2.

[9] Martin, W.A., Church, K., and Ramesh Patil
(1981) Preliminary Analysis of a Breadth-First
Parsing Algorithm: Theoretical and Experimen-
tal Results. Paper presented at the Symposium
on Modelling Human Parsing Strategies. Center
for Cognitive Science, University of Texas,
Austin.

[10] Kay, Martin (1980) Algorithm Schemata and

Data Structures in Syntactic Processing. To

appear in The Proceedings of the Nobel Sympo-

sium on Text Processing, Gothenburg, sweden.

[11] Winograd, Terry (1983) Language as a Cogni-
tive Process, Vol 1. Addison-Wesley: Reading,
Mass.

