Session 18 Automatic Programming

A HEURISTIC APPROACH TO PROGRAM VERIFICATION

Shmuel M. Katz and Zohar Manna

Department of Applied Mathematics

The Weizmann Institute of Science
Israel

Rehovot,

Abstract

We present various heuristic techniques for use in
proving the correctness of computer programs. The
techniques are designed to obtain automatically the
"inductive assertions" attached to the loops of the
program which previously required human "understanding"
of the program's performance. We distinguish between
two general approaches: one in which we obtain the
inductive assertion by analyzing predicates which are
known to be true at the entrances and exits of the loop
(top-down approach), and another in which we generate
the inductive assertion directly from the statements
of the loop (bottom-up approach).

l. Introduction
The desirability of proving that a given program
is correct has been noted repeatedly in the computer
literature, Floyd [1967] has provided a proof method
for showing partial correctness of iterative (flow-
that
a given input-output relation is satisfied.

chart) programs, is, it shows that if the program
terminates,
The method involves cutting each loop of the program,
attaching to each cutpoint an "inductive assertion”

(which |s a predicate in first-order predicate calcul-
us), and constructing verification conditions for each
path from one assertion to another (or back to itself).
if all

Elements of these tech-

The program is partially correct the verifica-
tion conditions are valid.
niques have been shown amenable to mechanization.

King [1969], for example, has actually written a 'veri-
fier' program which, given the proper inductive asser-
tions for programs written in a simplified Algol-like
Thus,

fairly clear that the parts of this method which in-

language, can prove partial correctness. it is
volve generating verification conditions from inductive
assertions and then proving or disproving their vali-
dity is a difficult but programmable problem. However,
as King puts it, finding a set of assertions to 'cut'
each loop of the program "depends on our deep under-
standing of the program's performance and requires some
endeavor".

sophisticated intellectual

In this paper we show some general heuristic tech-
niques for automatically finding a set of inductive
assertions which will allow proving partial correct-
ness of a given program. More precisely, we are given
a flowchart program with input variables x (which are
not changed during execution), program variables y

(used as temporary storage during the execution of the

500

program), and output variables z (which are assigned
values only at the end of the execution). In addition,
we are given "input predicate" $(x), which puts re-
strictions on the input variables, and "output predi-
cate" <Kx,z), which indicates the desired relation be-
tween the input and output variables. Given a set of
cutpoints which cut all the loops, our task is to at-
tach an appropriate inductive assertion Q; to each

cutpoint .
We distinguish between two general approaches:
top-down approach in which we obtain the Induct-

(a)

ive assertion inside a loop by analyzing the predicates

which are known to be true at the entrances and exits
of the loop, and

(b)

ductive assertion of a loop directly from the state-

bottom-up approach in which we generate the in-

ments of the loop.

For "toy" examples, having only a single loop, it

is generally clear that the top-down approach is the

natural method to use. However, this is definitely not

the case for real (non-trivial) programs with more com-
plex loop structure. |In this case some bottom-up tech-
niques were found indispensible. Most commonly we have
found it necessary to combine the two techniques, with

the bottom-up methods dominant.

Preliminary attempts to attack the problem of find-
ing assertions have been made by Floyd [private commun-
and Cooper [1971].
similar to some of our top-down rules have been discov-
ered Independently by Wegbreit [1973].
[1972],
program's statements which is,

ication], Heuristic rules basically

Elspas, et al.
used "difference equations" derived from the
in essence, a bottom-up
approach.

We handle programs with arrays separately, since
generating assertions involving quantification over
Thus

in Section |l we discuss heuristic techniques for flow-

the indices of arrays requires special treatment.

chart programs without arrays, while in Section |Il we
extend the treatment to programs with arrays. In Sec-
tion IV (conclusion) we discuss open problems and pos-
sible implications of our techniques. Related problems
where these approaches seem applicable include proving

termination of programs, and discovering the input and

output assertions of a program.

Our emphasis in this paper is on the exposition of
the rules themselves and we are purposely somewhat
vague on other problems, such as correctly locating
the cutpoints or ordering the application
of the rules. Though we do not enter into details, we
assume that whenever possible we conduct immediate
tests on the consistency (with known information) of a
new component for an assertion as soon as it is gene-
rated, and that algebraic simplifications and manipu-

lations are done whenever necessary.

Il Heuristics for

A. Top-down approach.
We begin by listing the top-down rules, which may

Programs without Arrays

be divided into two classes: entry rules and exit

rules.

1. Entry rules.
vious, but provide valuable information in a surpris-

These rules are intuitively ob-

ing number of cases.
rule En'1. Any conjunct* in the input predicate $(x)
may be added to any Q, It need not be proven since

the input variables are not changed inside the program,

rule En2. Any predicate known to be true upon first
reaching a cutpoint i should be tried in Q.

2. Exit rules. For simplicity in the statement
of these rules, we assume that a cutpoint is attached
to the arc immediately before an exit test of the loop.
Thus we may consider an exit from a loop to be of the

form

where t. is the exit test, p, is some conjunct of a
predicate known to be true when the exit test first
holds, 1 is the cutpoint on the arc leading into the
exit test, and Q1 is the assertion which we wish to

discover. We attempt to extract information from p.

If a predicate is expressed as a conjunction
AAAN ... Ay , then each A is a conjunct, of the
predicate.

501

rule Ex3,

and ty in order to find an assertion for the cutpoint
i. The exit rules will lead to a predicate R which is
guaranteed only to satiafy

ti AR> Py
we then must show that the R obtained 1s indeed a va-

1lid assertion,

rule Exl. If p; is not identical to t;, let R be Py
iteelf.
Tule Ex2. (transitivity) Although this rule could

be applicable to s wider class of operators and rela-
tions, we restrict rthe treatment to inequalities.

2 and tj has the form
are any terms and A,B are

Suppose p, has the form 8, An
b13b2 , where aj and bj

equality or inequality relations. If one of the a ‘e

is identical to one of the bj‘s. try to find an spi
proprinte inequality or equality relation R so that
tI ARD Py becomes true. For example, 1if ty is
X < Y, and L is x < (y1+l)2. then we let R be
¥, € (y1+l)2 since x <y, Ay, % (y1+1)2=x < (yl-ﬂ)2
is true.

We may extend rule Ex2 and use in our search for
R any conjunct aitached to cutpoint { which has some-
how been previously verified (i.e,, it is true upon
entry to the loop, and is invariant going around the
loop, but doss not yet imply the exit predicate pi).

For example, if the conjunct ¥, = ¥y % has been

previously verified at cutpoint i, and ii is the testr
¥y - 1, while p, is Y, <X, then we may try R being
V) S ¥y esince y, myax, Ay, 1Ay ¥R Xy
Another posklble extension of rule Ex2 is to search
for additional information on the variables in the
exit test. We seek information which along with ty
would {mply stronger restrictions on the exit values
of those varilables, For example, suppose £y is
¥, 2 X, e koow that ¥, < % upon firet reaching 1
(i.e., the loop s executad at least cnce), and ¥ is
incremented by 1 at each pass through the loop., Then
we let r.*be b5 @ % since Y, XAyl S XDy =%
in the integers. Thus, rather than looklng for K sa-
tisfying ¥y ExA R> Py it suffices to find an R
satisfying y, =2 A R D Py
If rule Exl fails, a natural "wesker" at-
tempt could be to let R be ty 5Py This rule is
sometimes of practical use; however, it says very
little about the computation taking place in the loop.
Our strategy would give this rule a low priority, try-

ing other rules with stronger resultant claims first.

It Is possible to continue to design rules for
obtaining R for specific forms of p. , but since our
aim is to explain the general tone of these techniques,
we will not go into further details in this direction.
B. Bottom-up Approach.

All of the rules given above have in common that
they expect to be provided with some information on
either what conditions were true upon entering the
loop or what conditions were expected to hold upon
completing the loop (or both). However., it is possible
to produce conjuncts of the assertion Q without con-
sidering predicates already established elsewhere in
the program. In order to accomplish this goal we
shall look for a predicate which is an invariant of
i.e.,

the loop L , it remains true upon repeated exe-

cutions of the loop.

Clearly, any conjunct in the inductive assertion

of a loop must be an invariant of the loop. However,
in the top-down rules this is usually the last fact
which is established about a prospective assertion.
In the pure bottom-up approach, assertions which arise
"naturally" from the computations in the loop are di-
rectly generated — and only afterward checked for

relevance to the overall proof.

Most invariants may be traced back to the fact
that at any stage of the computation, those assignment
statements which are on the same paths through the
loop have been executed an identical number of times,
and this is a 'constant' which may be used to relate

the variables iterated.

For an assignment statement y. m*sm f(x,y) we let

y1 denote the value of y. after n executions of the

statement, while y,(01 indicates the "initial" value of
y1 upon first reaching a given cutpolnt of the loop.
Our technique for finding invariants involves
constructing an "operator table" in which we record
useful information for each operator. Among the eitries
for an operator are its definition (using "weaker" ope-
rators), a description of a general computation after
n iterations, and other common identities which faci-
litate simplifications. For example, for + our table
will include the fact that for an assignment statement
T k,\u15

is the value of k before the j-th itera-

of the form y; + y;+k, in general y,M=y(®+

where k"’

tion of the assignment statement. Important identi-

ties are also noted including that for a constant c

n n ..

I c»cn, and that £ i» '-—* . Rules for producing
i-1 i-1 2

invariants linking variables which receive assignments

on different paths through the loop are presently

being developed. Here we present rules only for the

502

simple case of varlables changed only on the same
pathe through the loop.
rule Il1.

(invariant) To congtruct an invariant,

given a group of assignments*
Graeesy) + (5GN,LE G,

we canelder those variables Yy 1gJ s, which are

not changed elsewhere in the locop. Using the operator

table we express the value of each yj after n iterg-
(n)

yj -
commen to two expressions in order to obtain a usable

lin). The relatlon ob-
tained after subatiruting the initial values of y; snd
¥, at cutpoint A for yio)and YIEU}
removing the auperscript (n) is an Invariant of the

It also holds for the initial values of the

tions, i.se, We then attempt to find a factor

relationship between yj(_n) and y
» respectively, and

loop,.
variablea at A end chua may be added to Qﬁ.
For example, if y, and ¥, are changed only in the
asgsignments (yl,yz) + (yli-:nc-y3 » y2+5-y3) ingide &
n
loop, then yfn) ~ ny) *x0] ygi-n and y;n) -
i=]
n
yém + 5 E ygi-l). Therefore for x # O,
i=]
(m}__(0) (n}_, (0}
Wwh _3 SUD Y N
* 1e1'? 3
that the initial values of * and y, upen first reach-
(©) toy
1

the invariant 5():1-1) =2y

Aspuning we know

ing the cutpoint are ¥y = 1 and ¥ « (J, we obtain

)

(¥11¥,) « (2°7,,¥,/2) chen y,

I the agsignments were
- yfo)' N2 and

i=]1
n
Yéﬂ.} - 950) o1 (%), Simplifying, we obtain an) =
i=l
(a}
¥
Y(O),Zﬂ and y(n) =y®, L , thersfore - =
1 2 2 ,m)
RO Y
- 2“‘ - ...2_ . Thus given that y(O} = 1 and Y(O) -
y(n) 1 2
2

x(x ¢ 0) we get that ¥,'¥, = x1s an invariant,

rule IZ, (n) may be expressed in terms of
1y ¢ (n)
only ¥, and n, i.e,, ¥y

Whenever ¥y
- f(yic),n) , and the value
of y(m at the cutpoint A ie known to be m, then re-

placing y:{_o)
we may obtain the invariant 3n(n 2 0 A ¥y * flm,n)].

by its value and removing superscript {n),

Variables iterated simultaneously may be quantified by
the same n.
3nin 2 0 A ¥ - 2 a ¥, = x/2") is ap inverisnt of the

For axample, in the second example of Il,

loop.

* The above notation implies that the valve pf
f 1(5:'.;) is assigned to y, for all i's simulranacus-
1y.

Our heuristic rules are all relevant to programs
having an arbitrary number of loops, and an arbitrary
complex 'topology', although, of course, they will
yield valid inductive assertions more often and more
immediately in a simple program.

One of the problems in applying the rules is deci-
ding what order is preferable. In particular, it has
been found that many terms of the assertion may be ob-
tained both by the bottom-up rules and by repeated use
of the top-down rules. However, usually one method
will yield the result immediately, while considerable
effort is expended if the other method is applied
first. Experience shows that there is a need for in-
teraction between the top-down and bottom-up ap-
proaches. For example, we may use established invar-
iants to deduce the relation R in the top-down rule
Ex2, and on the other hand, we may direct the search
for particular invariants based on variables or opera-

tors which appear in p.
C. Examples, We demonstrate the rules listed so far
on a few examplesz,

Example 1:
Figure 1 computea z = l/;] for every natural number x,

Integer &quare root. The program in

That 18, the final value of z {8 the largest integer k
such that k g ¥x. We show partial correctness for
#(x) + %3 0and $(x,z¥ ¢+ 22 £ x A x < (1), Clearly
yf £ HAXE (yl-i-l)2 is required to be true after exit
from the loop., We first try the top-down approach. By

rule Exl we attempt adding the conjunct y? < x toQ .,

The verification condition x 3 0 = yi ¢ x i8, in faer,
true for the initial value of y, at the cutpoine, i.a.,
¥, = 0, TFor the moment we do not attempt to verify
that it is an invariant of the loop. Considering the
second conjunct of the predicate, x < (y1+1)2. an
actempt to apply €xl faile becawse this relation is not
true for the values of the variasbles when the cutpoinc
is first reached. Since the exit test ¥, > x and the
predicate x < (yl-l-l)2 both eontain x, we apply rule
Ex2. We find that y, % (y1+1)2 ig the desired relation
since Y, > x Ay, € (y]+1)2 I x« (y1+1)2 is & valid
statement, ¥, ¥ (yl+1)2 ie satimfied for the initial
values of the variables. However, an attempt to prove
the validity of Q : yi g uA yz % (yl+1)? does not yet
succeed,

a4t this point we try to upe the bottom=up approach,
l.e. try to find invariante. We note that the assign-
ments along one pass of the loop may be combined into
the single group of assignments (yl.y?.ya) -
(¥ 41y, 4y 42, y,42)
cbtain the equations

From the operater table we

n
@ ey b 1-omea
{=m

n n
@ y® =y OL] Ny L |G
1w 1=1

)
(3 yg“) . y§0} + 21 2= 42 .
j-

(1-1)

3 in

We may use equation (3) to subptitute for ¥y

()'] 5Y2,3"3) +« (0,0,1)

-l
-]

yZ"Y2+Y3

(yoyy) = (yy Ly, +2)

- *=Q

_-y§ £X AR (y]+l)2

ey

-~ ~—p(x,2)t 22 € X A x < (241)2

D

Figure 1.

Integer Square-Root Program.

equation (2), and eimplify to

ey s . 1+zu+if [142(1-1)] = 142ntn + 2BS0D
a
= 1+2ntn? = (1+n)2 |

In the simplification above known facts about the sum-

mation operator {cbtained from the operator table) are
used.

Since yf“)

(a

= n , we obtain

- 1+2y(“) - (1'+'3f1m?'2

for every n, i.e., ¥, = 1+2y1 Ay, ™ l'l-l-yl)2 aTe in-
variants of the lopp and should be asdded to the trial
Q. Qbecomes y2 € x Ay, = 29,41 A y, = (y,+1)2,
which will prove the partial correctness of the prog-
Tam,

Example 2: Uivision within tolerance, The program of
Figure 2 divides x, by x, within tolerance Mg We try

firet to find invariants, Considering the assignments

(ya'yg) - {yz.fz.ya/Z) , we obtain the eguations y(n)

cousider the assignwents (y ,y) < (Jfl"l')'z 1,72 In

ordar to be able to find a common factor in the equa-

{m) {n}

tions for ¥y and y, " we first eliminate ¥y by using

the already established invariant y, = xzoyafz, obtain~
ing (¥y,y,) < (yybu,ey f2.yh+?3/2)- How we get

. %1 n (D
{ i
an) - Y:)+x2121 3 5 and y:n} - y()+izl 3

e

Eliminating the common term I ;j—f*—
iml

, the result is

W) _g(©)
};:_}__*_- Yi“}—yjoj Since there are two possible
2

paths to initially reach the cutpoint, che pair

)

X
(¥, +¥,) may be aeither (0,0} or {~2E ' ';_'}. In

(m) _

either case, the simplified expression becomes y

(n)fx Therefore y, = y1!x2 is added as & conjunct

to the trial Q.

(0) 2 nd y{n) - y(0) Therefore Since no further information can be gained from the
72 2 3 invariaot rules, we turn to the top=-down rules. We have
yéu) 1 Y;a) o %2 (0) ¥, € x11x2 A x]!xz - Xy <y, true upon exit from che
Y(O) - 2_11 = Y{\‘J) - Simee y, " = T and y, at loop. Trying Exl on y, ¢ xl)’xa, the conjunct cap be
2 3
the cutpoint, we obtain zy(ni -x '¥§n)- Thus 2y, = seen to hold initially at the utpoint by cases, since
%,'¥, 15 the first conjunct in the trial Q. Next we 1f %, < x,/2 then y, s initfally 0 at the cutpoint and
! START ,
o0 - 20 Osx<x, A Dex,
(y)5754755%,) « (0,%,/2,1,0)
Iy
X TRt o
F
(Yliyk) + (Yl+?z!yu+7gf2)
(y22¥3) + {¥,/2,54/2)
[
i
- ya < xa
}'u"‘l'f"z A xlszj-x3<yh ——e=d T F

z+yk

W{x,z):zex Ry A X IR Rz - a o n

Figure 2, Real Division within Tolerance Program,

504

by ¢ we have 0 £ ‘;,’2* vhile 1f %, » :212, then

1/2 % xlfx2 and y, is 1/2 at the cutpoint. Thus by
Ex] we may add y, € xlfx2 to 0. The second conjunct,
%) /%, - %, < y,, on the other hand, does not hold ini~
tially so we try Ex2.
tion iz found to be x,/x, - ¥, ¢ y, since y, < x
~ ¥y £ YD xlfxz - Xy ¢ ¥,
LA £y, holds for the initial values at the
cutpoint o we add it to Q,

3 A

xl{x2 We note that
xlfxz -

Q ia now ¥,
- A -
Yo = ¥y/%, Ay, € X /0, AR 3 ¥y
prove the program partially correct.

Example 3:
of Figure 3 is a simulation of how integer division

x2¢y3/2 A
£7, which will

Hardware (integer) division. The program

might be carried out by a computer, The 'divisfon by
2' represents & 'shift-right’, and the 'multiplication
by 2' a 'shift=left'. Although the second lovp of
this example 15 similar to the program of Example 2,
we bring it in order to 1llustrate how programe with
more than one loop mey be handled, and how compli-
cations which could arise from integer division may be

The necessary 'transitive' rela-

golyed with the aid of the invariant ruvle, oyr stra-
tegy 1a to obtain a meximm amount of information from
the first loop, which will be true upon entrance to the
second laop. Then top—down rules can be yped copven-
iently for cthe second loop.

In the first loop we attempt to link y, and y,, ob-
(o) . 102™ wntch leads to the
invariast y, = x,+y, by rule Il.

taining y - x2-2n and y
By rule 12 we aleo
have the conjunct 3nln 2 0 A ¥, = x2-2“ AYy = 2™, we
now consider top-down rules., Since y, 3 0 A ¥, 0
holds initially, it ie added by rule En2 to Q,, which
thug becomes the valid invariant y, ~ X,.y, A

Infn 3 0 A vy = x2-2n AYy® 2"1 A ¥, 30ay, 20

All this information, as well as y, § ¥, 18 a predicate
p, true upon first reaching the second loop. Recell
that for the entrance rules we consider the predicates
true upon first reaching the cutpoint 1, Thus the in-
farmation in p, must be 'moved' along the paths to cut-
point 2. ¥y, 7 0 A Y, =X,y A

Inlr 3 DA Y, = x2-2n Ay, ™ 2"] are unchanged by

------- ¢yt x, 20 A%, >0
(Tya¥pe ¥y, (xy,%,01,0)
- q,

F }'1 ¢ y?_ T ,___pl:y2=x2-y3 A

afnz A yzsxz-z“ A 33=2n] A

¥ 20 Ay, >0 A
Yy £ ¥,

P2iX) " ¥xptyy A Ofyy A yyex,

(zl,zz) -

w(x,zj:xl-sz-xz+zlA0sz1A21¢x2 ==

HALT

Figure 3.

505

(¥,199) + (¥t 2,y3:2)

-

Hardware (Integer) Division Program.

either path to 2, while 7, might be changed but Y, 2 0
If the
right path is taken, ¥ £y, is atrengthaned to

cen be meen to remain true by inspection.

¥y < ¥p, while the left path may be uged only if

yl = yz'
¥; > @ is knowm, in efther case ¥y 5 ¥, 8t cutpoint 2.

In this case Y, i@ eet toc zero, and since

At this point, all the necessary assertiona for hand-
ling the second loop are already given explicitly in
the antry and exit predicates. Using rule En2 we ob-
tain @, : ¥y, = x,'¥q A 3nln 2 0 A ¥, " xz-Zn Ay, 2“]
Ay, 304 ¥, * G A ¥, < Vp» while from Exl we add

X, " ¥, x4y, to Q. Thie qz will be & good inductive
agsartion.

The rule involving n, obtained by I2, {8 necessary
here in order to guarantee that the conjunct ¥, " X,"Y3
is valid, beceause of the "shift-right' diviesion. We
clearly could have obtained some of the conjuncts in Q
by other rules, For example, ¥, < ¥, could have been
obrained by rule Ex2 (because P, ¢ontains ¥ < Ep
¥o ™ %,V is an Invariant, and ¥y = 1l is the exit
test), or x, yq-x2+yl by rule I1.

III. Heuristliecs for Arrays

Tha problam of finding zasertions involving errays
ie guite different from that of finding assertions for
pimple variables because en array assertion geperally
will be an entire family of claims. Thie is the rea-
son moRt assertlions about arrays will involve quanti-
fiers. All rules in Section 1II continue, of course,
to be applicable for those variables not in arraye.

In additiom, rules Enl, En2, Exl and Ex) tmay be used
for asasertions with arravae.

Underlying the heuristice which follow is the
sssumption that arrays in & progrsm are ueed “properly’,
i.e.; to treat a large mmber of variables in a uni-
form manner, and not just as a collection cf unralated
variables fulfilling diffarent roles in the program.
Tha further agsumption ie ugually made that an asger-
tion about an array will be of the form

¥i[{<j-index> 5 <j-array>] or Ij[<i-index> A <j-array>],

where <]-index> is a clalm on the indices of the array
and <j-array> is the claim which is made about the
array elements themselves. We often separate the two
problems of finding the <j-index> and of finding the
<j=array>.

As in Section II, we distinguish betwaen the cop-
dowm and bottom—up approaches,

In order to apply somt of tha array rulas it ia

convenient to first determine the "one-pass" eesertion,

506

i.e., the claim which can be made about the effect on

the arrays of one circuit through the loop. This claim
is often not difficult to establish, in particular for
loops which do not contain other loops since then the

circuit through the loop is a simple sequence of state-
ments. The assertion can be most easily established by
the known technique of "backward substitution", moving
backwards around the loop past each assignment state-

ment.

A. TIop-down rules.

A8 noted sbove, all previous top~down rules, except
for the transitivity rule Ex2 (which Iinvelves inequall-
ties), are divectly applicable for arrays. Tu the
rulea listed below, p denotes an sesertion with quanti-
fication concerning an array which is true after exit
from the loop, while p' 15 an assertion like p, but
true upon entrance to the loop. Q denctes the desired
Rules Al, A2, and A4 attempt to elther
transform or create asgertions p and p' having a form
which will facilitate generating ¢ by rule A3l.
rule Al.

leop amsertion,

Let p be a claim about a specific element of
an array, say 5[e] {(and thus not necessarily including
Ve revrite it as Fifc £] € ¢ A <j-array>

Similarly,

quantifiers).
where
if a p' as above iE true upon entrance to the loop, we

<j=array> is p with] in place of ¢.

rewrite it as ¥j[ec £] £ ¢ © <j=array»] .

The underlying principle here is that a claim whose
<j=index> 1s made smaller by the loop probably has an
exigtential quantifier {we are "locking for something",
while if the <j=-index> i® extended to cover more ale-
ments by the loop, the claim probably has a universsl
quantifier (we want something to be true for a larger
part of the array)., Thus we may check the feasibility
of the resulting assertion by determining whether the
<j—array> 1ia iv fact expanded or contracted in the loop
Thie principle is algo used in the bottom-up rules,
rule A2,
operators and relatiome in p and whatever information

Given a p, we examine the dafipitions of the

is known about the array upon first reaching the loop.
Using this information we produce the <j-index» for a
p' which must be true upon entrance ta the loop, and
has a <j-array> ldentical to p. For example, 1f g ie
33{1 £ 1 £ 3 A A[S] = max(Af1],...,A[n]}], and we know
enly that A 1s defined upon entrance to the loop, by
the rule we reaguire a <j~index> such that A[]] =
max(A(1),...,Aln}} must be true, By the definition of
max we can datarmine that the maximus element musat be—
long to the array., Thus 3j[1 ¢] € n A A[}] =
sax(All),...,Aln])] i# the parallel assertion upen
entrance to the Laop.

In some cases of & predicate p with universal

quantifiers, the corresponding initial claiw msy
require a <J-index> which 1s empty {so that the overall
claim 1i# vacuously true), For example, if p is

¥Yi[1 £) <n>=A[4] £ A[§j#1]], and we have not gorted
A before the loop, p’ might be

¥i[l ¢ 3 < 1> a[3] £ AljA)) .

Rule A2 1s the only exsmple 1n this paper of a rule
which enables us to project “backwards" to find the
minimal conditione which muet hold upon entrance to a
given loop. Such rules should be useful not enly to
aid in discovering the correct assertion for the loop
in question, but also to carry information backwards
for loops earlier in the program. Thus further inves-
tigation of this general technique is warranted,
rule A3,

indices, and we have determined that for some term s,

If p contains a term r a8 a boundary of the

s = r upont eéxit from the loop {by any of the rules in
Secticrn TI), we let ¢ be the predicate obtained by
substituting s for some appearances of r in p.

Similarly, if p' contains a term r, end 5 = T upon
entrance to the leop, let § be the predicate obtained
by substituting & for some appearances of r in p'.

For example, if p is ¥i{l £ £ § m > A[1] £ Alm]},
and & = m fm the exit test of the loop, we could try
letting Q be either ¥ifl < i £ & 2 A[4] ¢ Alm]],

Yi[l £ 1 £ w= A[1] 2 A[L]] or
vi{l s 1 s & o A[1] ¢ Al2]].

Obvicusly, 1f information is known about both p and
p' , the application of A% can often be directed by
matching the results of various substitutions until
the entrance and exit claims are identfcsl. Thus, 1f
there are several possibilities for substitutiom, we
umay decide for which appearances of terms in p or p'
to substitute,

We would like to be able to also uge the transiti-
vity rule Ex2 for an array assertion with quantifi-
catlon {specifically, a p with an inequality as its
<jmarray»). This requires estsblishing that for each
pair of terms compared, we may find a third term such
that there will be two new inequalities, true upon
exit from the loop, which will imply the originel im-
equality (as in Ex2).
rule A4, Given a p with universal quantifier and an
inequality including arrays as its <j-array>, we use
the "ona-pass" aspertion to find a term which zontains
the two needed inequalities for a particular value of
Then
let each new inequality be the <)]-array* for a claim
having the <j-index> of p.

Ray then be used separately on each of the new in-

j (1.e., for a single pair of values from p).

The other top-down rules

equality claime to obtain the loop assertion.

507

- {n the Inductive sssertion,

¥i[l ¢ 1 ¢ m > A[1) ¢ B[1]],
aAl[k] 5 c[k] A

For example, given p !
we might discover a C[k] such that
C[k] £ B[k] for some k, and assume
vi[l ¢ 1 g m > A[1] £ CEL]] A Vifl

is true upon exit from the loop.

<1 gu>c[1] £ Bi]]
Then, 1f, for example,
2 =mend § =)1 ypon exit from the loop. A3 used zlong
with other Informaticn could repult in

Yill ¢4 £ 2 2 Al1) € CI11]1 A Vi) £ 1 ¢ m> C[4] = BH]]
as the loop assertion,

B. Bottom-up approach.

In order te identify which heuristics to use, we
must gifferentiate between two methods of computation:
a} If the exit test has the varimble i compared with a
term which {s not changed inside L, and 1 ig incremented
monatonically inside L, then it is assumed to be a
counter controlling the loop inm an "{terative going up"
computetion.

b} If the variable i 1is compared with a term which does
not change in the loop, &nd is decremented monctoni-
cally inside L, then i Is a counter contrclling the
loop in an "iterative going down” computation.

In the rules below we asaume all loops have the
index i, and let in denote the value of 1 vwhen it filrst
denotes the

1
value of { upen exit from the locp. As in Section II,

reeches the cutpeint of the loop, while 1

we assume that the cutpoint is located immediately

before the exit test.
We First liet the rules for finding the <j-index>.

rule X1, If i 1s a counter (incremented by 1) in a
"going=up' iteration and 1 also the variable which
appears in the index of array elements recelving
aseignmants, then try assertions of the forms
vjfiu ¢ 1 < 1> <j-arrvay>] or 3i{i « § ¢ 1A <j=artay>|
These will also be the
form of the predicate p which is true after exitr from
the loop.

1f 1, is koown, say i, = ¢ upon entrance to the loop,
then the ¢ should be aubstituted for 1, in Q and p.
Similarly, 1if 11 = ¢ upon exit from the loap, d should

be substituted for 11.

rule X2. If 1 1 a counter (decremented by 1) in a
"going-down" Iteration and is also the variable which
appears in the i{ndex of array elements recelving
agsignments, try assertions of the forms

vili « § £ 1, D <j-array>] or 3)[1, £ J < 1 A <j-array>]
As in rule X1, p will also have the above form and 1,
oT i]should be eliminated if possible.

rule X3. Discover whether X1 and X2 fail only because

i 1 assigned a function f{1)} racher than merely

incremented cor decremented by 1 in the loop. If so,
try to find the set of elements which i assumes during
the loop {using rule I2)., The assertion will have the
game form as in X] or X2, except that the <j-index>
will Include the T2 invariant.

1+ {47 in the loop, and 1 ig initlally zero, then the

For exanmple, 1if

aesertion is
¥il0 € 1 <1 A3n[nz0a)=7n) = <j-array>} .

The following two conditions are used to decide
which of the bottom—up <j-array> rules to apply aesu-
ming that the <j-index> has alrsady been determined.

(a) All agsaigoments in the lcop are to array ele-
ments with indices not specified by the <j-index»
before executing the loop, That 18, once we have in-
cluded an element of the array in the assertion after
some clrcuit, we will make no more assignments to that

element in subsequent cirecuits arcund the loop.

((ste-11 £ 5131)
__/
F

(5[(1-11,8T1])+(s{i],8[1-1])

i+l

For example, the program segment above could be part
of a "bubble-gort" program. The "one—pass" assertion
is clearly §[i=1] g 5([1] , but if the form of the
assertion before executing the loop i3

Q:Vi[2 ¢J < 1> <j-array>] the loop violates condi-
tion (a) becausa ${i-1] may receive an essignment and

i=] is already in the domain of the <j-index>.

(b}

single conjunct.

The "one-pass" sssertion can be written as »
Furthermore this conjunct is wvalid
for all array element® whose indices are added to the
domaln of the <i-index> by one alrcuit through the
loop. Thus if the "one-pass” assertion is S[1] =
S[i+1] A S[i+l]) 5 S{i+2] and i and i+l are added to
the <j-index> by the loap, the condition (b) 1s not
fulfilled because it cannot be expressed by an appro-

priate gingle conjunct.

508

rule Rl. If both {(a) and (b) are true the "one-pazg"

asaertlon itself is taken as the <j-array». Of course,
the guantified variable of the <j-index> must be sub-
stituted for the actual mrray index which appears in
the loop. For example, If we have found the assertion
to be Yi[l ¢ 3 < 1 D <j-array>] and in the loop we have
only A[i] + 0 and then 1 + i+l, the "one-pass" asser-
tiocn i A[i] = 0 , and (a) and (b) bhold, Thua we obtain
¥ij[1 ¢ 3 < 1= A[j] = 0] as the loop aspertion.

The following rule iz bared on the fact that we have
already established the desired form af the <j-index>
part of the assertion., We want to be able to write one
conjunct, say Vj[i £ 3 <12 <j-array>], where the
<j-array> will he a statement about {only) the array
elements with indices 1 £ j < i and not contain any

additional restrictions on the indices,

rule R2, (generalization) If (a) 1s true, but (b) is
not, check whether (b) fails only because the assertion
is not @ single conjunct. 1f B0, the <j-array> parts
of all the

find the strongest single conjunct which is true for

conjuncts in the assertion are searched to

all array elements specified by the known <j-index>.
Thie conjunct becomes the <j-array>. For example,
glven a one-pass aseertlon

¥{[1l €1 <n>Aa[3-1] < 41511 A Aln-1] ¢ Aln)

required Q of the form ¥I[L ¢ 1 < ntl D <j=array>], the

and =a

correct <j-array> by this rule 1s A[3-1] 5 A[§).

rule R3, If (b) 1s true, but (a} is not, take the
"one-pass" assertion as the <j-array? and consider the
effect of an additional pass through the loop on this
predicate. Then apply the generalization rule R2 to
the result, For example, for the seégmwent of the
bubble-gort propram introduced above, the one-passa
assertion vields ¥i{2 ¢ § < 4 2 s{i-1] ¢ sij]l .
One clreuit will change this to:

¥i[2 £ § < 1=1 2 5(4-11 € S{41} A 3{1-2] £ S[1] A

sfi-1] ¢ s[1] .

Generalizing thie predicate by R2 is a3 relatively
difficult step, not yet completely Invegtigated. The
generalization procedure would be expectad to recog-
nize that no predicate comparing each element with ite
neighbor is possible, since no information is available
about the relation between S[1-2] and 8[i~1]. Then the
traneitivity of the inequality would yield that
¥4l1 5 § <41 = 8[3§) ¢ s[1)] is the strongest claim

which can be made about the entitre aegment.

C. Examples,

Example 4. Minimum of an Array. The program in

Figure & will find the minimum of an grray A4 wusing amn

$: n3x0
k+1
Q===
k = n+2 5 S[ntk] + Alk}
pevillgisotl o T
she+il=alsll — T T T]
i+ k + k+l
Q== === -)
1=0
' :SE1] = min(Al1],. .. ADnL]) - — - T ¥
Y
z + 5[1] §[24] ¢ S[24i+11
przemin{A[1l],. .., A{0+Ll]) T F

S[4] + 5[21]

S[i] = sS[21+1]

i+ 1i-1

Figure 4. Program for Finding the Minimum of an Array.

array 8 in an unusual way. ({(The upper half of the
array 1ls set to A, end the computation takes place in
the lower half, using only comparisons.) For the
first loop, top-dewn rules give no information, so we
use bottom—up rules., 3By X1, we will try the assertion

Vil £ 7 < k @ <j-array>] (becauge k, = 1, and we

il
The "one-pass” asser-

have a “going-up" iteratiom).
tion 1s clearly S[n+k] = A[k], and conditions (&) and
(b} are fulfilled, Thus by rule Kl we obtain

Q, 2 ¥3[1l ¢ § < k o S[otj] = alil].
from the loop k = 2, we have

P t¥ille 34 g ol o slory) = aAlll].
is added to Q,. We try rule Exl on y', but S{1] is
undefined on entrance to the lgop, sc the rule fails,

Since upon exit

By rule En2, p

Using array top-down rules, we first rewrite y' as
0L ¢ 15 1a 53} = min(alll,...,A[n])] by rule Al.
Uaing A2, we would like to retain the <j-array> part

in an asserticn true on entrance to the loep. By the

508

definition of mip we know that one of the elements ia
the minimum, and the p we have at the entrance to the
loop states that A has been copled to the upper half
of 8, Thus we obtaim Fj[m+l ¢ | € 2o+l A 5[] =
sin(4[1),...,Aln]}] ae the initial smsertion which
must be true, Since the assignment before the loop
implies that i = n upon entrance to the loop, a
pussible substitution by A3 is
q : 3f[441 £ § € 24+1 A S[J) = min(A(1],...,Aln])],
exit from the loop, this q becomes
(Any of the other possibdle substi-
n will fail to metch ¢!)
The second conjunct is not needed

Since 1 = O upon
identical to ¥'.
tutions of 1 for Thus we
let Q, be g A p.
to prove y', but cen be retained to provide the addi-
tional information thar Cthe uppar half of § ie un-

changed by the second loop, and contains A.

Example 5. partition Program., The program of

Figure 5, due to Roare, will find & partition of the

' START }

[T tinso

r + S[a &+ 2)
(1.3 + (O,m)]

v:ivavb{Oca<inf<bsnos{alsS{b] faf<l == 1

HALT

Qs.__f-ai——-—-——--——- T
—{ r < 8[3]) 1« i+l
F T ‘
‘ -
[
F T

{s[1]1,5811) + (515),5814])

| (1,3) + (i+1,3-1)

I

il

}

-

A

Figure 5. Partition Program

We would 1like to show
that it 1is partlally correct with respect to $!
and ¢ : YavbiD s a < f A j <bsn>5[a] g 8IbI) A
] < i, We use the bottom—up approach, seeking a Q,

elements of a real array 8.

nz 0

for the large ocuter loop. Thus we consider one pass

through the loop. (It should be noted that the inw
yvariants we will find at cutpeints 2 and 3 during the
"1inear" pass are not pacessarily the desired Q, or
The
first inner locp yields immediately by rules X1 and R1,
the invarient p, : Ykii, £ k < 1 2 S[k] < r]. Thee
upon exit from the firet inner loop P, A 5(1] 2 r 18

Q, for the overall execution of the progrem,)

£TUE.
tain p, : ¥Y[i, 3 & > 31 2 8[t] > r] A S[4] € r by X2
and Rl. There 18 no peesibility that the second loop
could disturb the claim of Py becauss rhers are no

Similaerly, after the second inner loop, we ob=

asgslgnment gtatements to the array in the loop.
Moving py A p, A S5{1] > r A S[§] £ r through the two

possibilities for the test 1 £ §, 1f we reach point A,
the assertion 1s unchanged while at point B we have
Py ¢ Vk[4y § k < 1~12 S[k]) < r] A 5[4-1] 5 t and

1

P, ¢ Vz[jo x 8> 41> 58[R) »r]l ASliH1) zr .,

Rulee X1 and X2 indicate that we require
*
LI
p: : '\ﬂ!.[j]0 2 2> 1= el-array>]. Thus by B2 we sesk
weaker array assertione about the entire range of k
and £ which will fylfill these forms. The weakest
agsertion made about an element in p, or p; is that

Vk[iD ¥ k < i > <k-array>] and

§[i-1] £ r, Thus we lat p: be

Vk[io £k <1 58[k] £ r). Similariy p: is

Viliyp 2 2 > 1 2 8[%] 2 r] . Since i, {s initially O,
while 3, is initially n, we assume a8 Q, sesertion of
the Form Yx[D £ k < 1 > 5[k] £ r] A

vifa 2 £ > J = 8[2] 2 r]. By rule En2, gQ,and Q, will
ba givan ths esesertion of Ql' and verifying these

510

assertions will show the program partially correct.
We clearly could have used the transitivity rule here,
but for this example, the amount of work required is

about the same.

IV. Conclusion

Clearly, the rules and examples given in this paper
are far from being a general system for finding induc-
tive assertions. More and better rules are needed,
particularly for array assertions, which tend to be

complex and unwieldy.

In addition, before the rules can be incorporated
into a practical framework, we must order their appli-
cation. That is, at each step we must provide more
exact criteria for deciding which rule to apply and on
which cutpoint of the program. The order in which the
rules are presented in each subclass does implicitly
provide a partial specification. Thus we presently
would try to apply Ex1, and only if it failed try Ex2,
etc. Moreover, we generally would try to gather in-
formation on simple variables using the rules of Sec-
tion Il before attempting to treat array assertions.

The more basic (and open) questions are (a) whether
to attempt top-down or bottom-up techniques first for
a given loop, and (b) which loop of a program should
be treated first. Although we experimented with
various orderings in the examples In this paper, we
have tentatively formulated a more fixed approach.
Our present Inclination is to first use top-down rules
from the (physical) beginning of the program. (Since
in general there is more than one outer loop, usually
only entrance rules are applicable.) Then we use
bottom-up rules for the same loop, to create a p true
after exit from the first loop containing as much in-
formation as possible. We continue with the next
outer loop In a similar manner. If, however, we are
stymied and unable to find a loop assertion, we start
with top-down rules from the end of the program, and

try to work backwards towards the beginning.

A more sophisticated approach would require a
weighted evaluation function capable of making a very
cursory scan of the program. This function would
identify loops which seemed 'promising’, i.e. likely
to yield valuable information rapidly, and apply selec-

ted rules first to these loops.

Since some of the rules could continue searching
for a possibly non-existent form of assertion almost
Indefinitely (the transitivity rule, for example),
such rules would have a "weak" version and a "strong"

version. The "weak" version would be used in the

initial attempt to find an assertion, and would "give-
up" rapidly if it did not provide an almost immediate
Then other,
may be tried on the cutpoint.
to add

be applied.

solution. possibly more appropriate, rules
Only if all rules failed
relevant information, would the "strong" version
This division is parallel to the human
attempt to first find what Is "obviously" true In the

loop, and only afterwards bring out the fine points.
The overall strategy we have adopted in this paper
has been to find assertions strong enough to prove the
Thus,
in general, we attempt to directly produce a near-exact

partial correctness in as few steps as possible.

description of the operation of a loop, without going
through numerous intermediate stages where we are un-
able to shom either validity or unsatisfiability. |If
our heuristic is wrong, this fact will be revealed

relatively rapidly by generating an unsatisfiable veri-
fication condition. We then may try a weaker alter-
native claim. We feel that this is the approach which
should be taken in order to construct a practical

system which could be added to a program verifier.

We believe that the bottom-up approach may also be

used to solve other problems. For example, in the

partition program (Example 5), the inductive assertion
was actually found without using the w given by the
programmer. In one single step I may be generated
from Q , and thus we have 'discovered' what the program
This

feature of the bottom-up approach can probably be most

does without the use of additional information.
useful for strengthening a too-weak assertion, i.e.,
revealing that the program does more than is claimed
inw.

Another apparent application is for proving termi-
nation using well-founded sets. For termination,
predicates Q; and functions u; are required, where u;
(a mapping
bounded by Q; and descends each time the loop Is exe-

to the well-founded set) has its domain
cuted. Here again the bottom-up approach is useful
since no w Is provided. We have already begun inves-
tigating bottom-up methods for generating both the

Q; 's and the u; 's which will ensure termination.

The ultimate goal of automatic assertion generation
is almost certainly unattainable; thus the optimal

system would involve man-machine interaction. Whenever
it was unable to generate the proper assertion, the
machine would supply detailed questions on problematic
relations among variables and possible failure points
(incorrect loops) of the program. Clearly, a partial
specification of the assertions, provided by the

programmer, could shorten this entire process.

REFERENCES

COOPER [1971]. D. C. Cooper, "Programs for Mechanical

Program Verification", in Machine Intelligence

6, American Elsevier, pp. 43-59 (1971).

ELSPAS et al. [1972]. B. Elspas, M\W. Green, K.N.
Levitt and R.J. Waldinger, "Research in Inter-
active Program-Proving Techniques", SRI, Menlo

Park, Cal. (May 1972).

FLOYD [1967]. R.W. Floyd, "Assigning Meanings to

Programs", in Proc. of a Symposium in Applied

Mathematics, Vol. 19 (J.T. Schwartz - editor),
AMS, pp. 19-32 (1967).

KING [1969]. J. King, "A Program Verifier", Ph.D.
Thesis, Carnegie-Mellon University, Pittsburgh,
Pa. (1969).

WEGBREIT [1973]. B. Wegbrelt, "Heuristic Methods
for Mechanically Deriving nductive Assertions”
Unpublished memo, Bolt, Beranek and Newman,

Inc., Cambridge, Mass., (February 1973).

512

ITERATED LIMITING RECURSION AND THE PROGRAM
MINIMIZATION PROBLEM.

L.K. Schubert

Department of Computing Science,
ofAlberta, Edmonton, Alberta,

University
Canada.

ABSTRACT: The general problem of finding

minimal programs realizing given "program

descriptions" is considered, where program

descriptions may specify arbitrary program

properties. The problem of finding minimal

programs consistent with finite or infinite

input-output lists is a special case (for

infinite input-output lists, this is a variant
of E.M. Gold's function identification
problem; another closely related problem is

tne grammatical inference problem). Although

most program minimization problems are not

recursively solvable, they are found to be no

more difficult than the problem of deciding

whether any given program realizes any given

description, or the problem of enumerating

programs in order of nondecreasing length
(whichever is harder). This result is
formulated in terms of k-limiting recursive

predicates and functionals, defined by

repeated application of Gold's limit operator.

A simple consequence is that the program

minimization problem is limiting recursively

solvable for finite input-output lists and 2-

limiting recursively solvable for infinite

input-output lists, with weak assumptions

about the measure of program size. Gold

regarded limiting function identification
(more generally, "black box" identification)
as a model of inductive thought. Intuitively,

iterated limiting identification might be

regarded as higher-order inductive inference

performed collectively by an ever growing

community of lower-order inductive inference

Session 18 Automatic Programming

machines.
KEY WORDS AND PHRASES: function identification,
minimal programs, limiting recursion, inductive
inference, program length measures, program
properties, degree of unsolvability.
1. INTRODUCTION

A question considered by Gold [1] was for
what classes of computable functions there
exist machines which succeed in "identifying
in the limit" any member of the class.
Identifying a computable function in the limit
consists of generating a sequence of "guesses"
(integers) convergent to an index for the

function, successive guesses being based on

successively larger portions of an information

sequence which lists all elements of the

function. An example of a practical problem

to which these concepts are relevant is the

learning problem in pattern recognition.

Typically an adaptive pattern recognition

system is caused to "learn" a mapping from

patterns to responses by presenting to it a

sequence of labelled patterns, i.e., patterns
with their appropriate responses. All of the
machine's responses will conform with the
desired mapping once it has identified that
mapping, in the sense that it has found an
algorithm (equivalently, an index) for it.
Two of Gold's main results were that any r.e.

class of total recursive functions is
identifiable in the limit, and that the class
of total recursive functions is not identi-
fiable in the limit (hence also the class of
partial recursive functions is not identi-
fiable in the Ilimit).

Here a modified version of Gold's problem

is considered. The first modification is the

replacement of information sequences by

(finite or infinite) "program descriptions”

which may specify arbitrary program properties.
Descriptions which list input-output pairs are
then regarded as a special case. The second

modification is that iterated limit procedures

(It-limiting recursive functionals) are
admitted for program-finding, since finding

suitable programs in the non-iterated limit
is impossible for many classes of program
descriptions. For this purpose k-limiting
recursiveness is defined by straight-forward
generalization of Gold's concept of limiting
The third modification

recursiveness. is the

added requirement that programs found in the
(iterated) limit be minimal according to some
prescribed measure of program size.
Accordingly problems of this modified type are
called program minimization problems.
There are various reasons for an interest
in finding minimal-length programs. In work
on grammatical inference closely related to

Gold's identification problem, Feldman [2]

considers inference schemes which try to find
"good" grammars consistent with available
information about a language. One measure

of goodness is the intrinsic complexity, or

size, of a grammar. In terms of the function

identification problem, this corresponds to
finding programs which are small according fro

to some measure of program size. Indeed, the
use of small programs for inductive inference
is a recurring theme in the literature

3-5);

(see

for example Refs. allusion is usually
made to the scientific maxim knows as
"it is

"Occam's Razor", according to which

vain to do with more what can be done with
fewer" in accounting for known phenomena.

The special importance of minimal programs

514

is also suggested by the work of Kolmogorov
[6],

the number of symbols

Martin-Lof [7] and others, showing that
in the shortest program
for generating a finite sequence can be taken

as a measure of the information content of the

sequence, and this measure provides a logical
basis for information theory and probability
theory.

In the following the unsolvability of most

nontrivial program minimization problems is

first noted. After establishment of some

basic properties of k-limiting recursive

predicates and functionals, it is shown that

any program minimization problem is k-limiting

recursively solvable if the problem of determ-

ining whether any given program satisfies any

given description is k-limiting recursively

solvable and programs are k-limiting r.e. in

order of nondecreasing size. Simple conse-

quences are that the problem of finding

minimal programs for finite functions is

limiting recursively solvable, and that the

problem of finding minimal programs for
arbitrary computable functions (given an

explicit listing) is 2-limiting recursively

solvable, with weak assumptions about the
measure of program size. Lower bounds on the
difficulty of these problems are already known

(8] (11

in the

m the work of Pager and Gold

Finally, the point is emphasized

concluding remarks that limiting recursively

solvable induction problems, though strictly

"unsolvable" in general, are nonetheless with-

in the reach of mechanical procedures in the

important sense described by Gold, and that
even problems unsolvable in the limit may be
regarded as solvable in a weakened sense by an

expanding community of mechanisms performing

limit computations.

2. PROGRAM MINIMIZATION PROBLEMS of

To fix ideas, any programmable machine M

may be thought of as a 2-tape Turing machine,

with one tape regarded as input-output (1/0)
tape and the other as program tape. One or
both tapes also serve as working tape. A

computation begins with the finite-state
control of the machine

and with a program on the program tape and an

In

times

in a unique start state

input on the 1/O tape. If and when the machine
halts, the 1/0 tape expression gives
put. It is assumed that there is an effective
1-1 coding from tape expressions (same syntax

for both tapes) onto the integers N. The

program(orl/Otapeexpression)correspondingoftheelementsofe,isanexampleofacodenumber(index)Xbewrittenasmi.i.~prc

other’

assumed to be effectively enumerable in order

n°ndecreasing length. For example, the

number of elementary symbols in a program

provides such a length measure,

the following, obviously machine and

length-measure dependent concepts will some-

be used without explicit reference to a
particular machine or length measure. This
should be kept in mind for a correct inter-
pretation of the results.

a minimal Program for a function O is one

the out- Whose length does not exeed the length any

Program for 4, The problem of finding a

minimal program (or all minimal programs) for

function O given a (possibly infinite) list

tocodenumber(index)xw illbewrittenasx.Programproblem-generally

TC - . -y N .. . T o ssu__»
If M eventually halts with output z when

TR

supp.lied’ wi-tr.{ program X and‘ i'nput- y, one n’"lay

M
write 4%(/"(3/') z. 'If M does not halt, ﬂg)'((\")\
. -, m- - i. i

is undefined. Thus M computes a partial
M

function S}SX With’ program x.

- A

.. m,i
However, it will

be convenient to think of x not merely as a

M
program for $,

M
subset of $

but as a program for any

In other words, x i.s a program

“ e — M, .

for a function $ provided only that cp IyJ
v s = M, .
<My) for all y in the domain of < *,(y>

need not be undefined for y outside that

domain. If such an x exists for a given o~ <r5

*

w.iII‘ b,e sai’d to be grogrammab’le‘ ((;n “M)' . ‘ A

machine on which all partial recursive

s
functions are programmable is universal.

A program length measure assigns a non-

negative integral length to each program such

that only a finite number of programs are of£

any particular length. A length measure need

not be recursive, though this is a ’frequent
assumption;

furthermore, programs are often

515

a program minimization problem is the problem

r m» c e
of findin% a minimal program (or all minimal

programs) meeting the conditions listed in any

"program description"
vV *»

belonging to some class

of such descriptions. Program descriptions

are loosely defined as follows. Suppose that

a (possibly infinitary) logical system is

qiven along with an interpretation based on a
y

fixed M such that every wff in tne system

expresses some program property (i.e., every

wff is a unary predicate over programs). Then

the wfis comprising the system will be called

program des
c—*-.
description might specify

criptions. Typically a program

relationships between

inputs and outputs (e.g., particular input-out-

put pairs), structural properties (e.g., the

number of occurrences of a particular symbol

in the program), operational properties (e.g.,

computational complexity), or combinations of

such properties. If 6 is a program description,

realize 6 if

J.

a program x will be said to

N A

X

properfcy expressed by

mere briefly, §(x} will be writtan

for "x remlizes §"., If an X exists such that
T(x), then § will be said to be realizable.
For some descriptions (such as listings of
input=output pairs) the truth value of the
agsartion & (%) depends cnly on the function
computed by M with program X, i.e..

[¢: = ¢$]¢[3[§}¢# &{yyl. BSuch descriptions
will be termed I/0 descriptions. As axamples
of I/0 descriptions which do not merely list
functions, consider the following expressions
{in a2 quasi - logical notation with the

obvious interpretation):

W ol 3me v ¢M(2)=117 & #0(5) divergent

(ii) (Vy}wzty) converaent & even]

(1ii) (wy)Leh(y) = 655 ()] v (vy) (8 (y+5)
= 4o (y)+6],

Gold's identification problem can evidently

be reformulated in terms of infinite

descriptions (i.e., wffs belonaing to an

infinitary logical system) such as

i M M Mooy
{iv) ¢,(0)=0 & ¢ (1}=l & 6, (2)=4 &

Pei3)m9 & ... etc.

It is assumed that descriptions can ke
coded numerically. If only finite
descriptions are invelved, an effective
coding of descriptions into integers is
appropriate, If infinite descriptions are
inveolved, these can be coded as total number-
theoretic functions on N by means of a 1-1
mapping from elementary symbols into integers.
For example, consider illustration {iv) above;
if the numbers from 1 to 5 are used to encode
the symbols ¢7,(,),=, and &, respectively,
and numerals within the degeription are
repregented by adding 6, the code secuence

1,2,6,3,4,6,5,1,2,7,3,4,7,5..., is obtained;

516

expressed as a total function this is

{<0,1>,<1,2>,<2,6%,23,3>,<4,45,<5,6>p4..).

Thus a mapping whose domain contains coded

representations of infinite descriptions is a

functional.
The coded version of a description o,

whether it is finite or infinite, will be

written as 6. Since no confusion can result,

coded representations of descriptions will also
simply be called descriptions. A set of
descriptions will be called infinitely

diverse if no set of programs realizina the

descriptions is finite.

Theorem 1 is concerned with 1/O descriptions

only, while Theorems 3 and 4 will apply to
arbitrary program descriptions.

Theorem 1. Let M be a universal
programmable machine and let a recursive
length measure be given. Then the program

minimization problem is not recursively
solvable for any effectively enumerable,
infinitely diverse set of

(8]

fact for the case when

I/O descriptions.

Proof: Pager previously noted this

I/O descriptions

specify finite functions, and remarked that

the proof involves the Recursion Theorem. |

formulated Theorem 1 independently and proved

it, in outline, as follows. The negation of

the theorem allows the construction of a

program which enumerates descriptions and

corresponding minimal programs until it finds

a minimal program longer than itself; it then

simulates that program, and contradiction
results. The possibility of a program
measuring its own length and then performing
other arbitrary calculations follows from the

existence of a recursive function g such that

¢§{x} « Az[o] (g(x);2)] for all x. This can

be proved from the S-m-n Theorem and the For example, suppose the minimal programs are

Recursion Theorem. required to operate within a certain bound on

To demonstrate the unsolvability of a the computational complexity, apart from an

program minimization problem (for a universal grpitrary additive constant. Then it is clear

machine), it is therefore sufficient to show that the proof of Theorem 1 is applicable

that the descriptions concerned include an without change.

effectively enumerable, infinitely diverse These unsolvability results do not mean

set of I/O descriptions. This implies, for that all interesting program minimization

example, that the program minimization problems are entirely beyond the reach of

problem for the singleton functions, for the mechanical procedures, as Theorem 3 will show.

finite decision functions, and even for the The following definitions generalize the

decision functions of cardinality 2 is concept of limiting recursion introduced bv

unsolvablez, whenever the length measure is Gold [1].

recursive. Definitions: Let 5 be a subset of ¢1x...x¢rxNB
Pager [9] has shown that the last-mentioned where the ®. are sets of unary total functions

problem is unsolvable even when the length and r,sz0. A functionals F is k-limiting

measure is not recursive. Further, he racursive on 4 if there exists a functional G

established the surprising fact that the recursive on Mmk such that

minimization problem is unsolvable for a (¥6eha) (aml){vnlml),..(gmk) (vnkn-mk)[p(a] =

certain finitely diverse set of decision G{S,nypa.e,n]l

functions, regardless of the length measure Equivalently one may write

employed [8]. =F(5]]."

{VGEA)[limn ...limnkG{G,nl,...,nk)

In view of Pager's results it may be R R
9 Y Similatly a predicate P is k-limiting
asked whether the requirement that the length \ .
decidable on &4 if there is a predicate @

measure be recursive is superfluous in R k
decidable on AxN~ guch that (VGE&}{Hml)[anrml}
Theorem 1. The answer is no (although the

,...(jmkj (b’nkﬁmk)[P(é) z Oté,nl,....nk)l. A
requirement can be weakened somewhat). To

set of descriptions 4 will be called uniformly
prove this, it is only necessary to specify L. .

k-limiting decidable (with a particular M
some sequence of finite decision functions))) o

understood) if there is a predicate P k-limiting
such that any program is a program for at .

decidable on AxN such that for Sea, P(6,x)
most one of these functions, plus an) - - . . L
holds iff &é(x). A set of integers is k-limiting
arbitrary procedure for obtaining a o)

r.e. if it is empty or the range of a function

particular program for each function in the 5

sequence; then the length measure can readily K-limiting recursive on N. O-limiting

be defined to guarantee the minimality of recursive is the same as recursive, and 1-

these particular programs. limiting recursive is abbreviated as limiting
recursive.

It is interesting to note that Theorem 1

still holds for certain non-1/0 descriptions. Gold (also Putnam [10J) has shown that

517

limiting decidable is eanivalent to membership

and Hz of

It can be

in the intersection of classes I,
the Kleene arithmetical hierarchy.
ghown that if P is k-limiting r.e., then it is
in Iy, and if P is k-limiting decidable, it
is in zzanZk’ for all k. The converse
statements are conjectured to be false for

k»>1; the proof (or disproof) of this conjecture
is an open problem.

Lemma 1. If P and (are predicates of at
least one number variable {and possibly
additional number and function variables),
thep am) (Yn>mIP{n,...) & (ym) (¥nemO{n,...)

Em (vrem)TP(n, . .0) & Oin,a0)]
Proof. >: Suppose the antecedent holds.
Let m = max{ml,mz} where m,.m, are number s
such that (Yn>m,)P(n,...) and {¥n>m,)0{n,...).
Then clearly (¢n>mi{P{n,...} & Qln,...)

c: Immediate.
Corollary 1.1. Tf P and Q are predicatas
of at least k number variables {(and possibly

additional number and function variables),

then {3ml){Vn1>ml)...{3mk)(Vnk>mk)P(n1.---a
nk;-»J
&[Hm1)(an>m1)---[3mk)(Vnkimk}g(nlr-v-r
nk.---)

F@Em) nyomyh.., Gm) (v om) [P{nyseeeePprees)

& Q{nl,...,nk,...)ﬁ.
Lemma 2. Composition of k-~limiting
recursive functionals yields a k-limiting
recursive functional.
Proof. Consider the special case
F' = Apyxy[F(g,x,H{p,y))), where F and H are
functionals ke-limiting recursive on ¢ x Nz
and 1 x N respectively, and ¢ VY are sets of
total functions., The pzroof is easily
extended to the case where F is r-ary and s

of its arguments are values of k-limiting

racursive functionals HyvHorovorH o, Since F
and H are k-limiting recursive, there exist
functienals & and X recursive on ¢ x Nk+2

and Y x Nk+1

respectively such that

{v¢s¢)(Vx)(Vz)IEml)(an>ml)...{3mk)(Vnk>ka
[F{p,x,2) m G(¢.x,z,n1,...,nk)]. and (1)
{V¢s“)(¥y}13mll!anﬁmlj...{Hmkl{Vnk>mk}[H(¢:y]
(2)

Since H{Y%,v) is defined for all Ye ¥ and all v,

= K(le;nlf--ornk}].

a consecuence of (1) is
EV¢E¢)(Vweql{Vx]Evy)EEmlllvnl>m1)...(3nm)
ank>ka[F(¢.x»Hf¢:le -
Gf¢,x,H(¢pY};n1;...,nk} 1. ‘3’
By Corollary 1.1, (2) & (3) then aive
{V¢s¢]{szq){Vx)(Vy)(3m1)(an>ml)...(?mk)
{Vnk>mk)rp‘¢rxrnf‘l’r}f” = G(¢:er(¢J;Yan1; - -;nk)r
nl,...,nk}],
so that F' is k-limiting recursive on

tx ¥x Nz.

Note that it has also been shown
that a recursive functional whose iterated
limit is the desired composed functional can
be chtained simply hy composing the recursive
functionals whose iterated limits are the
given functionals,.
Corcllary 2.1.

charactaristic function{al) is expressible as

A predicate whose

a compesition of k-limiting recursive
functien(aljs is k-limiting decidable.

For example, let the unary predicates P
and Q have k-limiting recursive characteristic
functions cP and CQ, and let f(x,y) = xy for
all x and y; then R defined az Re{x|P({x)&Q{x)}
is k-limiting decidable, since CR{x} = f(cptx},
co{x}) for all x and f is recursive and hence
k=limiting recursive for all k.

Lamma 3, Application of the minization
operator to a k=limiting decidable predicate

yields a k-limiting racurazive functicnal,

518

provided the requisite minimal value always
exists.

For example, if P is k-limiting decidable
on ¢ x Nz, where ¢ is a class of total
functions, then ipxfuyPld,x,y)] is k-limiting
recursive on & x M, provided (yoed) lrx) (3y)

P{¢,x,y}. The notation "uy..." stands for
"the least y such that...".

Proof. Consider the ternary predicata P
above (extension to the general case is
straightforward]. Let Yox be the Skolem
functional in the existence critericon above,
i.e., (V¢a¢](¥x}?(¢.x,y¢x). Since P is
k-limiting decidable, {V¢E¢J(Vx)(Vy}{3mll
(Vn1>ml}...{3mkl(Vnkbmk}[P(¢,x,yJ =
Q(¢;x,y,nl,...,nk)3 where) is decidable on

0 x Nk+2

Restrict y to y¥y¢x, so that the
{ry) guantifier becomes (Vysy¢kl. This
bounded guantifier may be passed through the
others: (V¢e¢](Vx}{Hml)[vn1>m1)...{3mk)
{Vnk>mk)Evysy¢x}[P{¢,x,Y) £
Q(¢,x,y.n1,....nk}].

Henge

(voe & (¢¥x) {3my) (vny>my).) (Vo >my)
[Cuysy JP {9, %, 7] (uysy, IO X, Y rnys e e B) 1
Now since P(¢,x,y¢x} holds, (uy5y¢x}P(¢.X.y} =
WP {d,x,y). But [uyP(¢,x,y} =
{UY5Y¢x)Qf¢.x,y.nl,...,nk}] is eguivalent to
luyB{$,x,y) = UYQ(¢.x,y,n1,...,nk)] from the
definition of and this is in turn
equivalent to [uyP(9,x,yv)=pylQ(d, %X, ¥.Dy. e camy)

v y=n1]] provided n Since the ricght

1>Y¢x'
side of the bracketed eguality expresses a

+
functional recurgive on ¢ X% pk+l

and since my
can be chesen *Y pxe? uyPi{p,x,y} is k-limiting
recursive on ¢ x NW.

Theorem 2. For any k-limiting recursive

length measure, programs are (k+l)-limiting

519

r.e. in order of nondecreasing length.
Procf. There exists a recursive function
f such that {Vxltﬁmll[yn1>m1)...t?mk}(Vnk>mkl
[f(x,nl,...,nk} = |xi]l. (4}
Let g(i) = (uxcsi}tVyesi)rlxISIvl1 for all i,
where §,=N, Si+l=Si*[g[i]}. Thus g enumerates
programe (actually, their indices) in order of
nondecreasing length. Analogously let
hti,n,nl,...,nk) = (uxesin){Vyasin}
{f{x.nl,...,nk)Sf{y.nl,...,nkiJ for all

= {0!"‘!n}lS>

i,n,nl,...,nk. where 5 5

on +1,n

= isin—{h(i,n,nl,...,nk}})u{n] for all i,n.

As 8 is finite feor all i,n and f is

in
recursive, h is also recursive.

FPor x=n the first ouantifier in (4) 1s
bounded and can be passed through the others:
C?ml)tvn1>ml)...[3mk](Vnk>mk)IVx<n]
Ff(x.nl..‘.,nk] = 1x[1, (5)
FProm the definition of h
(Vi](Vn){jml)Kan>ml)...tumk)(wnkwmk>
(hil,nyngseeuny) = (uxesin){vycsin}
[f{x,nl,...,nkiSf(y,nl,....nk)J}. (6}

By Corellary 1.1, (5) & (&) give
ﬂViJ(Vn){amllEvnlbmlj...(amk}KVnk>mk)
[h(i,n,nl,....nk) = {uxesin]{vyesin}
_Ef(x,nl,...,nk}ﬂf{y,nl,...,nk)J &
(FxﬁnJ[f(x,nl,...,nk] = x|] &
[Vyzn}[y,nl,...,nk) = |yl 11,
Since, x,y~n in the definition of h,
(Vli{Vn?{Eml?(Vn1>m1}...{3mk}{vnk>mk}
Fh[i,n,nl,...,nk} = (uxtsin)llxislytl}. {7
For any given i, let m = max{g{3)1i-i}.
Then for all n>m, all 451 and all choices of
Oyreseyny which guarantee the ecuality in (7),
it is eagily shown hy induction on j that
5.
m
Hence

- Sj-{x!x>n} and h(j,n,ny,...0n) = giil.
[Vil(3m}(Vn>m){3ml)(Hn1>m1}...

Gmy b trny >m) Thid,nng, .,)egti)],

so that g is (k+1)-limiting recursive.

Roughly speaking, Theorem 3 states that
finding minimal programs is no more difficult
than enumerating programs in order of non-
decreasing length or deciding whether a given
program realizes a given description

where the "difficulty"

(whichever is harder),

of a k-limiting recursive functional is k.

Theorem 3. Given: a programmable machine

M, a length measure such that programs are k-
limiting r.e. in order of nondecreasing

length, and a set A of realizable, uniformly
k-limiting decidable program descriptions.
Then the program minimization problem for
A is k-limiting recursively solvable.
Proof: Since programs are k-limiting r.e.

in order of nondecreasing length, there is a
k-limiting recursive function f which maps N
onto M such that j»i & {£(j)tzI1£{i)}. Also,
since program descriptions are uniformly k-
limiting decidable, there is a predicate P
such that for all §c4 and xeN, P(4,x) @ J(x}.
Let i, = ViP(5,f(i)); thus ETi,Y is the
first minimal program realizing § in the

sequence £ (0),E(1V,... .

is k-limiting recursive on A.

By the lemmata, iﬁ

Theorem 4. Given: a k-limiting recursive
length measure such that programs are k-
limiting r.e. in order of non-decreasing
length and a set A of realizable, uniformly
k-limiting decidable program descriptions.
Then the problem of finding all minimal

programs realizing any 6eA is k-limiting

recursively solvable.

Procf: Define :’L6 ag in the proof of

1
Theorem 3 and let i, = pill£(i}] >1f(i6) 11
The predicate expressed by the bracketed

inequality, i.e. {<6,i>llf(i)lﬁlf(is)l.

ded,ieN}, is k-limiting decidable by Lemma 2,
as £, ié' I, and the characteristic function
of {<x,y>Ix>y] are all k-limiting recursive.
Hence by Lemma 3 i; ig k=1limiting recursive

on 4.

Now if the set of indices of the minimal

programs realizing 6 is expressed by its

canonical index

L, s
8 Jf{d) .
15 = limg 2 TCpUBEULY)

where C, is the characteristic function of P,

with P defined as in Theorem 3, then

application of Lemma 2 shows i. to be k-
limiting recursive on 4.

Note that because of the assumption in
is k-

Theorem 4 that the length measure

limiting recursive. Theorem 3 cannot be
regarded as a consequence of Theorem 4.
Note also that any (k-1)-limiting recursive
length measure satisfies the conditions of

Theorem 4 (by Theorem 2).

Theorems 3 and 4 are the main results of

this paper. The remaining theorems illustrate
their application.

Theorem 5. For any recursive length
measure, the problem of finding all minimal

programs for finite programmable functions

is limiting recursive (each finite function
is assumed to be specified by a program
lists

description which the argument-value

pairs of the function in any order).
Procf: By Theorem 2, programs are
limiting r.e. in order ¢f nondecreasing
langth. Let the finite function encoded by
any particular des be {<yi,zi>lisn5] . Let
o=(<38,x,n>| for all isng, M with progzam X

and input §f halts within n steps with output

Ei}. Clearly Q is decidable and
(¥8ed) (yx) (Im) (¥n>m) [Q(§,x,n)EP(6,x)],

where P{&,%} (> §(X}). Hance the problem of

finding all minimal programs for any finite

function is limiting recursive.

Theorem 6. Given a recursive length

measure and a machine M which computes total
functions only, the problem of finding
minimal programs for functions programmable

on M is limiting recursive (each programmable

function is assumed to be specified by a
program description which lists the argument-

value pairs of the function in any order).

Proof: For all i, let «yj,2}> be the
i'th argument-value pair specified by any
description 6,.and let O={ <&,%,n>| for all
izn, M with program x and input }-ri computes

output Ei}. 0 is deridable since M always

haltg; if there is an m such that M fails to
output E:: with pregram % and input ?i, then

Qlé,x,n) will be false for all n-»m; if there
is no such m (so that x realizes §), then
0(,%,n) is true for all n. Evidently the
descriptions are uniformly limiting decidable
and the theorem follows.

Gold had already shown that the problem
of finding any programs {not necessarily
for members of a class of total

minimal) r.e,

functions is limiting recursive, and Feldman
in an
e
programs

[2] remarked that this can be extended
obvious way to finding minimal

when programs are r.e. in order of non-

decreasing length. Theorem 6 strengthens

this result slightly, as there are recursive

length measures for which programs are not

r.e. in order of nondecreasing length

(e.g.,

define | } so that the sequence 101411(,121.

enumerates a r.e., nonrecursive set without

repetition).

Theorem 7. For any M and any limiting

recursive length measure, the problem of

finding minimal programs for functions

programmable on M is 2-limiting recursive (as

in Theorem 6, the problem is interpreted in

terms of program descriptions, where any

description lists the argument-value pairs of

a programmable function in any order).

Propf: LlLet Q={<6.x,n1,n2>1 for all isnm,,

M with program x and input ;f_ halts within
n, staps with output Z;}, with yi, 2} defined

as in Theorem 6. TFor fixed f,x,n

1!’

Qid,x,nl,nz} holds in the limit of large n,

iff X is a program for {(yi,:i’lisnl]. If
¥ is a program for {<yg,zg>lien}. then
anl)liman(G,x.nlpnz): if not, there iz a
palr «yi,zi>, contained in 2ll sets

hyi.zf»lisnl} for which n;>m, such that M

§

with program x fails to compute cutput Em

lanz) .

It follows that the descriptions are uniformly

for input 37:1; hence (’r‘nlm) limn 0{8,.%x.n
2

2-1imiting decidable. Sinc¢e programs are 2-
limiting r.e. in order of nondecreasing length
by Theorem 2, the program minimization wroblem

Ais 2~limiting recursive.

Note that it is known from the work of Gold

that the problem is not in general limiting
recursive.

The theorem is readily generalized to
descriptions which prescribe divergent
computations for some inputs. The
minimization problem remains 2-limiting
recursive.

Induction and

4. Remarks on Ilterated Limiting

Recursion
Deduction is concerned with the derivation

of particular conseauences from oeneral

521

premises, while induction

proceeds in the opposite direction. The

problem of finding an algorithm {minimal or

otherwise) for a function, after inspection

of some but not all values of the function, is

clearly of the inductive type: the complete

algorithm proposed on the basis of incomplete
information expresses a generalization about

the function sampled. Non-trivial inductive

problems are inherently "unsolvable" in the

sense that no terminating procedure exists

for generating "correct" generalizations; any

unverified consequence of a proposed

generalization may turn out to be in error.

This motivated Gold's definition of limiting

recursive predicates and functionals, which

are more powerful than their non-limiting

counterparts. He noted that a "thinker"

employing a procedure for function (or "black-

box") identification in the limit and using

the current guess of a function's identity as
a basis for goal-directed activity would be
acting on correct information eventually.

In this sense, therefore, some unsolvable

problems are within the reach of mechanical

procedures, The most general function
identification problem, however, is 2-limiting

recursive. Can any mechanical system be

conceived which in some sense "solves" a 2-

limiting recursive problem? Not if attention
is restricted to a single "thinker" generating
a single sequence of guesses; however, suppose

that instead of a single thinker, each of an
ever growing number of such thinkers Tp,T.,...
with universal

computational power observes

the non-terminating sequence

<Y0'Z20>,<Y1Z4>,...... Which

partial

enumerates some

recursive function O. At any time

the i'th thinker T. regards as his best

guess the shortest program (if any) he has

been able to find which, in the time

available, has given correct outputs for

inputs Yo, Y an(* either no output or

a correct output for any other argument

tested. It is clear that each thinker will

eventually be guessing a program for a subset

of $; furthermore, all but a finite number of

the thinkers will be guessing programs for <

eventually. In this iterated limiting sense

the expanding community successfully

identifies *. Of course there is no strategy

effective in the limit for deciding in general

which thinkers are guessing programs for $ at
any time. To interpret third-order limit
processes, one might envisage a growing

number of expanding communities of the above
type, each committed to a distinct value of a
certain parameter. At most finitely many of
the unbounded communities would in,, general

be "unsuccessful". Similarly still higher-

order processes could be interpreted.

Acknow1edgement

I am indebted to C.G. Morgan for several
stimulating and helpful discussions and to
J.R. Sampson for his many useful comments on
the manuscript. |.N. Chen's help on some
aspects of the paper is also gratefully

acknowledged. The research was conducted

under a National Research Council postdoctorate
fellowship.

Footnotes

i

A code into total functions would also be

used for a mixture of finite and infinite

descriptions; one digit, say 0, would be

reserved as terminator and all function values

corresponding tp points beyond the end of a

finite description would be set to O.
2

For the finite decision functions, note that
the functions computed with any finite set of
programs can be diagonalized to yield a finite
decision function which requires a program
not in the given set. To prove infinite
diversity for the 2-element decision functions,
it is sufficient to show that no set of n
programs can include a program for each 2-
element decision function whose arguments are
in a fixed set of 2 integers; but for this
many arguments at least 2 of the programs
that

must give identical results {if any), so

two unsymmetric decision functions are missed.
3

Functions are regarded as a special case of
functionals.
The equivalence follows from the fact that

F(6) is independent of n.,...,n,, so that the

iterated limit of G must exist.

5

This differs from Gold's definition, which

expresses limiting recursive enumerability

in terms of limiting semi-decidability.
However, the definitions can be shown to be
equivalent (for k=1).

Actually, Feldman was concerned with "occams

enumerations" of formal grammars, but the

problem of finding minimal grammars for
languages is essentially the same as that of
finding minimal programs for decision

functions.

References

1. E.M. Gold, "Limiting Recursion," J.
Symb. Logic 30, 28-48 (1965).

2. J. Feldman, "Some Decidability Results

on Grammatical Inference and Complexity,"

Stanford Artificial Intelligence Project

10.

Memo AI-93 (1969); also Inf. and Control

2.0, 244-262 (1972) .

R. Solomonoff, "A Formal Theory of

Inductive Inference," Inf. and Control 7,
1-22, 224-254 (1964),

G. Chaitin, "On the Difficulty of
Computations," IEEE Trans. Inf. Theory
IT-16, 5-9 (1970).

D.G. Willis, "Computational Complexity

and Probability Constructions," J. Assoc.

Comp. Mach. 17, 241-259 (1970).

A.N. Kolmogorov, "Three Approaches to the
Information,”
(1965);

157-168 (1968).

quantitative Definition of

Inform. Transmission 1, 3-11 also

Int. J. Comp. Math 2,

P. Martin-Lof, "The Definition of Random

Sequences," Inf. and Control 9, 602-619
(1966).
D. Pager, "On the Problem of Finding

Minimal Programs for Tables", Inf. and

Control 14, 550-554 (1969) .
D. Pager, "Further Results on the Problem
of Finding the Shortest Program for a

Decision Table," presented at Symposium

on Computational Complexity, Oct. 25-26,

1971; abstracted in SIGACT News, No. 13
(Dec. 1971) .
H. Putnam, "Trial and Error Predicates

and the Solution of a Problem of
Mostowski," J.

(1965).

Symb. Logic 30, 49-57

