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ABSTRACT 

Although Prolog undoubtedly has i t s good 
p o i n t s , there are some tasks (such as w r i t i ng a 
screen ed i to r or network in ter face c o n t r o l l e r ) for 
which it is not the language of choice. The most 
natura l computational concepts [ 2 ] for these tasks 
are hard to reconci le with Prolog's dec lara t ive 
nature. Just as there is a need for even the most 
committed Prolog programmer to use "convent ional " 
languages for some tasks , so too is there a need 
for " l o g i c " or iented components in conventional 
app l ica t ions programs, such as CAD systems [73 and 
r e l a t i o n a l databases [ 5 ] . At Sussex, the problems 
of i n teg ra t i ng logic with procedural programming 
are being addressed by two p ro jec t s . One of these 
[43 involves a d i s t r i b u t e d r ing of processors 
communicating by message passing. The other 
pro ject is the POPLOG system, a mixed language AI 
programming environment which runs on conventional 
hardware. This paper describes the way in which we 
have in tegrated Prolog in to POPLOG. 

I THE POPLOG ENVIRONMENT 

The POPLOG system is an AI programming 
environment developed at Sussex Univers i ty [3D. It 
supports Pro log , POP-11, a d ia lec t of POP-2 [13 , 
and a basic LISP. POPLOG cur ren t l y runs on the 
DEC VAX ser ies of computers under the VMS 
operat ing system, but other implementations are in 
progress. 

In POPLOG, the l i nk between the programming 
languages and the underly ing machine is the POPLOG 
v i r t u a l machine. The compilers produce POPLOG 
v i r t u a l machine i n s t r u c t i o n s , which are then 
fu r the r t rans la ted in to the machine code for the 
host machine. At the level of host machine code, 
i t is possible to l ink in programs wr i t t en in 
languages such as FORTRAN. Procedures for 
" p l a n t i n g " i ns t ruc t i ons for the v i r t u a l machine 
are f u l l y accessible to the user. Thus the Prolog 
compiler is j us t one of the many possible POPLOG 
programs that create new pieces of machine code. 
In p a r t i c u l a r , i t is easy to create procedure 
c losures. For the purposes of t h i s paper, a 
closure is a s t ruc ture which contains a pointer to 
a procedure plus a set of arguments for that 
procedure. The closure can then be appl ied as if 
it were a normal procedure with no arguments. Some 
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"syn tac t i c sugar" has been provided in POP-11 to 
make it easy to create c losures; an expression 
such as: 

doub led 3 %) 

evaluates to a closure which when la te r invoked 
c a l l s the procedure DOUBLE with argument 3. 

II BACKTRACKING AND CONTINUATION PASSING 

In t h i s sec t i on , we i l l u s t r a t e , using 
examples w r i t t en in POP-11, how backtracking 
programs are implemented in POPLOG using a 
technique ca l led cont inuat ion passing. Although 
examples are shown in POP-11 for c l a r i t y , in 
p rac t i ce Prolog programs are compiled d i r e c t l y to 
POPLOG v i r t u a l machine code. 

Continuat ion passing is a technique in which 
procedures are given an add i t i ona l argument, 
ca l led a con t inua t ion . This cont inuat ion (which is 
a procedure closure) describes whatever 
computation remains to be performed once the 
ca l led procedure has f in i shed i t s computation. In 
conventional programming, the cont inuat ion is 
represented i m p l i c i t l y by the " re tu rn address" and 
code in the c a l l i n g procedure. Suppose, for 
example that we have a procedure, ca l led PROG, 
that has jus t two steps: c a l l i n g the subprocedure 
F00 and then the subprocedure BAZ, thus : 

This d e f i n i t i o n presupposes that F00 and BAZ 
do not themselves take cont inuat ions . If they do, 
then we must arrange for BAZ to be passed 
CONTINUATION and for F00 to be passed an 
appropr iate closure of BAZ, thus: 
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def ine p rog(con t inua t ion ) ; 
foo(baz(%continuationX)> 

enddef ine; 

Thus F00 gets as argument a c losure . This 
c losure , when app l i ed , w i l l cause BAZ to be 
invoked with CONTINUATION as i t s argument. 

Continuations have proved of great 
s ign i f i cance in studies on the semantics of 
programming languages C63. This apparently round 
about way of programming also has an enormous 
p r a c t i c a l advantage - since procedures have 
e x p l i c i t cont inuat ions there is no need for them 
to " r e t u r n " to t h e i r invoker. Convent ional ly , 
sub-procedures re turn ing to t h e i r invokers means 
"I have f i n i shed - continue wi th the computat ion", 
w i t h e x p l i c i t cont inuat ions we can assign a 
d i f f e r e n t meaning to a sub-procedure return ing to 
i t s invoker , "Sorry - I wasn't able to do what you 
wanted me to do" . 

This can be i l l u s t r a t e d if we def ine a new 
procedure NEWPROG, whose d e f i n i t i o n is t r y doing 
F00 and if that doesn't work then t r y doing BAZ, 
thus : 

def ine newprog(cont inuat ion); 
foo(cont i nua t i on ) ; 
baz (con t inua t ion ) ; 

enddef ine; 

If we now invoke NEWPROG (wi th a 
cont inuat ion) then i t f i r s t ca l l s F00 (g iv ing i t 
the same cont inuat ion as i t s e l f ) . If F00 is 
succesful then i t w i l l invoke the con t inua t ion . I f 
not then the c a l l of F00 w i l l re turn to NEWPROG 
which then t r i e s BAZ. If BAZ too f a i l s (by 
re turn ing) then NEWPROG i t s e l f f a i l s by return ing 
to i t s invoker . 

def ine j ogs (x , con t inua t ion ) ; 
u n i f y ( x , " c h r i s " , c o n t i n u a t i o n ) ; 
u n i f y ( x , " j o n " , c o n t i n u a t i o n ) 

enddef ine; 

UNIFY is a procedure that takes two data 
s t ruc tures and a con t inua t ion . It attempts to 
un i fy ( that i s , "make equal") the two s t ruc tu res . 
I f i t is unsuccessful , UNIFY immediately returns 
to i t s invoker . I f , however, i t i s successfu l , 
then it appl ies the cont inuat ion and when that 
r e tu rns , UNIFY undoes any changes it made to the 
two s t ruc tures and then i t s e l f returns to i t s 
invoker. 

Before we can present a d e f i n i t i o n of UNIFY, 
we must consider the representat ion of Prolog 
va r i ab les . In Pro log, var iables s ta r t o f f 
" un ins tan t i a ted " and can be given a value only 
once (without backt rack ing) ; moreover two 
"un ins tan t i a ted " var iab les when un i f i ed are said 
to "share" , so that as soon as one of them obtains 
a va lue , the other one automat ica l ly obtains the 
same va lue. 

In POPLOG, a Prolog var iab le is represented 
by a s ingle element data s t ructures ca l led a REF. 
REFs are created by the procedure CONSREF and 
t h e i r components are accessed by the procedure 
CONT. An un ins tan t ia ted Prolog var iab le is 
represented by a REF containing the unique word 
"undef" . If a var iab le is assigned some va lue, 
t h i s value is placed in to the CONT. If two 
var iab les come to "share" , we make one point to 
the o ther . To f i n d the " r e a l " value of a 
v a r i a b l e , espec ia l l y one that is shar ing , i t is 
necessary to "dereference" i t ( look for the 
contents of the " innermost" REF). 

Here now is a simple d e f i n i t i o n of UNIFY 
wr i t t en in POP-11: 

def ine u n i f y ( x , y , c o n t i n u a t i o n ) ; 
if x == y then 

cont inua t ionO 
e l s e i f i s r e f ( x ) and cont(x) = "undef" then 

y -> con t ( x ) ; 
c o n t i n u a t i o n O ; 
"undef" -> cont(x) 

e l s e i f i s r e f ( x ) and cont(x) /= "undef" then 
uni f y (cont (x) , y , cont i nuat i on) 

e l s e i f i s r e f ( y ) then 
un i f y ( y , x , con t i nua t i on ) 

e l s e i f i s p a i r ( x ) and i s p a i r ( y ) then 
u n i f y ( f r o n t ( x ) , f r o n t ( y ) , 

un i fy(Xback(x) ,back(y) ,cont inuat ion%)) 
end i f 

enddef ine; 

The procedure f i r s t sees if the two given 
data s t r u c t u r e s , X and Y, are i d e n t i c a l . I f so , i t 
immediately appl ies the CONTINUATION. If the 
s t ruc tures a ren ' t i den t i ca l then UNIFY looks to 
see whether X is a REF and if so whether it is 
un ins tan t ia ted ( i e . whether i t s CONT is the word 
"unde f " ) . If so , UNIFY sets i t s value to Y (by 
assigning to the CONT; assignment works from l e f t 
to r i gh t in POP-11), does the CONTINUATION and if 
t h i s returns ( i e f a i l s ) unbinds the REF by se t t i ng 
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t h e CONT back to " u n d e f " . The f i n a l case of UNIFY 
d e a l s w i t h t he p o s s i b i l i t y t h a t X and Y may be 
l i s t p a i r s . A comple te d e f i n i t i o n o f UNIFY must 
have a case here f o r each t ype of d a t a s t r u c t u r e 
r e c o g n i s e d as a P r o l o g complex t e r m . Note t h a t 
t h e r e is no ELSE p a r t to the IF s t a t e m e n t . The 
d e f a u l t a c t i o n i s s i m p l y t o r e t u r n ( i e i n d i c a t e 
f a i l u r e ) . 

As a more complex examp le , here is a 
t r a n s l a t i o n o f the P r o l o g MEMBER p r e d i c a t e i n t o 
POP-11. The P r o l o g d e f i n i t i o n i s : 

m e m b e r ( X , [ X | Y 3 ) . 
member (X , [Y |Z3) : - member (X ,Z ) . 

When t r a n s l a t e d i n t o POP-11, i t w i l l b e 
necessary t o make e x p l i c i t t he u n i f i c a t i o n s which 
a re i m p l i c i t l y done when a P r o l o g p r e d i c a t e is 
i n v o k e d . I t may t h e r e f o r e be e a s i e r t o u n d e r s t a n d 
the POP-11 t r a n s l a t i o n i f we r e w r i t e t he P r o l o g 
d e f i n i t i o n t o make the v a r i o u s u n i f i c a t i o n s 
e x p l i c i t : 

member(X,Y) :- Y = [X |M3 . 
member(X,Y) : - Y = [ L | M 3 , member(X,M). 

Th i s t r a n s l a t e s i n t o the f o l l o w i n g POP-11 
p r o c e d u r e : 

d e f i n e member(x, y , c o n t i n u a t i o n ) ; 
v a r s I ; c o n s r e f ( " u n d e f " ) - > I ; 
v a r s m; c o n s r e f ( " u n d e f " ) -> m; 
u n i f y ( y , c o n s p a i r ( x , m ) , c o n t i n u a t i o n ) ; 
u n i f y ( y , c o n s p a i r ( l , m ) , 

member(%x /m,cont i nuat i on%)) 
e n d d e f i n e ; 

The f i r s t two l i n e s o f t h i s d e f i n i t i o n c r e a t e 
new P r o l o g v a r i a b l e s (REFS w i t h c o n t e n t s " u n d e f " ) 
L and M. The nex t l i n e checks i f t he v a l u e of Y 
can be u n i f i e d w i t h a newly c r e a t e d p a i r whose 
FRONT is t he v a l u e of X and whose BACK is the new 
v a r i a b l e M ; i f s o , UNIFY w i l l p e r f o r m the 
c o n t i n u a t i o n . The l a s t l i n e o f t he d e f i n i t i o n 
t r i e s u n i f y i n g Y w i t h a p a i r whose components are 
t h e new v a r i a b l e s L and M; i f s u c c e s s f u l , UNIFY 
w i l l i n voke i t s c o n t i n u a t i o n w h i c h , i n t h i s c a s e , 
is a c l o s u r e of MEMBER i t s e l f . 

IV CONCLUSIONS 

(2) The cont inuat ion passing model provides a 
semantics for communication between these two 
Languages which allows for far more than 
simple "subrout ine c a l l i n g " . 

(3) The cont ro l f a c i l i t i e s ava i lab le w i t h i n POPLOG 
(not shown here) make it possible to implement 
a system which is f a i t h f u l to the t heo re t i ca l 
modeL, but which is nevertheless e f f i c i e n t . 
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We have p r e s e n t e d a s i m p l i f i e d v e r s i o n of how 
P r o l o g is imp lemented in t he POPLOG e n v i r o n m e n t . 
We b e l i e v e t h a t t h i s system p r o v i d e s a b a s i s f o r 
t r u e m i xed - l anguage A I programming because : 

(1 ) The POP-11 and P r o l o g c o m p i l e r s a re j u s t two 
o f p o t e n t i a l l y many p rocedu res which gene ra te 
code f o r t h e POPLOG v i r t u a l mach ine . Th i s 
means t h a t t h e two languages a re c o m p a t i b l e a t 
a low l e v e l , w i t h o u t t h e r e be ing t h e 
t r a d i t i o n a l asymmetry between a language and 
i t s i m p l e m e n t a t i o n . 


