
THE AUTOMATIC SYNTHESIS OP SYSTEMS
OF RECURSIVE PROGRAMS

ZOHAR MANNA
Ar t i f i c i a l Intelligence Lab
Stanford University
Stanford, Ca.

A b s t r a c t

A technique is presented for constructing- a program from given
specifications. The basic approach is to transform the
specifications repeatedly, according to certain rules, until the
desired program is produced. Two important transformation
rules are those responsible for introducing conditional
expressions and recursion into the target program. These
transformations have been introduced in previous publications,
and are discussed here briefly.

Of ten, to construct a recursive program it is necessary to define
other auxilliary programs to achieve certain subtasks of the main
task. The formation of such systems of auxilliary programs is
specially emphasized in this paper.

T h e program synthesis techniques we discuss have been
incorporated into a running system called SYNSYS. This system
accepts high-level specifications expressed in mathematical
notation, and produces recursive programs in pure LISP. The
transformations are represented in the system as programs in the
Q L I S P language, and are summoned by pattern-directed
funct ion invocations. The synthesis of two programs produced
by the system are presented.

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense under Contract
MDA901- 76-C-0206, by the National Science Foundation under
Grant DCK72-03737 A0\, by the Office of Naval Research
under Contracts A/00014-76-C-06S7 and A/000 M-75-C-08I6;
and by a grant from the United States-Israel Binational Science
Foundation (BSF), Jerusalem, Israel.

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
Stanford University, Stanford Research Institute, or the U.S.
Government.

I . I n t r o d u c t i o n

Jn this paper we describe a system that attempts to construct a
program to meet given specifications. The system, called
SYNSYS, accepts specifications expressed in a high-level
mathematical notation and produces recursive, side-effect-free
L ISP programs. The basic approach is to find a sequence of
transformations which, when applied successively to the output
specification, yield a sequence of equivalent descriptions leading
to the desired program.

A u t o . Pro

RICHARD W A L D I N C E R
Ar t i f i c ia l Intelligence Center
Stanford Research Inst i tute
Menlo Park, Ca.

The SYNSYS system has been partially described in an earlier
paper (Manna and Waldinger [1977]). In that discussion we
emphasized the mechanisms for introducing conditional
expressions and recursion into the program being produced.
The exposition in this paper is self-contained, but our principal
concern here wil l be the formation of systems of recursive
programs

The earlier paper also contained a more complete description of
the SYNSYS implementation. The transformation rules of the
system are written in QLISP (Wilber [1976]), an extension of
I N T E R L I S P with pattern-directed function invocation and
backtracking. The two examples we present have been
performed automatically by SYNSYS.

In Section II we describe our basic approach. We then (Section
111) present the first example, the synthesis of the Euclidean
algorithm. Section IV provides a discussion of the method for
introducing auxill iary functions, which is then illustrated by the
construction of a two-function system for computing Cartesian
products (Section V). A final section outlines some of the
system's limitations, and our future research plans.

I I . B a s i o A p p r o a c h

There are many constructs that are valuable in expressing the
specifications of a program, but that are not likely to appear as
features in a programming language. For example, in specifying
a program to compute the greatest common divisor of two
integers x and y, we provide the input specification

x z 0 and y z 0 and {x * 0 or y * 0) ,

and the output specification

gcd(x y) <- max{z : z\x and z\y) .

The output specification requires that we find the greatest
integer that divides both x and y. The input specification states
that we can expect both arguments to be nonnegative and at
least one to be nonzero; if both x and y are zero, the output
specification is not defined. The set constructor {z : ...J is a
valuable aid in expressing the output specification, but it is not a
pr imi t ive construct in most programming languages because it is
not always computable.

Similarly, to specify the program to find the maximum element
of a list of numbers, we may supply the input specification

-i empty(x)

(the input list is not empty) and the output specification

r . - 3 : Manna

maxl(x) <• f ind z € x and z : z z all(x) I I I . E x a m p l e 1 : T h e E u c l i d e a n A l g o r i t h m

(f ind an element of the given list greater than or equal to all the
elements of the list). Here, the constructs "find z; ..." and "all{x)"
are not primit ives of any programming language, but are useful
components of a specification language.

T h e goal of a synthesis system is to transform the output
specifications into an equivalent description that employs only
pr imi t ive constructs. The resulting primitive program will then
be executable.

O u r basic approach is to supply our system with a large set of
transformation rules, which transform one description into
another, equivalent one. We attempt to find a sequence of these
rules which, applied to the output specification, will yield a
sequence of equivalent descriptions leading to the desired
pr imi t i ve program. Some of these rules express the semantics of
the subject domain (such as facts about lists, sets, numbers and
the underlying logic). For example, the rule

u\v •> true if v « 0

represents the fact that every integer divides zero. Other rules
express knowledge about the programming language and
programming techniques (e.g. the uses of conditional expressions
and recursive calls).

A given transformation can only be applied to a description that
matches a characteristic pattern. For instance, the above rule can
only be applied to descriptions of the form u\v. However, even
if the pattern matches the description, a rule may have
conditions that prevent it from being applied; the sample rule
above can be applied only if the value of the expression that
matches v is known to be zero. This logical condition is imposed
because the rule could not be applied legitimately it it were
violated. Other conditions may be imposed because of strategic
considerations; we know that it is unwise to apply the rule when
the condition is violated, even though the application would be
logically legitimate. For example, the rule

u\v and u\w »> u\v and u\rem(ui v)

(the common divisors of v and w are the same as the common
divisors of v and rem(iu v)) has the logical condition

v * 0

and the strategic condition that we not be able to prove

A l though the rule could be applied correctly when w < vt in that
case rem{w v) reduces to w, and the original expression "u\v and
u 1 n/M would reappear.

Dur ing the process of transforming the output specification into
a pr imi t ive program, we generate a sequence of intermediate
descriptions of the desired program. In searching for the next
rule to apply, we may f ind several rules whose patterns match
the current description. Most of these rules will be discarded
because their conditions wil l not be satisfied. Of the rules that
remain, the system wil l apply one. If that application fails to
lead to a pr imit ive program, backtracking may occur so that the
other rules may be attempted instead. The synthesis is complete
when a pr imi t ive program is generated.

In order to examine the synthesis process in more detail, we
present the complete construction of a familiar algorithm.

In this example we illustrate the construction of the classical
Euclidean algorithm for computing the greatest common divisor
gcd(x y) of two nonnegative integers x and y.

Recall that the specifications for the program are:

input specification: x > 0 and) ^ 0 and (x * 0 or y * 0)

(the arguments are both nonneg^ative and at least one of them is
nonzero), and

output specification: gcd(x y) <«* max{z : z\x and z\y]

(the output is the greatest integer that divides both x and y).

T h e set constructor {u : ...} is admitted to our specification
language but is not a primit ive of our programming language.
We must f ind a sequence of transformations to produce an
equivalent description of the output that does not use the set
constructor or any other nonprimitive construct. This
description wi l l be the desired primitive program. In what
follows we wi l l exhibit a successful sequence of transformations,
but we wil l not always indicate how the next transformation at a
given stage was found, or which sequences were attempted and
discarded before the successful sequence was found.

Among the transformations we may apply, let us assume we have
the fol lowing rules which express properties of division useful in
developing the desired program:

For any integers u, v, and w

(1)

(2)

(3)

u\v »> true if v » 0
(any integer divides zero)
u | v and u | w *> u | v and u \ rem(w v) if v * 0
(the common divisors of v and w are the same as
those of v and rem{tu v))> and
max{u : u\v} *> v if v > 0
(any positive integer is its own greatest divisor).

In applying these transformations, we will produce a sequence of
goals; the first wil l be derived directly from the output
specification, and the last will be the desired program itself.

Goal 1: Compute max{z : z\x and z\y],

for any x and y satisfying the input specification. The
transformation (2) above,

u|v and u\w -> u\v and u\rem(xu v) if v * 0 ,

applies directly to Coal 1, yielding

Coal 2: Compute max\z : z\x and z\rem(y x)}
and prove X K O .

Note that the condition v * 0 attached to the transformation rule
produced a condition x * 0 to be proved in the resulting goal.
We cannot prove or disprove this condition — it may be true for
some inputs and false for others — so we will consider
separately the case in which it is false. This case analysis will
yield a test on the condition x « 0 in the final program.

Case: x - 0

A u t o . P r o p ; . - 3 : Manna
U06

We cannot achieve Goal 2 here, so we examine alternate
transformations to apply to Coal 1. The rule (1),

and the basic logical transformation

P and true ■> P

yield

Coal 3:

Here, the transformation rule (3) applies, producing

Coal 4: compute y
and prove y > 0 .

It is straightforward to prove y > 0, because y > 0 and (x * 0 or
y * 0), by the input specification, but x = 0 by our case
assumption. Consequently, we have reduced the problem in this
case to the task of computing y, which involves no nonprimitive
constructs. The desired program may simply output

y-

We have thus completed one branch of our case analysis; the
corresponding branch of the program is

We now turn to the alternate possibility.

Case x=O

T h e case analysis was introduced in attempting to satisfy the
condit ion x * 0 of Goal 2. This condition is satisfied in this
case, and Goal 2 is reduced to

Coal 5:

Goal 5 is an instance of our output specification (i.e. Coal 1),
wjth x and y replaced by x and rcm{y x). This suggests
achieving Goal 5 by a recursive call ro gcd(x remiy x)), because
the gcd program is intended to satisfy all instances of its output
specification. However, the program is only guaranteed to work
if its input specification is satisfied. To insure that the recursive
call gcd(x rem{y x)) will compute the desired result, we must
prove that the input specification is satisfied by the arguments of
the recursive call, i.e.

We wi l l call Goal 6 the input condition for the recursive call
gcd{x rem{y x)).

Furthermore, in introducing a recursive call we must be
concerned with the termination of the final prognm. In other
words, we must ensure that an infinite sequence of recursive calls
cannot occur in any computation of the program. To prove
termination we employ the concept of the well-founded set, one
whose elements are ordered in such a way that no infinite
decreasing sequence can exist. (The nonnegative integers, for

example, constitute a well-founded set under the usual greater-
than ordering. The integers, on the other hand, do not.)

To prove the termination of a program f(x) with one recursive
call f{t), we must f ind a well-founded set Wf with ordering >f

such that

If a inf inite sequence of recursive calls were to occur, the
corresponding arguments would constitute an infinitely
decreasing sequence of elements of Wf , contradicting the well-
foundedness of W..

Thus, to show the termination of the recursive call
gcd(x remiy x)) in the program gcd(x y), we must achieve the
fol lowing termination condition:

Coal 7: Find a well-founded set K;
 rrf with ordering > .

such that

We cannot satisfy Goal 7; in fact, in the case that y < x,
rem{y x) « y, and there is no well-founded ordering > such that
(x y) > (x y). Because we cannot show the termination of the
recursive call gcd(x rem(y x)) that was introduced in an attempt
to achieve Goal 5, we look for an alternate approach to achieve
this goal.

T h e logical transformation

P and <£-> Q^and P

applied to Goal 5 yields

Coal 8: Compute max{i : z\rcm{y x) and z\x] .

Goal 8 is again an instance of our output specification, Goal 1,
and we therefore attempt to achieve it by the recursive call
gcd(rem(y x) x). Actually, the SYNSYS system reaches this goal
in a slightly different manner to be discussed below. The input
condition for this recursive call is

and the termination condition is

Goal 9 is satisfied immediately: in this case x is positive and
rem(y x) is always nonnegative. To achieve Goal 10, we take
W , to be the set of all pairs of nonnegative integers ordered by
the usual > ordering applied to the first component; this suffices
because x > rem(y x). The proposed recursive call is therefore
successful in achieving Goal $ and the program can output

gcd(rem{y x) x)

A u t o . P r o . " . - 3 : Manna
U07

We have succeeded in transforming' all the goals into primitive
program segments. The final program, formed directly from the
outl ined program segments is

T h i s is a recursive version of the algorithm Euclid provided for
computing the greatest common divisor.

Recall that when we fail to achieve Goal 5,

by a recursive call, we applied a logical transformation

to the goal and then successfully introduced a recursion.
Actual ly, the SYNSYS system does not represent the
commutativity of "and" by a transformation; that property is
bui l t into the underlying QLISP system. Normally, in QLISP, a
function / applied to several arguments u]t u2 un is
represented internally as 5

an ordered tuple. An expression such as

however, is represented internally as

where {ul u2 ... un] is an unordered set, because the order and

mult ipl ic i ty of the arguments does not influence the value of the
expression. In attempting to introduce a recursive call, the
system tried to match the subexpression and{x rem(y x)} of Coal
5 against the subexpression and\x y) of Goal 1. The QLISP
pattern matcher discovered two distinct matches, pairing x and y
wi th x and remiy x) or pairing x and y with rem{y x) and x.
When the first match failed to lead to a satisfactory recursion,
the second match was attempted automatically.
T h e mechanisms employed to construct the gcd program are
examined more closely in our earlier paper (Manna and
Waldinger [1977]). A similar mechanism to ours for introducing
condit ional tests into synthesized programs has been
implemented by Warren [1976]. A facility for initiating a case
analysis in a mathematical proof is included in the theorem
prov ing system of Bledsoe and Tyson [1977]. Our recursion-
introduction device is the same as the "folding" rule of Burstall
and Darl ington [1975]; their system is interactive, however, and
they require that the user be responsible for establishing the
input and termination conditions.

I V . I n t r o d u c i n g A u x i l l i a r y F u n c t i o n s

In the preceding example we introduced a recursive call when
we discovered that a subgoal was an instance of our output
specification, the top-level goal. In other words, we found that
the subgoal is of form

Compute a(r(x)),

where the top-level goal is of form

f{x) <- Compute a(x) .

If the input specification is P(x), then a recursive call f(t(x))
could be introduced to achieve the subgoal "Compute a(t(x))"t

provided we could prove the input condition

?(t(x))

and the termination condition

Actual ly, in attempting to introduce recursion we compare the
subgoal not only with the top-level goal, but also with each of
the intermediate subgoals. If we discover that our subgoal is of
fo rm

Compute B(t(x))

where

Compute 0(x)

is an intermediate subgoal, then we introduce a new auxilliary
funct ion g whose output specification is

i

T h e subgoal "Compute B(r(x))" might then be achieved by a
recursive call g(t(x)).

Of course to introduce a recursive call to an auxilliary function,
we must establish the appropriate input and termination
conditions. The input specification for the auxilliary program is
not the same as the input specification ?{x) for the entire
program /. For, suppose that in developing the subgoal
"Compute B(x)," we have made several case assumptions "Case
R,(x)," Then the conditions Ri(x), Rn(x) will
be the tests of conditional expressions in the final program /,
and must be true if control is to reach the call to g(x). Thus, we
may expect that the conjunction Qj[.v) of all these tests with the
or ig inal input specification, i.e.

w i l l be true of the input to g. Moreover, the correctness of g
may depend on the truth of the above conjunction Q(x), which
we therefore take as the input specification for g. The input
condit ion for a recursive call g{t(x))) is then Q(f(x)), i.e.

In the simple case that the auxilliary function g does not call the
main function /, the termination condition for a recursive call
g(t(x)) is analogous to the termination condition for a recursive
call t o / , i.e. we must

T h e general case, in which g may also ca l l / , is more complicated
and wi l l not be considered here.

A u t o , P r o p . - 3 : Manna
U08

In the next section we illustrate the formation of auxi l iary
functions in a concrete example.

V . E x a m p l e 2 : T h e C a r t e s i a n P r o d u o t

There is no input specification, because the program is intended
to apply to any two sets. Again, the set constructor {z : ...} is
regarded as a nonprimitive component of our specificaton
language. We include in our programming language the
fol lowing pr imit ive operations;

set union
the finite set of elements r1, r?,..„ t

the empty set
the test for emptiness
a specific element of a nonempty set U
the set of elements of U other than
head(V)
the pair with elements u and v

and i f - then-else and recursion. Let us assume that the
transformations we can use in transforming the goal include

(1) Membership expansion

(2)

(3)

(4)

App ly ing membership expansion rule (1) to the subexpression x
€ X of Goal 1 yields

App ly ing the logical if-then-else distribution rule

/ (i f P then f, else t2) «> i(P thenar ,) elsef{t2)t

yields

We next apply the logical transformation

false and P »> false

to the then-clause, and the and-or distribution rule

to the else-clause, to obtain

Coal 4: <

The empty-set introduction rule (2) applies to the then-clause of
Goal 4 and the union-introduction rule (3) applies to, the else-
clause, to produce

Goal 5:

The subexpression {(x* y) : x e tail(X) and y e Y) is an instance
of our output specification,

this suggests replacing this subexpression by a recursive call

cart(tail{\) Y) .

There is no input condition for the proposed recursive call
because the desired program has no input specification. The
termination condition,

Goal 6: Finrl a wpll-frmnrlpri ser W

is solved by taking Wrnrl to be the set of all pairs of finite sets,
ordered by the usual proper containment relation on the first
component. This ordering is sufficient because X properly
contains tail(X).

Goal 5 is therfore reduced to

Goal 7

We still have to remove the remaining set-constructor from the
else-clause. To simplify the exposition we will reduce this
subexpression in a separate series of starred subgoals

App ly ing the member expansion rule (1) to the subexpression y
€ Y yields

App ly ing the if-then-else distribution rule and the union-
introduction rule (3) produces

A u t o . P r o g . - 3 : Manna
409

Coal 9*: Compute if' emi>ty(Y)

T h e then-clause of Goal 9* is transformed by the logical rule

P and false -> false ,

and the empty-set introduction rule (2). The first component of
the else-clause is transformed by the equality-elimination rule
(4). The resulting goal is

Goal 10*: Compute

Now the subexpression

is an instance of Goal 7*. This suggests that we introduce an
aux i l i a r y function cart2(X Y) to achieve Goal 7*, and replace
the above subexpression by the recursive call cart2(X tail(Y)).
To establish that this proposed recursive call is legitimate, we
must prove its input and termination conditions.

Even though the main program cart(X Y) had no input
specification, the auxilhary function ca,rt2(X Y) is applied in the
else-branch of the program, for which it is known that X is not
empty. Th is condition -. empty(X) is therefore the input
specification for cart2(X Y). Thus, [he input condition for the
recursive call cart2(X tail(Y)) is simply

Goal 11*

Th i s condition is satisfied immediately, because it is identical to
the input specification for c<zr'2(X Y).

T h e termination condition for the recursive call car/2(X tail(Y))
is

Goal 12*: Find a well-founded set Wrafll with ordering

Goal 12* can be achieved by taking Weaft2 to be the set of all
pairs of f inite sets, with the usual proper containment ordering
applied to its second component.

Hav ing established both the input and termination conditions,
we are justified in introducing the recursive call cart2(X tail(Y))
into Goal 10*, yielding

Goal 13*: Compute

Because Goal 13* is composed entirely of primitive constructs,
we have succeeded in constructing the auxi l iary function

T h i s program computes the Cartesian product of {head(X)} with
Y.

T h e aux i l i a ry function car:2(X Y) is intended to satisfy Goal

7*. a subexpression of Goal 7. We can therefore replace that

subexpression by a call to the new function, yielding-

Goal 14:

Now Goal 14 contains no nonpnmitives and we have succeeded
in constructing the desired program

V I . L i m i t a t i o n s a n d F u t u r e R e s e a r c h

T h e preceding example illustrates construction of the simplest
fo rm of auxil l iary function, which does not call the main
function. The general case is more difficult, and is beyond the
capabilities of our current system because of the complexity of
the termination condition.

We introduce a recursive call only when a subgoal is an instance
of a higher-level subgoal For some problems it may be
necessary to generalize the higher-level subgoal to force the
match to occur. This situation is analogous to proving a
mathematical theorem by mathematical induction: it is often
necessary to generalize the theorem to be proved, so that the
induction hypothesis will be strong enough for the induction step
to be proved. Some such generalizations have been performed
automatically by the theorem-proving system of Boyer and
Moore [1975], and the program synthesis system of Darlington
[1975].

O u r current SYNSYS only constructs pure LISP programs,
which produce an output value but do not have any side-effects.
Systems by Warren [1974] and Waldinger [1977] can produce
programs with side-effects, but they cannot introduce recursive
or iterative loops into these programs. We intend to integrate
both abilities into a single system.

V I I . R e f e r e n c e s

Bledsoe, W. W., and M. Tyson [1977], Typing and proof by cases
in program verification, in Machine Intelligence 8:
Machine Representations of Knowledge, (E. W. Elcock
and D. Michie, editors), John Wiley 8c Sons, New
York, N.Y. (to appear).

Boyer, R. S., and J S. Moore [Jan. 1975], Proving theorems about
LISP functions, J A C M , Vol. 22, No. 1, pp. 129-144.

Burstal l , R. M. and J. Darl ington [Apr i l 1975], Some
transformations for developing recursive programs,
Proceedings of the International Conference on
Reliable Software, Los Angeles, Ca.(pp. 465-472.

A u t o . P r o g . - 3 : Manna

Dar l i ng ton , J. [July 1975], Applications of program
transformation to program synthesis, Colloques IRIA
on Proving and Improving Programs, Arc-et-Senans,
France, pp. 1 3 3 - H I

Manna, Z. and R. Waldinger [August 1977], The automatic
synthesis of recursive programs, Proceedings of the
S I C A R T - S I G P L A N Symposium on Art i f ic ial
Intelligence and Programming Languages, Rochester,
N.Y.

Wald inger , R. J. [1977], Achieving several goals simultaneously,
in Machine Intelligence S: Machine Representations of
Knowledge, (E. W. Elcock and D. Michie, editors), John
Wiley 8c Sons, New York, N.Y. (to appear).

Warren, D. H. D. [June 1974], WARPLAN: A system for
generating plans, Technical Note, Dept. of
Computational Logic, University of Edinburgh,
Edingurgh, Scotland.

Warren, D. H. D. [July 1976], Generating conditional plans and
programs, Proceedings of Conference on Art i f icial
Intelligence and Simulation on Behaviour, Edinburgh,
Scotland, pp. 344-354.

Wi lber , B. M. [Mar. 1976], A QLISP reference manual, Technical
note, Stanford Reserch Institute, Menlo Park, Ca.

A u t o . P r o r . - 3 : Manna
h i i

S I S P / l AN INTERACTIVE SYSTEM ABLE TO
SYNTHESIZE FUNCTIONS FROM EXAMPLES

J e a n - P i e r r e JOUANNAUD FRANCE
Mai t r e - A s s i s t a n t a 1 ' I n s t i t u t de Programinat i on
U n i v e r s i t e P a r i s V I
A , P lace J u s s i e u
75005 PARIS

Gera rd GU1HO FRANCE
M a i t r e de Con fe rence - L a b o r a t o i r e de Recherche
en I n f o r m a t i q u e
U n i v e r s i t e P a r i s Sud
91405 ORSAY

J e a n - P i e r r e TREUIL FRANCE
Chercheur - L a b o r a t o i r e de Recherche en
I n f o r m a t i q u e
U n i v e r s i t e P a r i s Sud
91405 ORSAY

The r e s e a r c h p r e s e n t e d i n t h i s paper i s s u p p o r t e d
by Ik lA-CESORl under c o n t r a c t number 76 .

ABSTRACT
S ISP / i i s an i n t e r a c t i v e system whose goa l i s

the a u t o m a t i c i n f e r e n c e o f LISP f u n c t i o n s f rom a
f i n i t e s e t o f examples { (x . , f (x .))) where x . i s a

l i s t b e l o n g i n g to the domain o f the f u n c t i o n f we
want t o i n f e r . S ISP / I i s a b l e t o i n f e r the r e c u r ­
s i v e fo rm o f many l i n e a r r e c u r s i v e f u n c t i o n s and
i t s s t o p - c o n d i t i o n . S ISP / l t r i e s t o work w i t h one
example o n l y . When i t f a i l s , i t asks f o r new ones :
u s i n g t h e n a method o f g e n e r a t i n g new p a r t i a l s u b -
p r o b l e m s , S ISP/ l i s a b l e t o p e r f e c t i t s g e n e r a t e d
r e c u r s i v e f u n c t i o n u n t i l i t ge t s a c o r r e c t one.

I . INTRODUCTION
In t h i s paper we d e s c r i b e the system S I S P / l

whose g o a l i s the a u t o m a t i c i n f e r e n c e o f LISP f u n c ­
t i o n s f rom a f i n i t e se t o f examples { (x . , l (x .)) } ,

where x . i s a l i s t b e l o n g i n g t o the domain o f the
f u n c t i o n f we want to i n f e r .

The p rob lem o r i g i n a t e s f rom a more g e n e r a l
one : how to b u i l d a " L e a r n i n g - Q u e s t i o n - A n s w e r i n g -
System" (L . Q . A . S .) u s i n g a f u n c t i o n a l method to
p r o v i d e an answer to any g i v e n q u e s t i o n . The me­
thod we p ropose i n S I S P / l i s n a t u r a l l y w e l l adap ­
ted to the L . Q . A . S . we are. d e v e l o p p i n g (6 .1 , 17 1.

I n the f i e l d o f " A u t o m a t i c Programming f rom
E x a m p l e s " , an i m p o r t a n t p i e c e o f r e c e n t work i s
THESYS by SUMMERS L 5 J . The ma jo r r e s u l t of t h i s
w o r k , i s the f o l l o w i n g : u s i n g a sma l l number o f
w e l l chosen examples
((N I L , f (N I L)) , ((A) , f ((A))) . . . } THESYS i s a b l e
to i n f e r a r e c u r s i v e e x p r e s s i o n $ e q u i v a l e n t to f
f o r eve ry x b e l o n g i n g to t he domain o f f .

Only a s m a l l c l a s s o f f u n c t i o n s can however
be o b t a i n e d by Summers's me thod , wh i ch works by l o o ­
k i n g f o r a r e c u r e n c e r e l a t i o n between r e p r e s e n t a t i ­
ve p r e d i c a t e s p . o f the g i v e n i n p u t s t r u c t u r e and

f o r a r e c u r e n c e r e l a t i o n between the map f u n c t i o n s
m . p r o v i d i n g the g i v e n o u t p u t s f r om the g i v e n i n ­
p u t s . Then , u s i n g a f i x e d p o i n t t h e o r e m , V i s c o n s ­
t r u c t e d .

A l t h o u g h Summers's method i s v e r y p o w e r f u l i t

A u t o . P rop : . -3
412

has f o u r i m p o r t a n t d r a w b a c k s :
1 . - The c o n s t r u c t e d e x p r e s s i o n < p i s n e c e s s a r i l y
r e c u r s i v e : f o r i n s t a n c e the i d e n t i t y f u n c t i o n w i l l
be i n f e r e d by V (x) » if X * N IL t h e n NIL

e l s e CONS (CAR(x) , ^ (C D R (x)))
2 . - THESYS needs w e l l chosen examp les , w h i c h i n
p a r t i c u l a r must c o n t a i n the s t o p c o n d i t i o n o f t he
r e c u r s i v e f u n c t i o n V . For i n s t a n c e , the c o n s t r u c ­
t i o n o f the f u n c t i o n REVERSE r e q u i r e s the f o l l o w i n g
s e t o f examp les :
{ (N I L + N I L) , ((A) - (A)) , ((A B) - (B A)) ,

((A B C) + (C B A)) }
3 . - The f u n c t i o n t o be c o n s t r u c t e d has t o p r e s e n t
o n l y one " i t e r a t i v e l e v e l 1 1 . For i n s t a n c e , THESIS
f a i l s t o c o n s t r u c t a c o r r e c t f u n c t i o n c o r r e s p o n d i n g
to the examp le : (P Q R S) -> (P P Q P Q R P Q R S) .
4 . - When THESYS has to s o l v e a d i f f i c u l t p r o b l e m ,
i t does n o t t r y t o g e n e r a t e a p a r t i a l , s i m p l e r
p r o b l e m f o r w h i c h i t cou ld e i t h e r f i n d a c o r r e c t
s o l u t i o n o r perhaps use a knowledge p r e v i o u s l y
s t o r e d i n a d a t a base by the sys tem i t s e l f . Thus ,
THESYS cannot be e f f i c i e n t l y used in a L . Q . A . S .
w i t h o u t i m p o r t a n t m o d i f i c a t i o n s .

The method we propose in t h i s paper i s v e r y
d i f f e r e n t i n p a r t i c u l a r , i t has the b u i l t c a p a c i t y
t o use a P r o f e s s o r i n i n t e r a c t i v e mode. I t does
no t l i e y e t o n any t h e o r i c a l g roundwork , b u t a l l o w s
us to overcome some o f the p r e v i o u s d rawbacks , a l ­
though new ones appea r :
- r e c u r s i o n i s no t a u t o m a t i c a l l y i n f e r e d by the
s y n t h e s i s a l g o r i t h m ; f o r i n s t a n c e , u s i n g the exam­
p l e ((A B C) -* (A B C)) , STSP/1 i n f e r s the f u n c t i o n
<p v*p (x) = x f o r any x .
- f o r some " s i m p l e " f u n c t i o n s , S'ISP/1 needs o n l y
one example (x , f (x)) .
I n the case where a r e c u r s i v e e x p r e s s i o n i s i n f e r e d ,
the s t op c o n d i t i o n i s t h e n found b y S ISP / l i t s e l f .
However the. l i s t x must be l o n g enough to be r e ­
p r e s e n t a t i v e o f t he f u n c t i o n f . For i n s t a n c e ,
REVERSE is o b t a i n e d u s i n g the o n l y example
((A B C D) + (U C B A)) , bu t is no t o b t a i n e d w i t h
((A B C) > (C B A)) .
- when the f u n c t i o n f is "more c o m p l i c a t e d " S ISP / l
f a i l s t o c o n s t r u c t a c o r r e c t f u n c t i o n w i t h o n l y one
example and i t t hen t r i e s t o work w i t h two examp les .
- when the f u n c t i o n f is "much more c o m p l i c a t e d " ,
S I S P / l g e n e r a t e s a new p a r t i a l s i m p l e r p rob lem
(y> & (y)) where y is d e f i n e d in te rms of x and
g (y) i s d e f i n e d i n terms o f f (x) . T o s o l v e t h i s
new p r o b l e m , S ISP / l sometimes needs a new example
(x 1 , f (x ')) w h i c h i s used t o deduce a n example
(y ' » g (y ')) « The i n t e r a c t i o n i s o n l y used i n the
sense o f a s k i n g f o r new examp les , when n e c e s s a r y .
S I S P / l i s t h u s e x t e n s i b l e and has the p o t e n t i a l i t y
to use a s e l f c o n s t r u c t e d knowledge d a t a b a s e .

Some o b j e c t i o n s can be r a i s e d to our i n t e r a c ­
t i v e me thod :
- when a f u n c t i o n f needs s e v e r a l examples to be
i n f e r e d , the p r o f e s s o r sometimes has to g i v e an
a p p r o p r i a t e sequence o f examp les .
- we do no t e x a c t l y know the c l a s s of f u n c t i o n s
w h i c h S I S P / l i s a b l e t o i n f e r . However, i t seems
to be much l a r g e r t han THESYS one . For i n s t a n c e
((P Q R S) - » (P P Q P Q R P Q R S)) i s i n f e r e d b y
S I S P / l u s i n g o n l y one example whereas t h e HALF
f u n c t i o n ((P Q R S T U) + (P Q R)) , wh i ch is i n f e r e d
by THESYS, r e q u i r e s two examples by S I S P / l . I n f a c t ,

: JouannauH

we hope t h a t SISP w i l l be ab le to i n f e r a l a r g e r
c l a s s o f l i n e a r r e c u r s i v e f u n c t i o n s .

I I . GENERAL DESCRIPTION OF THE METHOD
1. - L§ngu§ge
S ISP / I i n f e r s f u n c t i o n s d e f i n e d o n c h a r a c t e r

s t r i n g s " A B C D . . . " w h i c h w i l l b e r e p r e s e n t e d b y the
l i s t (A B C D . . .) .

SISP/1 s y n t h e t i z e s L I S P - f u n c t i o n s b u i l t w i t h
the f o l l o w i n g b a s i c f u n c t i o n s , d e s c r i b e d here b y
ex amp1 e s :
LCAR: (A B C D) -* (A) CDR: (A B C D) -> (B C D)
LRAC: (A B C D) -+ (D) RDC: (A B C D) -> (A B C)
CONC: (A B) , (C D) ■> (A B C D)
CONCT: (A B) , (C D) , (E F) + (A B C D E F)
PREF: (B C) , (A B C D) •> (A) L P r e f i x of (B C) in

(A B C D)]
SUFF: (B C) , (A B C D) ■+ (D) I S u f f i x of (B C) in

(A B C D) j
and a c o n t r o l s t r u c t u r e u s i n g COND and NULL.

2 * ~ Not ion_of_tYp_e
A t y p e is a se t o f l i s t s w h i c h can be d e f i n e d

by r u l e s w h i c h are summarised as f o l l o w s [6 1:
a) the s e t o f known i n p u t s " x " and t h e se t o f o u t ­
p u t s " f (x) M o f the f u n c t i o n f t o be s y n t h e t i z e d are
t y p e s .
b) i f X is a t ype and f a LISP f u n c t i o n , t hen the
se t o f o u t p u t s o f f r e s t r i c t e d to X as i n p u t is a
t y p e .
c) i f Y is a t ype and g a LISP f u n c t i o n t h e n the
s e t X of x such as g (x) C- Y i s a t y p e .

3«~ Segment^] . i_on_pat tern
L e t f be a f u n c t i o n to be s y n t h e t i z e d and

(x , f (x)) a n example o f " i n p u t - o u t p u t " o f t h i s
f u n c t i o n .

SISP/1 uses a g e n e r a l h e u r i s t i c to c r e a t e an
e x p r e s s i o n o f the f u n c t i o n :
a) s e g m e n t a t i o n of s t r i n g s x and y = f (x) i n t o
t h r e e c o n s e c u t i v e segments such t h a t :

CONCT (p x , c , sx) ■+ X
CONCT (p y , c, S y) -► y

where c d e n o t e s the l a r g e r s t r i n g common to x and
y, px and py deno te the p r e f i x s of c in x and y,
sx and sy d e n o t e t h e s u f f i x s of c in x and y.
b) b u i l d i n g o f r e l a t i o n s between these segments .

A " S e g m e n t a t i o n P a t t e r n " o f (x , y) , f o r a l l x
and y , i s d e f i n e d as the ne two rk shown i n f i g u r e I .

We can see on t h i s n e t w o r k :
- seven nodes r e p r e s e n t i n g t y p e s r e s p e c t i v e l y a s ­
s o c i a t e d t o the s t r i n g s x , y , c , p x , p y , s x , s y .
- t w e l v e r e l a t i o n s be tween nodes . Each r e l a t i o n
c o n s i s t s o f a f u n c t i o n and a scheme (I , » I « , • • •>

I -> J) w h i c h i n d i c a t e s t he i n p u t nodes I , I , . . . ,

I i n t h i s o r d e r and the o u t p u t node J . T h i s o r d e r n r

i s r e p r e s e n t e d on the ne two rk by a d o u b l e a r r o w .
Note t h a t f u n c t i o n s FX, FY, GPX, GPY, GSX,

GSY a re b u i l t by SISP/1 u s i n g t h e b a s i c f u n c t i o n s
LCAR, CDR, LRAC, RDC, and the c o m p o s i t i o n r u l e .
They a r e choosen o f the l e s s p o s s i b l e c o m p l e x i t y
(t h e s m a l l e s t number o f b a s i c f u n c t i o n s) .

I n some cases , the s e g m e n t a t i o n p a t t e r n i s
s i m p l e r :

- when one or s e v e r a l s t r i n g s a re empty (N I L) ,
. . t h e a s s o c i a t e d nodes a re suppressed f r o m t h e
p a t t e r n .

- when two s t r i n g s a r e e q u a l , t he a s s o c i a t e d

Auto . P r o r . - V

nodes are jo ined together . For ins tance, i f
x and y are the same, the pa t te rn is reduced to one
node; if x and y have no common p a r t , the pa t te rn
is reduced to only two nodes.

4*"" §Y.£lt}£sis fron}_on£_exam£le
The s y n t h e s i s c o n s i s t s o f t h r e e s t e p s :

a) SISP/1 g e n e r a t e s a n e t w o r k (c a l l e d a " S e g m e n t a ­
t i o n S t r u c t u r e ") b y t he f o l l o w i n g p r o c e s s :

(1) Genera te the s e g m e n t a t i o n p a t t e r n o f
(x , y) . T h e g e n e r a t i o n g i v e s t he two s e t s o f p a i r s :
{ (px» p y) , (c , p y) , (s x , p y) } K p x , s y) , (c , s y) , (s x , sy) }

(2) As l o n g as py and sy a r e n o t empty , choose
one p a i r i n each se t by a h e u r i s t i c way ; f o r each
o f these p a i r s , rename i t a s (x , y) and g o t o s t e p 1 .
b) SISP/1 l o o k s a t the s e g m e n t a t i o n s t r u c t u r e f o r
a l a t t i c e i n w h i c h t h e m i n i m a l and f i n a l nodes are
r e s p e c t i v e l y X and Y (t h a t is x and y t y p e s) . T h i s
l a t t i c e i s s t e p w i s e c o n s t r u c t e d u s i n g A l g o r i t h m 1 ,
d e f i n e d a s f o l l o w s :
Def i n i t i ons :

- LAT i s the c o n s t r u c t e d p a r t o f t h e l a t t i c e
a t any s t e p (excep t i n the f i n a l s t e p , LAT i s n o t
a l a t t i c e) .

- an i n c o m p l e t e node of LAT i s a node such
t h a t t he r e l a t i o n e n d i n g a t t h i s node (i n LAT)
owns some e n t r i e s w h i c h a re n o t connec ted to X .
These nodes are c a l l e d u n s a t i s f i e d e n t r i e s .

- BEG (Z) is the se t of nodes in LAT w h i c h
a re l e s s t h a n Z and w h i c h a re no t u n s a t i s f i e d
e n t r i e s .

- P is a " p a t h " f r om BEG (U) to V, where U
and V are nodes of LAT, i f P is an o r i e n t e d p a t h
s t a r t i n g f rom one node b e l o n g i n g to BEG (U) and
e n d i n g a t V . T h i s p a t h may c o n t a i n i n c o m p l e t e
nodes t o g e t h e r w i t h t h e i r u n s a t i s f i e d e n t r i e s *
Example of LAT:

Nodes 6, 7, 11 a re i n c o m p l e t e nodes
Nodes 12, 13, 14, 15 a re u n s a t i s f i e d e n t r i e s
A l l o t h e r s nodes are comple te nodes .
BEG (9) - {X , 1 , 2 , 7, 8}

A l g o r i t h m 1 :
1 . LAT «- X
2. Look f o r a p a t h P between X and Y.
3. Add p a t h P to LAT.
4 . L f t h e r e i s no i n c o m p l e t e node i n LAT t h e n

s t o p
e l s e s e l e c t the m i n i m a l one and c a l l i t N .
(I t can be d e m o n s t r a t e d t h a t A l g o r i t h m 1
g e n e r a t e s a se t o f i n c o m p l e t e nodes w h i c h
i s t o t a l y o r d e r e d o n L A T) .

J o n a n n a u H

Auto. P r o g . - 3 : Jouannaud

A u t o . P r o r . - 3 : Jouannaud
418

