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A b s t r a c t 

A technique is presented for constructing- a program from given 
specifications. The basic approach is to transform the 
specifications repeatedly, according to certain rules, until the 
desired program is produced. Two important transformation 
rules are those responsible for introducing conditional 
expressions and recursion into the target program. These 
transformations have been introduced in previous publications, 
and are discussed here briefly. 

Of ten, to construct a recursive program it is necessary to define 
other auxilliary programs to achieve certain subtasks of the main 
task. The formation of such systems of auxilliary programs is 
specially emphasized in this paper. 

T h e program synthesis techniques we discuss have been 
incorporated into a running system called SYNSYS. This system 
accepts high-level specifications expressed in mathematical 
notation, and produces recursive programs in pure LISP. The 
transformations are represented in the system as programs in the 
Q L I S P language, and are summoned by pattern-directed 
funct ion invocations. The synthesis of two programs produced 
by the system are presented. 
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I . I n t r o d u c t i o n 

Jn this paper we describe a system that attempts to construct a 
program to meet given specifications. The system, called 
SYNSYS, accepts specifications expressed in a high-level 
mathematical notation and produces recursive, side-effect-free 
L ISP programs. The basic approach is to find a sequence of 
transformations which, when applied successively to the output 
specification, yield a sequence of equivalent descriptions leading 
to the desired program. 
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The SYNSYS system has been partially described in an earlier 
paper (Manna and Waldinger [1977]). In that discussion we 
emphasized the mechanisms for introducing conditional 
expressions and recursion into the program being produced. 
The exposition in this paper is self-contained, but our principal 
concern here wil l be the formation of systems of recursive 
programs 

The earlier paper also contained a more complete description of 
the SYNSYS implementation. The transformation rules of the 
system are written in QLISP (Wilber [1976]), an extension of 
I N T E R L I S P with pattern-directed function invocation and 
backtracking. The two examples we present have been 
performed automatically by SYNSYS. 

In Section II we describe our basic approach. We then (Section 
111) present the first example, the synthesis of the Euclidean 
algorithm. Section IV provides a discussion of the method for 
introducing auxill iary functions, which is then illustrated by the 
construction of a two-function system for computing Cartesian 
products (Section V). A final section outlines some of the 
system's limitations, and our future research plans. 

I I . B a s i o A p p r o a c h 

There are many constructs that are valuable in expressing the 
specifications of a program, but that are not likely to appear as 
features in a programming language. For example, in specifying 
a program to compute the greatest common divisor of two 
integers x and y, we provide the input specification 

x z 0 and y z 0 and {x * 0 or y * 0 ) , 

and the output specification 

gcd(x y) <- max{z : z\x and z\y) . 

The output specification requires that we find the greatest 
integer that divides both x and y. The input specification states 
that we can expect both arguments to be nonnegative and at 
least one to be nonzero; if both x and y are zero, the output 
specification is not defined. The set constructor {z : ...J is a 
valuable aid in expressing the output specification, but it is not a 
pr imi t ive construct in most programming languages because it is 
not always computable. 

Similarly, to specify the program to find the maximum element 
of a list of numbers, we may supply the input specification 

-i empty(x) 

(the input list is not empty) and the output specification 
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maxl(x) <• f ind z € x and z : z z all(x) I I I . E x a m p l e 1 : T h e E u c l i d e a n A l g o r i t h m 

( f ind an element of the given list greater than or equal to all the 
elements of the list). Here, the constructs "find z; ..." and "all{x)" 
are not primit ives of any programming language, but are useful 
components of a specification language. 

T h e goal of a synthesis system is to transform the output 
specifications into an equivalent description that employs only 
pr imi t ive constructs. The resulting primitive program will then 
be executable. 

O u r basic approach is to supply our system with a large set of 
transformation rules, which transform one description into 
another, equivalent one. We attempt to find a sequence of these 
rules which, applied to the output specification, will yield a 
sequence of equivalent descriptions leading to the desired 
pr imi t i ve program. Some of these rules express the semantics of 
the subject domain (such as facts about lists, sets, numbers and 
the underlying logic). For example, the rule 

u\v •> true if v « 0 

represents the fact that every integer divides zero. Other rules 
express knowledge about the programming language and 
programming techniques (e.g. the uses of conditional expressions 
and recursive calls). 

A given transformation can only be applied to a description that 
matches a characteristic pattern. For instance, the above rule can 
only be applied to descriptions of the form u\v. However, even 
if the pattern matches the description, a rule may have 
conditions that prevent it from being applied; the sample rule 
above can be applied only if the value of the expression that 
matches v is known to be zero. This logical condition is imposed 
because the rule could not be applied legitimately it it were 
violated. Other conditions may be imposed because of strategic 
considerations; we know that it is unwise to apply the rule when 
the condition is violated, even though the application would be 
logically legitimate. For example, the rule 

u\v and u\w »> u\v and u\rem(ui v) 

(the common divisors of v and w are the same as the common 
divisors of v and rem(iu v)) has the logical condition 

v * 0 

and the strategic condition that we not be able to prove 

A l though the rule could be applied correctly when w < vt in that 
case rem{w v) reduces to w, and the original expression "u\v and 
u 1 n/M would reappear. 

Dur ing the process of transforming the output specification into 
a pr imi t ive program, we generate a sequence of intermediate 
descriptions of the desired program. In searching for the next 
rule to apply, we may f ind several rules whose patterns match 
the current description. Most of these rules will be discarded 
because their conditions wil l not be satisfied. Of the rules that 
remain, the system wil l apply one. If that application fails to 
lead to a pr imit ive program, backtracking may occur so that the 
other rules may be attempted instead. The synthesis is complete 
when a pr imi t ive program is generated. 

In order to examine the synthesis process in more detail, we 
present the complete construction of a familiar algorithm. 

In this example we illustrate the construction of the classical 
Euclidean algorithm for computing the greatest common divisor 
gcd(x y) of two nonnegative integers x and y. 

Recall that the specifications for the program are: 

input specification: x > 0 and ) ^ 0 and (x * 0 or y * 0) 

(the arguments are both nonneg^ative and at least one of them is 
nonzero), and 

output specification: gcd(x y) <«* max{z : z\x and z\y] 

(the output is the greatest integer that divides both x and y). 

T h e set constructor {u : ...} is admitted to our specification 
language but is not a primit ive of our programming language. 
We must f ind a sequence of transformations to produce an 
equivalent description of the output that does not use the set 
constructor or any other nonprimitive construct. This 
description wi l l be the desired primitive program. In what 
follows we wi l l exhibit a successful sequence of transformations, 
but we wil l not always indicate how the next transformation at a 
given stage was found, or which sequences were attempted and 
discarded before the successful sequence was found. 

Among the transformations we may apply, let us assume we have 
the fol lowing rules which express properties of division useful in 
developing the desired program: 

For any integers u, v, and w 

(1) 

(2) 

(3) 

u\v »> true if v » 0 
(any integer divides zero) 
u | v and u | w *> u | v and u \ rem(w v) if v * 0 
(the common divisors of v and w are the same as 
those of v and rem{tu v))> and 
max{u : u\v} *> v if v > 0 
(any positive integer is its own greatest divisor). 

In applying these transformations, we will produce a sequence of 
goals; the first wil l be derived directly from the output 
specification, and the last will be the desired program itself. 

Goal 1: Compute max{z : z\x and z\y], 

for any x and y satisfying the input specification. The 
transformation (2) above, 

u|v and u\w -> u\v and u\rem(xu v) if v * 0 , 

applies directly to Coal 1, yielding 

Coal 2: Compute max\z : z\x and z\rem(y x)} 
and prove X K O . 

Note that the condition v * 0 attached to the transformation rule 
produced a condition x * 0 to be proved in the resulting goal. 
We cannot prove or disprove this condition — it may be true for 
some inputs and false for others — so we will consider 
separately the case in which it is false. This case analysis will 
yield a test on the condition x « 0 in the final program. 

Case: x - 0 
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We cannot achieve Goal 2 here, so we examine alternate 
transformations to apply to Coal 1. The rule (1), 

and the basic logical transformation 

P and true ■> P 

yield 

Coal 3: 

Here, the transformation rule (3) applies, producing 

Coal 4: compute y 
and prove y > 0 . 

It is straightforward to prove y > 0, because y > 0 and (x * 0 or 
y * 0), by the input specification, but x = 0 by our case 
assumption. Consequently, we have reduced the problem in this 
case to the task of computing y, which involves no nonprimitive 
constructs. The desired program may simply output 

y-

We have thus completed one branch of our case analysis; the 
corresponding branch of the program is 

We now turn to the alternate possibility. 

Case x=O 

T h e case analysis was introduced in attempting to satisfy the 
condit ion x * 0 of Goal 2. This condition is satisfied in this 
case, and Goal 2 is reduced to 

Coal 5: 

Goal 5 is an instance of our output specification (i.e. Coal 1), 
wjth x and y replaced by x and rcm{y x). This suggests 
achieving Goal 5 by a recursive call ro gcd(x remiy x)), because 
the gcd program is intended to satisfy all instances of its output 
specification. However, the program is only guaranteed to work 
if its input specification is satisfied. To insure that the recursive 
call gcd(x rem{y x)) will compute the desired result, we must 
prove that the input specification is satisfied by the arguments of 
the recursive call, i.e. 

We wi l l call Goal 6 the input condition for the recursive call 
gcd{x rem{y x)). 

Furthermore, in introducing a recursive call we must be 
concerned with the termination of the final prognm. In other 
words, we must ensure that an infinite sequence of recursive calls 
cannot occur in any computation of the program. To prove 
termination we employ the concept of the well-founded set, one 
whose elements are ordered in such a way that no infinite 
decreasing sequence can exist. (The nonnegative integers, for 

example, constitute a well-founded set under the usual greater-
than ordering. The integers, on the other hand, do not.) 

To prove the termination of a program f(x) with one recursive 
call f{t), we must f ind a well-founded set Wf with ordering >f 

such that 

If a inf inite sequence of recursive calls were to occur, the 
corresponding arguments would constitute an infinitely 
decreasing sequence of elements of Wf , contradicting the well-
foundedness of W.. 

Thus, to show the termination of the recursive call 
gcd(x remiy x)) in the program gcd(x y), we must achieve the 
fol lowing termination condition: 

Coal 7: Find a well-founded set K;
 rrf with ordering > . 

such that 

We cannot satisfy Goal 7; in fact, in the case that y < x, 
rem{y x) « y, and there is no well-founded ordering > such that 
(x y) > (x y). Because we cannot show the termination of the 
recursive call gcd(x rem(y x)) that was introduced in an attempt 
to achieve Goal 5, we look for an alternate approach to achieve 
this goal. 

T h e logical transformation 

P and <£-> Q^and P 

applied to Goal 5 yields 

Coal 8: Compute max{i : z\rcm{y x) and z\x] . 

Goal 8 is again an instance of our output specification, Goal 1, 
and we therefore attempt to achieve it by the recursive call 
gcd(rem(y x) x). Actually, the SYNSYS system reaches this goal 
in a slightly different manner to be discussed below. The input 
condition for this recursive call is 

and the termination condition is 

Goal 9 is satisfied immediately: in this case x is positive and 
rem(y x) is always nonnegative. To achieve Goal 10, we take 
W , to be the set of all pairs of nonnegative integers ordered by 
the usual > ordering applied to the first component; this suffices 
because x > rem(y x). The proposed recursive call is therefore 
successful in achieving Goal $ and the program can output 

gcd(rem{y x) x) 
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We have succeeded in transforming' all the goals into primitive 
program segments. The final program, formed directly from the 
outl ined program segments is 

T h i s is a recursive version of the algorithm Euclid provided for 
computing the greatest common divisor. 

Recall that when we fail to achieve Goal 5, 

by a recursive call, we applied a logical transformation 

to the goal and then successfully introduced a recursion. 
Actual ly, the SYNSYS system does not represent the 
commutativity of "and" by a transformation; that property is 
bui l t into the underlying QLISP system. Normally, in QLISP, a 
function / applied to several arguments u]t u2 un is 
represented internally as 5 

an ordered tuple. An expression such as 

however, is represented internally as 

where {ul u2 ... un] is an unordered set, because the order and 

mult ipl ic i ty of the arguments does not influence the value of the 
expression. In attempting to introduce a recursive call, the 
system tried to match the subexpression and{x rem(y x)} of Coal 
5 against the subexpression and\x y) of Goal 1. The QLISP 
pattern matcher discovered two distinct matches, pairing x and y 
wi th x and remiy x) or pairing x and y with rem{y x) and x. 
When the first match failed to lead to a satisfactory recursion, 
the second match was attempted automatically. 
T h e mechanisms employed to construct the gcd program are 
examined more closely in our earlier paper (Manna and 
Waldinger [1977]). A similar mechanism to ours for introducing 
condit ional tests into synthesized programs has been 
implemented by Warren [1976]. A facility for initiating a case 
analysis in a mathematical proof is included in the theorem 
prov ing system of Bledsoe and Tyson [1977]. Our recursion-
introduction device is the same as the "folding" rule of Burstall 
and Darl ington [1975]; their system is interactive, however, and 
they require that the user be responsible for establishing the 
input and termination conditions. 

I V . I n t r o d u c i n g A u x i l l i a r y F u n c t i o n s 

In the preceding example we introduced a recursive call when 
we discovered that a subgoal was an instance of our output 
specification, the top-level goal. In other words, we found that 
the subgoal is of form 

Compute a(r(x)), 

where the top-level goal is of form 

f{x) <- Compute a(x) . 

If the input specification is P(x), then a recursive call f(t(x)) 
could be introduced to achieve the subgoal "Compute a(t(x))"t 

provided we could prove the input condition 

?(t(x)) 

and the termination condition 

Actual ly, in attempting to introduce recursion we compare the 
subgoal not only with the top-level goal, but also with each of 
the intermediate subgoals. If we discover that our subgoal is of 
fo rm 

Compute B(t(x)) 

where 

Compute 0(x) 

is an intermediate subgoal, then we introduce a new auxilliary 
funct ion g whose output specification is 

i 

T h e subgoal "Compute B(r(x))" might then be achieved by a 
recursive call g(t(x)). 

Of course to introduce a recursive call to an auxilliary function, 
we must establish the appropriate input and termination 
conditions. The input specification for the auxilliary program is 
not the same as the input specification ?{x) for the entire 
program /. For, suppose that in developing the subgoal 
"Compute B(x)," we have made several case assumptions "Case 
R,(x)," .... Then the conditions Ri(x), .... Rn(x) will 
be the tests of conditional expressions in the final program /, 
and must be true if control is to reach the call to g(x). Thus, we 
may expect that the conjunction Qj[.v) of all these tests with the 
or ig inal input specification, i.e. 

w i l l be true of the input to g. Moreover, the correctness of g 
may depend on the truth of the above conjunction Q(x), which 
we therefore take as the input specification for g. The input 
condit ion for a recursive call g{t(x))) is then Q(f(x)), i.e. 

In the simple case that the auxilliary function g does not call the 
main function /, the termination condition for a recursive call 
g(t(x)) is analogous to the termination condition for a recursive 
call t o / , i.e. we must 

T h e general case, in which g may also ca l l / , is more complicated 
and wi l l not be considered here. 
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In the next section we illustrate the formation of auxi l iary 
functions in a concrete example. 

V . E x a m p l e 2 : T h e C a r t e s i a n P r o d u o t 

There is no input specification, because the program is intended 
to apply to any two sets. Again, the set constructor {z : ...} is 
regarded as a nonprimitive component of our specificaton 
language. We include in our programming language the 
fol lowing pr imit ive operations; 

set union 
the finite set of elements r1, r?,..„ t 

the empty set 
the test for emptiness 
a specific element of a nonempty set U 
the set of elements of U other than 
head(V) 
the pair with elements u and v 

and i f - then-else and recursion. Let us assume that the 
transformations we can use in transforming the goal include 

(1) Membership expansion 

(2) 

(3) 

(4) 

App ly ing membership expansion rule (1) to the subexpression x 
€ X of Goal 1 yields 

App ly ing the logical if-then-else distribution rule 

/ ( i f P then f, else t2) «> i( P thenar , ) elsef{t2)t 

yields 

We next apply the logical transformation 

false and P »> false 

to the then-clause, and the and-or distribution rule 

to the else-clause, to obtain 

Coal 4: < 

The empty-set introduction rule (2) applies to the then-clause of 
Goal 4 and the union-introduction rule (3) applies to, the else-
clause, to produce 

Goal 5: 

The subexpression {(x* y) : x e tail(X) and y e Y) is an instance 
of our output specification, 

this suggests replacing this subexpression by a recursive call 

cart(tail{\) Y) . 

There is no input condition for the proposed recursive call 
because the desired program has no input specification. The 
termination condition, 

Goal 6: Finrl a wpll-frmnrlpri ser W 

is solved by taking Wrnrl to be the set of all pairs of finite sets, 
ordered by the usual proper containment relation on the first 
component. This ordering is sufficient because X properly 
contains tail(X). 

Goal 5 is therfore reduced to 

Goal 7 

We still have to remove the remaining set-constructor from the 
else-clause. To simplify the exposition we will reduce this 
subexpression in a separate series of starred subgoals 

App ly ing the member expansion rule (1) to the subexpression y 
€ Y yields 

App ly ing the if-then-else distribution rule and the union-
introduction rule (3) produces 
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Coal 9*: Compute if' emi>ty(Y) 

T h e then-clause of Goal 9* is transformed by the logical rule 

P and false -> false , 

and the empty-set introduction rule (2). The first component of 
the else-clause is transformed by the equality-elimination rule 
(4). The resulting goal is 

Goal 10*: Compute 

Now the subexpression 

is an instance of Goal 7*. This suggests that we introduce an 
aux i l i a r y function cart2(X Y) to achieve Goal 7*, and replace 
the above subexpression by the recursive call cart2(X tail(Y)). 
To establish that this proposed recursive call is legitimate, we 
must prove its input and termination conditions. 

Even though the main program cart(X Y) had no input 
specification, the auxilhary function ca,rt2(X Y) is applied in the 
else-branch of the program, for which it is known that X is not 
empty. Th is condition -. empty(X) is therefore the input 
specification for cart2(X Y). Thus, [he input condition for the 
recursive call cart2(X tail(Y)) is simply 

Goal 11* 

Th i s condition is satisfied immediately, because it is identical to 
the input specification for c<zr'2(X Y). 

T h e termination condition for the recursive call car/2(X tail(Y)) 
is 

Goal 12*: Find a well-founded set Wrafll with ordering 

Goal 12* can be achieved by taking Weaft2 to be the set of all 
pairs of f inite sets, with the usual proper containment ordering 
applied to its second component. 

Hav ing established both the input and termination conditions, 
we are justified in introducing the recursive call cart2(X tail(Y)) 
into Goal 10*, yielding 

Goal 13*: Compute 

Because Goal 13* is composed entirely of primitive constructs, 
we have succeeded in constructing the auxi l iary function 

T h i s program computes the Cartesian product of {head(X)} with 
Y. 

T h e aux i l i a ry function car:2(X Y) is intended to satisfy Goal 

7*. a subexpression of Goal 7. We can therefore replace that 

subexpression by a call to the new function, yielding-

Goal 14: 

Now Goal 14 contains no nonpnmitives and we have succeeded 
in constructing the desired program 

V I . L i m i t a t i o n s a n d F u t u r e R e s e a r c h 

T h e preceding example illustrates construction of the simplest 
fo rm of auxil l iary function, which does not call the main 
function. The general case is more difficult, and is beyond the 
capabilities of our current system because of the complexity of 
the termination condition. 

We introduce a recursive call only when a subgoal is an instance 
of a higher-level subgoal For some problems it may be 
necessary to generalize the higher-level subgoal to force the 
match to occur. This situation is analogous to proving a 
mathematical theorem by mathematical induction: it is often 
necessary to generalize the theorem to be proved, so that the 
induction hypothesis will be strong enough for the induction step 
to be proved. Some such generalizations have been performed 
automatically by the theorem-proving system of Boyer and 
Moore [1975], and the program synthesis system of Darlington 
[1975]. 

O u r current SYNSYS only constructs pure LISP programs, 
which produce an output value but do not have any side-effects. 
Systems by Warren [1974] and Waldinger [1977] can produce 
programs with side-effects, but they cannot introduce recursive 
or iterative loops into these programs. We intend to integrate 
both abilities into a single system. 
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ABSTRACT 
S ISP / i i s an i n t e r a c t i v e system whose goa l i s 

the a u t o m a t i c i n f e r e n c e o f LISP f u n c t i o n s f rom a 
f i n i t e s e t o f examples { ( x . , f ( x . ) ) ) where x . i s a 

l i s t b e l o n g i n g to the domain o f the f u n c t i o n f we 
want t o i n f e r . S ISP / I i s a b l e t o i n f e r the r e c u r ­
s i v e fo rm o f many l i n e a r r e c u r s i v e f u n c t i o n s and 
i t s s t o p - c o n d i t i o n . S ISP / l t r i e s t o work w i t h one 
example o n l y . When i t f a i l s , i t asks f o r new ones : 
u s i n g t h e n a method o f g e n e r a t i n g new p a r t i a l s u b -
p r o b l e m s , S ISP/ l i s a b l e t o p e r f e c t i t s g e n e r a t e d 
r e c u r s i v e f u n c t i o n u n t i l i t ge t s a c o r r e c t one. 

I . INTRODUCTION 
In t h i s paper we d e s c r i b e the system S I S P / l 

whose g o a l i s the a u t o m a t i c i n f e r e n c e o f LISP f u n c ­
t i o n s f rom a f i n i t e se t o f examples { ( x . , l ( x . ) ) } , 

where x . i s a l i s t b e l o n g i n g t o the domain o f the 
f u n c t i o n f we want to i n f e r . 

The p rob lem o r i g i n a t e s f rom a more g e n e r a l 
one : how to b u i l d a " L e a r n i n g - Q u e s t i o n - A n s w e r i n g -
System" ( L . Q . A . S . ) u s i n g a f u n c t i o n a l method to 
p r o v i d e an answer to any g i v e n q u e s t i o n . The me­
thod we p ropose i n S I S P / l i s n a t u r a l l y w e l l adap ­
ted to the L . Q . A . S . we are. d e v e l o p p i n g (6 .1 , 17 1. 

I n the f i e l d o f " A u t o m a t i c Programming f rom 
E x a m p l e s " , an i m p o r t a n t p i e c e o f r e c e n t work i s 
THESYS by SUMMERS L 5 J . The ma jo r r e s u l t of t h i s 
w o r k , i s the f o l l o w i n g : u s i n g a sma l l number o f 
w e l l chosen examples 
( ( N I L , f ( N I L ) ) , ( ( A ) , f ( ( A ) ) ) . . . } THESYS i s a b l e 
to i n f e r a r e c u r s i v e e x p r e s s i o n $ e q u i v a l e n t to f 
f o r eve ry x b e l o n g i n g to t he domain o f f . 

Only a s m a l l c l a s s o f f u n c t i o n s can however 
be o b t a i n e d by Summers's me thod , wh i ch works by l o o ­
k i n g f o r a r e c u r e n c e r e l a t i o n between r e p r e s e n t a t i ­
ve p r e d i c a t e s p . o f the g i v e n i n p u t s t r u c t u r e and 

f o r a r e c u r e n c e r e l a t i o n between the map f u n c t i o n s 
m . p r o v i d i n g the g i v e n o u t p u t s f r om the g i v e n i n ­
p u t s . Then , u s i n g a f i x e d p o i n t t h e o r e m , V i s c o n s ­
t r u c t e d . 

A l t h o u g h Summers's method i s v e r y p o w e r f u l i t 
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has f o u r i m p o r t a n t d r a w b a c k s : 
1 . - The c o n s t r u c t e d e x p r e s s i o n < p i s n e c e s s a r i l y 
r e c u r s i v e : f o r i n s t a n c e the i d e n t i t y f u n c t i o n w i l l 
be i n f e r e d by V ( x ) » if X * N IL t h e n NIL 

e l s e CONS (CAR(x ) , ^ ( C D R ( x ) ) ) 
2 . - THESYS needs w e l l chosen examp les , w h i c h i n 
p a r t i c u l a r must c o n t a i n the s t o p c o n d i t i o n o f t he 
r e c u r s i v e f u n c t i o n V . For i n s t a n c e , the c o n s t r u c ­
t i o n o f the f u n c t i o n REVERSE r e q u i r e s the f o l l o w i n g 
s e t o f examp les : 
{ ( N I L + N I L ) , ( ( A ) - ( A ) ) , ( ( A B) - (B A ) ) , 

( (A B C) + (C B A ) ) } 
3 . - The f u n c t i o n t o be c o n s t r u c t e d has t o p r e s e n t 
o n l y one " i t e r a t i v e l e v e l 1 1 . For i n s t a n c e , THESIS 
f a i l s t o c o n s t r u c t a c o r r e c t f u n c t i o n c o r r e s p o n d i n g 
to the examp le : (P Q R S) -> (P P Q P Q R P Q R S) . 
4 . - When THESYS has to s o l v e a d i f f i c u l t p r o b l e m , 
i t does n o t t r y t o g e n e r a t e a p a r t i a l , s i m p l e r 
p r o b l e m f o r w h i c h i t cou ld e i t h e r f i n d a c o r r e c t 
s o l u t i o n o r perhaps use a knowledge p r e v i o u s l y 
s t o r e d i n a d a t a base by the sys tem i t s e l f . Thus , 
THESYS cannot be e f f i c i e n t l y used in a L . Q . A . S . 
w i t h o u t i m p o r t a n t m o d i f i c a t i o n s . 

The method we propose in t h i s paper i s v e r y 
d i f f e r e n t i n p a r t i c u l a r , i t has the b u i l t c a p a c i t y 
t o use a P r o f e s s o r i n i n t e r a c t i v e mode. I t does 
no t l i e y e t o n any t h e o r i c a l g roundwork , b u t a l l o w s 
us to overcome some o f the p r e v i o u s d rawbacks , a l ­
though new ones appea r : 
- r e c u r s i o n i s no t a u t o m a t i c a l l y i n f e r e d by the 
s y n t h e s i s a l g o r i t h m ; f o r i n s t a n c e , u s i n g the exam­
p l e ( (A B C) -* (A B C ) ) , STSP/1 i n f e r s the f u n c t i o n 
<p v*p ( x ) = x f o r any x . 
- f o r some " s i m p l e " f u n c t i o n s , S'ISP/1 needs o n l y 
one example ( x , f ( x ) ) . 
I n the case where a r e c u r s i v e e x p r e s s i o n i s i n f e r e d , 
the s t op c o n d i t i o n i s t h e n found b y S ISP / l i t s e l f . 
However the. l i s t x must be l o n g enough to be r e ­
p r e s e n t a t i v e o f t he f u n c t i o n f . For i n s t a n c e , 
REVERSE is o b t a i n e d u s i n g the o n l y example 
( (A B C D) + (U C B A ) ) , bu t is no t o b t a i n e d w i t h 
( (A B C) > (C B A ) ) . 
- when the f u n c t i o n f is "more c o m p l i c a t e d " S ISP / l 
f a i l s t o c o n s t r u c t a c o r r e c t f u n c t i o n w i t h o n l y one 
example and i t t hen t r i e s t o work w i t h two examp les . 
- when the f u n c t i o n f is "much more c o m p l i c a t e d " , 
S I S P / l g e n e r a t e s a new p a r t i a l s i m p l e r p rob lem 
(y> & ( y ) ) where y is d e f i n e d in te rms of x and 
g ( y ) i s d e f i n e d i n terms o f f ( x ) . T o s o l v e t h i s 
new p r o b l e m , S ISP / l sometimes needs a new example 
( x 1 , f ( x ' ) ) w h i c h i s used t o deduce a n example 
( y ' » g ( y ' ) ) « The i n t e r a c t i o n i s o n l y used i n the 
sense o f a s k i n g f o r new examp les , when n e c e s s a r y . 
S I S P / l i s t h u s e x t e n s i b l e and has the p o t e n t i a l i t y 
to use a s e l f c o n s t r u c t e d knowledge d a t a b a s e . 

Some o b j e c t i o n s can be r a i s e d to our i n t e r a c ­
t i v e me thod : 
- when a f u n c t i o n f needs s e v e r a l examples to be 
i n f e r e d , the p r o f e s s o r sometimes has to g i v e an 
a p p r o p r i a t e sequence o f examp les . 
- we do no t e x a c t l y know the c l a s s of f u n c t i o n s 
w h i c h S I S P / l i s a b l e t o i n f e r . However, i t seems 
to be much l a r g e r t han THESYS one . For i n s t a n c e 
( ( P Q R S ) - » ( P P Q P Q R P Q R S ) ) i s i n f e r e d b y 
S I S P / l u s i n g o n l y one example whereas t h e HALF 
f u n c t i o n ( ( P Q R S T U) + (P Q R ) ) , wh i ch is i n f e r e d 
by THESYS, r e q u i r e s two examples by S I S P / l . I n f a c t , 
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we hope t h a t SISP w i l l be ab le to i n f e r a l a r g e r 
c l a s s o f l i n e a r r e c u r s i v e f u n c t i o n s . 

I I . GENERAL DESCRIPTION OF THE METHOD 
1. - L§ngu§ge 
S ISP / I i n f e r s f u n c t i o n s d e f i n e d o n c h a r a c t e r 

s t r i n g s " A B C D . . . " w h i c h w i l l b e r e p r e s e n t e d b y the 
l i s t (A B C D . . . ) . 

SISP/1 s y n t h e t i z e s L I S P - f u n c t i o n s b u i l t w i t h 
the f o l l o w i n g b a s i c f u n c t i o n s , d e s c r i b e d here b y 
ex amp1 e s : 
LCAR: (A B C D) -* (A) CDR: (A B C D) -> (B C D) 
LRAC: (A B C D) -+ (D) RDC: ( A B C D) -> (A B C) 
CONC: (A B ) , (C D) ■> ( A B C D ) 
CONCT: (A B ) , (C D ) , (E F) + (A B C D E F) 
PREF: ( B C ) , ( A B C D) •> (A) L P r e f i x of (B C) in 

( A B C D) ] 
SUFF: (B C ) , (A B C D) ■+ (D) I S u f f i x of (B C) in 

(A B C D ) j 
and a c o n t r o l s t r u c t u r e u s i n g COND and NULL. 

2 * ~ Not ion_of_tYp_e 
A t y p e is a se t o f l i s t s w h i c h can be d e f i n e d 

by r u l e s w h i c h are summarised as f o l l o w s [6 1: 
a ) the s e t o f known i n p u t s " x " and t h e se t o f o u t ­
p u t s " f ( x ) M o f the f u n c t i o n f t o be s y n t h e t i z e d are 
t y p e s . 
b) i f X is a t ype and f a LISP f u n c t i o n , t hen the 
se t o f o u t p u t s o f f r e s t r i c t e d to X as i n p u t is a 
t y p e . 
c) i f Y is a t ype and g a LISP f u n c t i o n t h e n the 
s e t X of x such as g ( x ) C- Y i s a t y p e . 

3«~ Segment^ ] . i_on_pat tern 
L e t f be a f u n c t i o n to be s y n t h e t i z e d and 

( x , f ( x ) ) a n example o f " i n p u t - o u t p u t " o f t h i s 
f u n c t i o n . 

SISP/1 uses a g e n e r a l h e u r i s t i c to c r e a t e an 
e x p r e s s i o n o f the f u n c t i o n : 
a) s e g m e n t a t i o n of s t r i n g s x and y = f ( x ) i n t o 
t h r e e c o n s e c u t i v e segments such t h a t : 

CONCT ( p x , c , sx) ■+ X 
CONCT ( p y , c, S y ) -► y 

where c d e n o t e s the l a r g e r s t r i n g common to x and 
y, px and py deno te the p r e f i x s of c in x and y, 
sx and sy d e n o t e t h e s u f f i x s of c in x and y. 
b ) b u i l d i n g o f r e l a t i o n s between these segments . 

A " S e g m e n t a t i o n P a t t e r n " o f ( x , y ) , f o r a l l x 
and y , i s d e f i n e d as the ne two rk shown i n f i g u r e I . 

We can see on t h i s n e t w o r k : 
- seven nodes r e p r e s e n t i n g t y p e s r e s p e c t i v e l y a s ­
s o c i a t e d t o the s t r i n g s x , y , c , p x , p y , s x , s y . 
- t w e l v e r e l a t i o n s be tween nodes . Each r e l a t i o n 
c o n s i s t s o f a f u n c t i o n and a scheme ( I , » I « , • • •> 

I -> J) w h i c h i n d i c a t e s t he i n p u t nodes I , I , . . . , 

I i n t h i s o r d e r and the o u t p u t node J . T h i s o r d e r n r 

i s r e p r e s e n t e d on the ne two rk by a d o u b l e a r r o w . 
Note t h a t f u n c t i o n s FX, FY, GPX, GPY, GSX, 

GSY a re b u i l t by SISP/1 u s i n g t h e b a s i c f u n c t i o n s 
LCAR, CDR, LRAC, RDC, and the c o m p o s i t i o n r u l e . 
They a r e choosen o f the l e s s p o s s i b l e c o m p l e x i t y 
( t h e s m a l l e s t number o f b a s i c f u n c t i o n s ) . 

I n some cases , the s e g m e n t a t i o n p a t t e r n i s 
s i m p l e r : 

- when one or s e v e r a l s t r i n g s a re empty ( N I L ) , 
. . t h e a s s o c i a t e d nodes a re suppressed f r o m t h e 
p a t t e r n . 

- when two s t r i n g s a r e e q u a l , t he a s s o c i a t e d 
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nodes are jo ined together . For ins tance, i f 
x and y are the same, the pa t te rn is reduced to one 
node; if x and y have no common p a r t , the pa t te rn 
is reduced to only two nodes. 

4*"" §Y.£lt}£sis fron}_on£_exam£le 
The s y n t h e s i s c o n s i s t s o f t h r e e s t e p s : 

a) SISP/1 g e n e r a t e s a n e t w o r k ( c a l l e d a " S e g m e n t a ­
t i o n S t r u c t u r e " ) b y t he f o l l o w i n g p r o c e s s : 

(1 ) Genera te the s e g m e n t a t i o n p a t t e r n o f 
( x , y ) . T h e g e n e r a t i o n g i v e s t he two s e t s o f p a i r s : 
{ ( px» p y ) , ( c , p y ) , ( s x , p y ) } K p x , s y ) , ( c , s y ) , ( s x , sy ) } 

(2 ) As l o n g as py and sy a r e n o t empty , choose 
one p a i r i n each se t by a h e u r i s t i c way ; f o r each 
o f these p a i r s , rename i t a s ( x , y ) and g o t o s t e p 1 . 
b ) SISP/1 l o o k s a t the s e g m e n t a t i o n s t r u c t u r e f o r 
a l a t t i c e i n w h i c h t h e m i n i m a l and f i n a l nodes are 
r e s p e c t i v e l y X and Y ( t h a t is x and y t y p e s ) . T h i s 
l a t t i c e i s s t e p w i s e c o n s t r u c t e d u s i n g A l g o r i t h m 1 , 
d e f i n e d a s f o l l o w s : 
Def i n i t i ons : 

- LAT i s the c o n s t r u c t e d p a r t o f t h e l a t t i c e 
a t any s t e p (excep t i n the f i n a l s t e p , LAT i s n o t 
a l a t t i c e ) . 

- an i n c o m p l e t e node of LAT i s a node such 
t h a t t he r e l a t i o n e n d i n g a t t h i s node ( i n LAT) 
owns some e n t r i e s w h i c h a re n o t connec ted to X . 
These nodes are c a l l e d u n s a t i s f i e d e n t r i e s . 

- BEG (Z) is the se t of nodes in LAT w h i c h 
a re l e s s t h a n Z and w h i c h a re no t u n s a t i s f i e d 
e n t r i e s . 

- P is a " p a t h " f r om BEG (U) to V, where U 
and V are nodes of LAT, i f P is an o r i e n t e d p a t h 
s t a r t i n g f rom one node b e l o n g i n g to BEG (U) and 
e n d i n g a t V . T h i s p a t h may c o n t a i n i n c o m p l e t e 
nodes t o g e t h e r w i t h t h e i r u n s a t i s f i e d e n t r i e s * 
Example of LAT: 

Nodes 6, 7, 11 a re i n c o m p l e t e nodes 
Nodes 12, 13, 14, 15 a re u n s a t i s f i e d e n t r i e s 
A l l o t h e r s nodes are comple te nodes . 
BEG (9 ) - {X , 1 , 2 , 7, 8} 

A l g o r i t h m 1 : 
1 . LAT «- X 
2. Look f o r a p a t h P between X and Y. 
3. Add p a t h P to LAT. 
4 . L f t h e r e i s no i n c o m p l e t e node i n LAT t h e n 

s t o p 
e l s e s e l e c t the m i n i m a l one and c a l l i t N . 
( I t can be d e m o n s t r a t e d t h a t A l g o r i t h m 1 
g e n e r a t e s a se t o f i n c o m p l e t e nodes w h i c h 
i s t o t a l y o r d e r e d o n L A T ) . 
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