ON THE DEFINITION OP SPECIALIZATION HIERARCHIES FOR PROCEDURES

Alexander Borgida

Department of Computer Science
University of Toronto
M5S 1A7, Canada

Toronto, Ont.

ABSTRACT

We highlight the growing body of systems in Al
and outside where [IS-A hierarchies of procedures
co-occur with more traditional onea of objects, and
we classify the various types of specialisations.
We then give formal definitions which approximate
their intended meanings and, finally, examine their
utility using as a criterion the way in which they
aid program verification.

| MOTIVATION

Inheritance (IS-A) hierarchies have been one of
the trademarks of Semantic Network knowledge
representations in Al. Although originally used
for describing objects only, there is growing
evidence both from within and outside Al that
hierarchies of events/procedures are also useful
[1,2,3,4,5,6]. It is therefore of some interest to
take a brief look at possible formal foundations to
the notion of specialization for procedures, and

compare them according to some uniform criterion.

We beging by reviewing briefly the intended use

of procedure specialization in some of the systems
which currently support this idea. In SIMULA [1],
SMALLTALK.76 [2] and PIE [3], the principal use of

IS-A is for sharing code through inheritance; the
goal is to save the programmer from the error-prone
process of copying the material several times. In

PSN [4], the |IS-A hierarchy of programs provides
the semantic basis for defining all other
hierarchies (e.g. PERSON IS-A ANIMAL only if,

among others, the To-add program of PERSON IS-A the
To-add program of ANIMAL). In TAXIS [5,9,10],
generalization/specialization s the principal
abstraction tool of a methodology for Information
System design and implementation. For example, as
part of a university records system, the designer
could introduce the many rules about what courses

students can or must take by describing first the
transaction for enroling any atudent in any course,
and then specializing it to, among others, a
transaction for enroling graduate atudenta into
undergraduate courses, one for enroling part-time
atudents, etc. In this caae apeclalization is used
as a discipline for introducing the detaila of a

system where consistency and completeneaa are at a
premium. Finally, Rich [6] and others use
hierarchiea to organize libraries of program plana
in order to facilitate locating them In program
synthesis/analysis tasks.

254

Il HEE& OF Ol&zll HIERARCHIES

In this section, we will consider in more
detail the varioua ways of defining the notion of
specialization for activities. Probably the
earlieat wuae of inheritance hierarchies occurs in
SIMULA-67 [1]. Here, one defines a class A by
giving Its parameters PA and matching
apeoiflcationa SA, declarationa DA, and a body of
operatlona IAinner;FA. One can then describe a

subclass B by giving only the additional parts PB,
SB, DB, IB and FB with the effect that claaa K with
parameters PA and PB, and body
IA:IB:inngr:FB:FA la created. We will call this
textual inheritance and observe that its function
is code sharing. This is a syntactic definition
slnoe the claas SIMULATION can be considered to be
IS-A the claaa LINKED-LIST, in contrast to the more
standard Al view that all objects in a subclass
must be viewable as objects of the superclass, at
least in some way.

SMALLTALK-76 [2], and its descendant PIE [31,
provide objects grouped into classes, where a claas

is defined by the messages it recognizes and the
methods (procedures) used to respond to each
message. A subclass can add traits of its own or

override those of its superclass by providing a new
method for handling a message. SMALLTALK has a
defau.lt version of inheritance: if a method for a
message to a claas is not explicitly specified, one
looks up the chain of superclasses for a method.
Thla provided a great deal more freedom than in
SIMULA, where one cannot modify the body of the
auperclaaa, and in fact leads towards the opposite
end of the spectrum where any two procedurea can be
IS-A related. One can imagine Intermediate
ayntactic versions of IS-A where, for example, one
la allowed to specialize an |F-atatement only by
replacing it with another I|F-atatement.

Some researchera (e.g., [4,5,6,10]) adopt a
stricter view of IS-A in which a subclass is a
subset of its superclass (albeit one about which
more la known); thua, if all EMPLOYEES must earn
more than $10,000 then JANITORa must do so also, if
JANITOR I1S-A EMPLOYEE. Such a stricter
interpretation for apeclalization is advocated for
Al representations in [12], and In databases Ia

motivated by the observation that when processing
the elements of a claas in a loop, it la often
uaeful to assume that they all satisfy the

Integrity constraints stated for that claaa.

For reasons of symmetry, we are then lead to a
different, more semantic definition of IS-A, one
where the execution of a specialized procedure can
be viewed in some sense as the execution of the
more general one. On the basis of current
experience (e.g., [4,5,6]), it seems that if B and
A are procedures such that B IS-A A, then, ideally,
(1) A should complete successfully in all
situations where B does, (il) the final or intended

effects of B should include at least those of A,
and (iil) B should be allowed to have some
additional effects. A typical example of this

would be specializing the procedure which creates a
new EMPLOYEE to the one which creates a new
JANITOR.

For the remainder of this paper assume that all
procedures are expressed in a "core" language,
which allows simple variables, assignment and
conditional statements, as well as a while-loop
construct.* If we view the program as modifying
machine states described by variables and their
values, then we can define the semantics of a
program A by, among others, RA, the set of
initial/final state pairs connected by A, or PA,
the set {(p,q)!p true in s, q true in s', (s,s') in
RA) where p and q are formulas in some FOL over
states.

We can start by defining B IS-A A iff
RB ¢ RA ; this ensures (i) and (ii) above but
unfortunately forces A and B to be identical
whenever both are defined in the same state, thus
contradicting (ill). The same holds for the other
semantics of programs in [8], including requiring
PA £ PB. To be more selective, one can define the
difference A(s,s') between states as the set of
changes from s to s', i.e., the set of pairs (x,e),
where x is a variable with value e in state s' but
with a different value in s. This leads to rule
(2,2): B IS-A A iff for every (s,s’) in RB there
is (s,s") in RA such that A(s,s") ¢ A(s,s') This

(2,1):

is the basis of the notion ofnet side effect,
which is one of the underlying conditions of
specialization in [7]. Alternatively, consider a

procedure A to be "defined" by some particular pair
of assertions (PreA, PostA) in PA and then let
(U): B IS-A A iff PreB = PreA & p, PostB =
PostA & ¢ for some p, q; this is the surface
notation for specialization in [6]. Another
possibility is to let Free(f) stand for the set of
free variables in a formula or program f, and Ilet
FA be {(p,q) in RA | Free(p), Free(q) c Free(A)}.
One might then define (£*!): B IS-A A iff FAc

FB , and thus obtain another characterization of
IS-A which, like (2.2) and (2.3), captures
conditions (i), (ii) and (iii) and yet constrains
the additional effects of B so that they do not

"oontradict" those of A.

Observe that all of the above definitions rely
solely on the effect of the programs, not on their
internal structure, and henoe the familiar notion

*+ Similar results hold in more general oases,
although the definitions need to be more complex.

255

of inheritance is missing. Both [5] and [6]
attempt to oomblne into a hybrid definition the
structural aspects of the procedure (parameters,
statements, roles) with the semantic restrictions
noted above in order to allow both inheritance of
parts and a limited extension/modification of the
more general procedure. In particular, in
specializing a procedure one can usually specialize
(a) the parameters, by imposing additional
conditions on them, (b) the component statements,
tests and primitive operations, and (c) one can
extend the specialized procedure by adding new
parameters and components. By using an FOL which
allows procedures, etc. as domains to be
quantified over, this can be stated rather
elegantly ([6]) as B(x) = A(x) a r(x) where A s
the characteristic predicate of procedure class A,
which has already been specified axiomatically.
One is lead to suppose that in "pure" PROLOG, where
there are no side-effects, the condition for B IS-A
A could simply be B«=>A; the reason for this is
that PROLOG programs consist of clauses and a more
specialized program would be "true" in fewer cases

than the more general one, i.e., it would have
additional or "stronger" clauses.
I "IS-A" ttPABCMSS SL PBQCEPVEBS
AHE YMiriMTIPH
In addition to the various wuses for the
specialization hierarchy noted in section 1, one
can observe that through inheritance common parts

of procedures are factored out into higher classes.
Now notice that these could, among others, be
tested and verified independently, and this
validation could then be “"shared" by all the
specializations of a procedure, i.e., presumably we
need verify only the additions/modifications.*
This could be a partial answer to the problem in
program verification of how one breaks up in a
motivated manner the proof of a large program into
smaller, yet coherent parts. Consider, for
example, verification using the standard
Floyd-Hoare partial correctness assertions (pea's)

p{A}q An important application of this occurs
in databases, where one would like to prove that
all transactions maintain the integrity constraints
invariant, so that the system would not have to

check them after every update.ss It may therefore

be of Interest to compare the various definitions
of IS-A on independent grounds: how do they
support such proof sharing.

The existence of a commonly used rule of
inference: p{C)g, q{D}r k p{C;D}r makes textual
inheritance, as in SIMULA, an attractive approach
because it suffices to prove q{D}q in order to
deduoe p{C;D}q from p{C)q. Unfortunately, this s

not a necessary condition, as illustrated by C i

*+ The problem of re-validating programs which have
been altered has also been considered in [11].

** An extensive example of verifying a group of
procedures organized in an |IS-A hierarchy is
presented in [10].

x:22 , D2 yiex ,p S g8 (y20). More generally,
if one has proven that pl{E;F;Glq by showing pi{E}lr,
r{Fls, snd r{G}q, and then replaces E by E*, aa in
default inheritance, then it is again sufficient
but not necessary to show that r{E'ls.

Turning to the semantio definitions, (2.1} ia
ideal for our purposes bacauss, at least for
WHILE-programs, it gives PA < PB, which is

equivalent to plA)lq }= p{Blq for any p, q ([8)).
Unfortunately, as we menticned, definition (2.1} is
too restrictive. In order to allow B to have
additional effecta, we might conalder some
dafinition of IS-i which required the pre- (post-)
condition of the more spscialized program to leply
the pre- (post-) condition of the more ganeral one,
a3 in (2.3). Unfortunately, the following example
suggeats that no simple definition based on pea's
will lead to tha saze ability to shars proofs: let
A ¥ nil , Bd x:a2 ,p % (x30) , q & (x<0}; then
p{Alp, qiklq, LrusiBlp, and if ri{B)lq then r implies
falpe, yeot we want B 1IS-A A. The probles is
fundamental and lies in the fact that oconditions
like p and q can sake assertions about what a
program has left unchanged, as wall as its effects.
It therefore seema that thers will be no ideal
definition for IS=-A and we must content ourselves
with only heuristic asupport for program
verifization.

Definition {(2.4) provides the basiz [for two

heuristic rules which togethar ocover assveral
situations ooccuring relatively freguently 1in
practice:
- if plAlq, and Free(p), Free{q) 5 Free(d)
then p{Blg; .
- if Free{l) n Free(B) = ¢ then 1{B)I .
In addition, Aif B 4is obtained from 4 by

interaperaing axtra statesents than thers i3 a
simple hauristic for ohecking (2.4}, namely Free(d)
n Free(B/h) = ¢ , where B/A atands for all the
atatements of B wvhioh do not appsar in &, e
point i» that the conditions of all theas
heuristics can be syntacticslly checked, and hence
can be inoorporated intoe a ocomputer-aided
developsent environment.

As a compromise, we thersfore suggest (a)
spacialization of paramsstera by provision of
additional constraints, and (b) wodification and
sxtension of oomponenta by textual or default
inheritance, but subjeot to ssmantic conatraints
such as (2.4).

Iv JIRMARY

We have oonsidered a number of alternative ways
of defining the specialisation hisrarchy of
procedures. These definitions were wotivated by
actual wuses of suwoh hierarchiea in current ayatems
in software developmsent and Al, and they range from
purely ayntaoctic omes, as in SIMULA, to pursly
sasantic ones, with most recent veraiona of
inheritanoe ([%,5,6)) |Dbeing hybrid. We bave
sketched out formal definitions of IS-A for
procedures and ocobsidered their utility for program
validstion, espeoially "inheriting” verifiocation
proofs.

2*6

My thanks to John Mylopouloa, Harry Wong and Hector
Levasque for nuwercus discusaions connected with
this work. Thia ressarsh was aupported by the
Natural Sciences and Enginesring Researoh Council
of Canada.

REFERENCES

Dahl, O0.J., and Nygaard, K., *SIMULA -an ALGOL
based simulation language™, CACM 9, Septeabsr
1966.

Z. Ingalls, D.H. "The Smalltalk-Té6 programming
aystem: design and implementation®, QConf,
Bacord of Sth Aunual ACM Syap. on Erograsslng
Languages, January 1978.

3. Goldstein, I.F. and Bobrow, D.G, “Extending
objesot orisnted programaing in Smalltalk™,

af 1980 LISP Conferengs, Palo Alto,
August 1980,

Levesque, H. and Mylopoulos, J., "A procedural
pemantics for Samantic Networka™, in
Asagciative Networks: And uae
of |Lknowledge by computers, N.Findler ed.,
Aoadeaic Presa, 1979.

Mylopoulos, J., Bernstein, P.A. and Wong,
B.K.T. "& language [lacility for designing
interactive database intensaive applicationa”,

AGHM TODS 5, June 1980.

Rich, C. *lInspection methods in programming”,
Ph.D. Theeis, MIT, June 1980.

Mylopoulos, J. and |Wong, H.K.T. *Soma
featurss of the TAXIS data model®™, Proc. of

Lbe 6th Acoual Conf. on Yery Large Data Dasea,
Montreal, Sept. 1980.

Greif, I. end Meyer, A.R. "Specifying the
sesantica of WHILE-programa®, LC5 Technical
Memo - 130, MIT Lab for Computer 3Science, April

1919,

Borgida, 4., Mylopoulos, J. and Wong, H.K.T.
"Taxonomic Softwars Specification™, submittied
for publication.

Wong, H.K.T., "Design and verification of

Interactive Inforsation Systoms™, Ph.D.
Thesis, Dapt. of Computer S¢ience, University
of Toronto, 1981.

10,

Shroba, H., "Depandency-directed reasoning for
complex program understandicg®, MIT Al Lab
TR=503, MIT.

1.

¥Some remarks on
reprassntation
August

12

lerasl, D. and Brachman, R.
the semantios of

languages”, LJICAL 7, Vancouver, B.C.,
1981,

