608

STRIPS: A NV AFFROACH TO THE APPLICATION
OF THEOREM PROVING TO FROBLEM SOLVING

Richard E. Fikes
Nils .J. Nilsson
Stanford Research Institute
Menlo Park, California

L',0.A,

ABSTRACT

We describe a new problem solver called STRIPS
that attempts to find a sequence of operators in
a space of world models to transform a given
initial world model into a model in which a given
goal formula can be proven to be true. SIRIPS
represents a world model as an arbitrary collec-
tion of first-order predicate calculus formulas
and is designed to work with models consisting of
large numbers of formulas. 1t employs a resolu-
tion theorem prover to answer (juestions of partic-
ular models and uses means-ends analysis to guide
it to the desired goal-satisfying model .

DESCRIPTIVE TE

Probl em solv J ng, t heorem prov i rig, robot
planning ¢ heuristic search.

1 INTRODUCTION

This paper describes a new problem-solving
program cal led STRIPS (STanford Research Ins11tute
Problem Solver). An initial version of the pro-
gram has been implemented in LISP on a PDP-10 and
Is being used in conjunction with robot research
at SRI. STRIPS is a member of the class of prob-
lem solvers that search a space of "world models”
to ind one Iin which a given goal is achieved .
For any world model, we assume that there exists
a set of appllicable operators, each of whieh trans-
forms the world model to some other world model.
The task of the problem solver is to find some
composl11on of operators that transforms a given
initial world mode] into one that satisfies some
stated goal condltion.

This framework for problem so1ving has Peen
central to much of the research In artificial
Intellicence (1). Our pnmary interest here is
in the class of probdJems faced by a robot in re-
arranging objects and in navigating, |.e.; prob1ens
t hat require quite complex and genera1 world mode Is
compared to those needed In the solution of pu//1es
and games. In puzzles and games, a simple matrix
or list strueture is usually adequate to represent
a state of the problem. The world mode 1 for a
robot [J robl em sol ve r, however, mus tinc 1 ude a 1 arge
numbe r of facts and re 1ations deallng with the posi-
tion of the robot and the positions and attributes
of vjrious ob jec t s , open spaces , and hound a rit-' s .

In STRIPS, a world mode 1 is represented by a set
o(wt 11-formed formulas (wffs) of 1 he first-order
predicate en 1cul us.

Session No. 15 Heuristic Problem Solving

Operators are the basic elements from which a
solution is built. For robot problems, each
operator corresponds to an action routine* whose
execution causes a robot to take certain actions.
For example, we might have a routine that causes
it to go through a doorway, a routine that causes
it to push a box, and perhaps dozens of others.

Green (4) implemented a problem-solving system
that depended exclusively on formal theorem-
proving methods to search for the aPpropri ate
sequence of operators. While Green's formulation
represented a significant step in the development
of problem-solvers, it suffered some serious dis-
advant ages connected with the ‘'frame problem”
that prevented it from solving nontrivial problems.

In STRIPS, we surmount these difficulties by
separatlng entirely the processes of theorem
proving from those of searching through a space
ot world models. This separation allows us to
employ separate strategies tor these two actlvi-
tles and thereby improve the overal1l performance
of t he sys t em . Theorem-p rovi ng met hods a re used
only within a given world model to answer ques-
tlons about it concerning which operators are
applicable and whether or not goals have been
satisfied. For searching through the space of
world models, STRIPS uses a GPS-like means-ends
analysis strategy (6) . This combination of means-end”
analysis and formal theorem-proving methods allows
objects (wor1ld mode Is) much more complex and gen-
eral than any of those used in (PS and provides
more powerful search heuristics than those found
In t heorem-proving programs.

We proceed by describing the operation of
STRIPS in terms of the conventions used to rep-
resent the search space for a problem and the
search methods used to find a solution. We then
discuss the details of implementation and
present some examples .

The reader should keep in mind the distinction
between an operator and its associated action
routine. Execution of action routines actually
causes the robot to take actions. Application
of operators to world models occurs during the
planning (i.e., problem solving) phase when an
attempt is being made to find a sequence of
operators whose associated action routines wil1
produce a desired state of the world. (See the
papers by Munson (2) and Fikes (3) for discus-
sions of the relationships between STRIPS and
the robot executive and monitoring functions.

Space does not allow a full discussion of the
frame problem; for a thorough treatment, see
Ref. (5).

Session No. 15 Heuristic Problem Solving

609

R. F. PIKES, N. J NLSSON

I THE OPERATION OF STRIPS

A. The Problem Space

The problem space for STRIPS is defined by the
initial world model, the set of available opera-
tors and their effects on world models, and the
goal statement.

As already mentioned, STRIPS represents a
world model by a set of well-formed formulas (wfls).
For example, to describe a world model in which the
robot is at location a and boxes B and C are at
locations b and ¢ we would Include the following
wtfs :

ATR(a)
AT(B, h)
AT(C,c)

We might also Include t he w f i
("u "X Vy)

[AT(ux) A (x= y)] => AT(u,y))

to state the general rule that an object In ae place

Is not in a different place. Using first-order
predicate calculus wffs, we can represent quite
acompiex wordld models ad can use existing theorem-
proving progams to answer questions about a model.

The available operators are gouped into fam-
llies called schemata. Consider for exampe t he
operator goto for movg the robot fromm ae point
on the floor to another, Hee there is really a
distinct operator for each different pair of
points, but it is convenient to goup all of
these into a family goto(m,n) parameterized by
the initial posit ion® m ad t he final position

n. We say that goto(m,n) s an operator sthema
whcee mantas are obtained by substituting speci-
fic constants for the paameters m ad n. In
STRPS, when an operator is applied to a world
model, specific const ants will already havwe been
chosen for the operator parameters.

Eath operator is defined by an operator descrip-
tion consisting of wo man parts: a description
of the effects of the operator, ad the conditions
under which the operator is applicable. The effects
of an operator are simply defined by a list of wffs
that must be added to the modd ad a list of wfls
that are no longer true ad therefore nust be
deleted. We shall discuss the process of calcula-
ting these effects in nae detail later. It is
convenient to state the applicability condition,
or precondition, for an operator st ea as a wif
schea. To detemine whether or not there is an
Instance of an operator st ena applicable to
a world model, we must be able to prove

The parameters m ad n are each really vector-
valued, but we avoid vector notation here for
simplicity. In general, we denote constants by
letters near the beginning of the alphabet
(a,b,c, ...), parameters by letters in the middle
of the alphabet (m,n, ...), ad quantified vari-
ables by letters near the end of the alphabet

(X,y.Z) .

that there is an instance of the comesponding
wif sdea that logically follous from the modd .

For example, aos ider the question ol applying
Instances of the operator subsdhea got O(mb) to
a world nodd containing the wif AR where a
ad b are constants. If the precondition wif
stema of goto(m,n) is ATRM), then we find that
the instance AIR a) can be proved from t he world
model. Thus, an appllcable instance of goto(m,b)
Is goto(a,b).

It iIs important to distinguish between the
parameters appearing in wif schemata ad ordinary
existentially ad universally quantfiedd vanables
that nay also gopear - Certain modifications ms t
be mak b theorem-proving progams to enable t ham
to haxdk w ff schemata, t hese a re discussed later.

God statements are also represented by wffs .
Forexample the tak "Get Boes B ad C to Loca
tion @" might be s tated as the wit:

ATBa) ATCa)

To summarize, the problem space for SIRFS is

deflned by t hree entites:

(1) An initial world model, which is a set
of wifs describing the present state of
the world .

(li) A set of operators, including a descrip-
tion of their effects ad their precon-
dition wif sdhend a.

(3) A goal condition stated as a wif.

The problem s solved when STRES produces a world
model that satisfies the goal wif.

B. The Seacdh Strategy

In a very simple problem-solving system, we
might first apply all of the applicable operators
to the initial world modd to create a set of
successor models. VWe would continue to apply all
applicable operators to these successors ad to
their descendants (say in breadth-first fashion)
untll a modd wes produced Iin which the goal
formula wes a theorem. However, since we envision
uses In which the rurber of operators applicable
to awy given world nodd might be quite large,
such a simple systemm would generate an undesirably
large tree of world nodes ad would thus be
iImpractical.

Instead, we have adopted the G5 strategy of
extracting "differences" between the present world
model ad the goal ad of identi fying operators
that are "relevant” to reducing these differences
(6). Q= a relevant operator has been determined,
we attempt to solve the subproblem of producing
a world modd to which it is applicable. If such
a modd is found, then we apply the relevant oper-
ator ad reconsider the original goal In the
resulting model. In this section, we review this
basic 55 search strategy as enpoyed by STRIPS.

610

Session No. 15 Heuristic Problem Solving

R E FAKES N. J NLSSON

SIRFS begins by employing a theorem prover
to attempt to prove that the goal wif G follows
from the set M of wifs describing the initial
world model. If GQ does follow from My the task
Is trivially solved in the initial model. Other-
wise, the theoem prover will fail to find a
proof. In this case, the uncompleted proof is
taken to be the 'difference" between Mo ad Go,
Nextf operators that might be relevant to "redu-
cing ' this difference are sought. These are the
operators whose effects on world modes would
enable the proof to be continued. In determining
relevance, the parameters of the operators nay be
partially or fully instantiated. The oomrespond-
INg instantiated precondition wff schemaa (of
the relevant operators) are then taken to be rew
subgoals.

Consider the trivially simple exape in which
the task is for the robot to go to location b.
The goal wif is thus ATR(b), ad unless the robot
Is already at location b, the initial proof attempt
will be unsuccessful. Non, certainly the instance
goto(m,b) of the operator goto(m,n) is relevant
to reducing the difference because its effect
would allow the proof to be continued (in this
case, completed). Accordi ngly, the comesponding
precondition wif schenga, say ATRM), is used as
a subgoale

SIRFS waks on a subgoal using the sare tech-
nique. Syyoee the precondition wif sdea G is
selected as the first subgoal to be waked on.
SIRFS again uses a theoem prover in an attempt
to find instances of G that follow from the ini-
tial world moded Mo. Here again, there are wwo
possibilities. I no proof can be found, STRFES
uses the incomplete proof as a difference, ad
sets up (sub) subgoals comresponding to their
precondition wffs. K SIRES does find an in-
stanee of G that follows fromm Mo, then t he cor-
respond 1 ng operator instance is used to t ransform
Mo iInto a rev world noded M. In our previous
simple example, the subgoal wif sdtema G wss
ATRM). If the initial nodd contains the wif
ATR@), then an instance of Gamey ATR@r—can
be proved from M. In this case, the comespond-
ing operator instance goto(a,b) is applied to M,
to produce the rev model, M. SIRFS then acon
tinues by at tempting to prove Go from M, . In our
example, Go trivially follows from My ad we are
through. However, if no proof could be found,
subgoals for t his problem would be set up ad t he
process would continue.

The hierarchy of goal, subgoals, axd modes
generated by the search process is represented by
a search tree. Eadh node of the search tree hes
the fom ((world nodd) (goal list>), ad repre-
sents the problem of trying to achieve the sub-
goals on the goal list (in order) fran t he indi-
cated world model.

An eanpe of sudh a search tree is oM In
Figure 1. The top node (M ,(Go)) represents the

man task of achieving goal Go fromm world nodd
MQ. In this case, Wwo alternative subgoals G,

ad G, are set up. These are added to the front
of the goal lists in the tWwo successor nodes.
Pursuing ae of these subgoals, suppose that In
the node (MQ,(G,,Gp)), goal G, is satisfied in

My, the comesponding operator, say OF, is then
applied to M, to yield M, . Thus, along this
branch, the problem is rowv to satisfy goal Go
from M1, ad this problem is represented by the
node (M1(Gg). Along the other path, suppose

G is set up as a subgoal for achieving G. ad
thus the mode (Mo, (G, Go, Go)) Is created . Sygooee
G Is satisfied n Mpad thus OP is applied to
My vielding M., Nw STRES mudt still solve the
subproblem Gy, before attempting the man goal Go.
Thus, the result of applying OP is o replace MQ
by Mb, ad to enowe G, from the goal list to
produce the node (Ms,(Gp,Go)).

This process continues until STRFES produces
the node (M, (Gp)) . Here suppose Gy can be
proved directly from M- so that this node is
terminal. The solution sequence of operators is
thus (OP,OP,, OP,).

This e@ape search tree indicates clearly
that when an operator is found to be relevant,
it s not ko whee it will occur In the am
pleted plan, that is, it my be applicable to
the inial nNmodd ad therefore be the first
operator applied, its effects nay imply the goal
so that it is the last operator applied, or it
ey be sore intermediate step toward the goal.

This flexible search strategy emboded in STRES
combnes may of the advanlages of both forward
search (from the initial nodd toward the goal)
ad badwad search (from the goal toward the
initial model).

Wherever STRES generates a successor node,
it immediately tests t o see if the first goal on
the goal list is satisfied In the rew node's
nodd . If so, the comesponding operator is
applied, generating a rev successor node, If not,
the difference (i.e., the uncompleted proof) is
stored with t he node . BExoept for t hose sucoessor
nodes generated as a result of applying operators,
the process of successor generation is as follows:
SIRFS selects a nrode ad uses the difference
stored with the node to select a relevant opera-
tor. It uses the precondition of this operator
to generate a rev successor. (If all of the node's
successors heve already been generated, STRES
selects sore other node still having uncompleted
successors) A flowchart summarzng the SRS
search process Is s loan In Figure 2.

SIRFS hes a heuristic medaEam to select
nodes with uncompleted successors to wak on
next . For this pupose we use an evaluat ion func-
tion that takes into acoount such factors as the
nunber of remaining goals on the goal list, the
nurber ad types of predicates in the remaining
goal fomulas, ad the complexity of the difference
attached to the node

Session No.

(M().(G‘,LO))

(M (LG ,0G 1))
) a 0

15 Heuristic Problem Solving

R. E. FIKES, N. J. NILSSON

FIGURL |

w W

(M_, (G ,G))
0 b O

(M, (G ,G
2"y 6!

terminal

A TYPICAL STRIPS SEARCH TREL

&

* [

—— .

M = INITIAL WOHLD MODEL
IMAIN GOAL)
NODE = IM GOAL LIST)

GOAL LIST -

Creates 1001101 Nugds

Yo

Y

SUCCESS
Fx1?

THL LAST GOAL
ON GOAL -LIST?

-

G FIRST GOAI ON

GOAL LI13T

DOS M

Yo

L

.ﬂ.

GENERATION OF A
SUCCEBSOR NODE

M * Worigd Modge! #ormed by
Appiying the Opersior Asociated
with (G to M

GUAL LIST * L Formed by
Removing G from GOAL LIST

NOOE = (M GOAL LIST)

FIGURE 2

SATISFY
(-'1

No

—

ATTACH DIFFEREN(CL YO
NODE AND
STORE NOOt

+

SFLECT A STORED NOML HAVING

UNCOMPUTF() SUCCESAOAS

No Sutch Noodes

=

!

NODE + THF NOOE SELFCTED

I AILURF
£y

:

M - WORLD MODEL OF NQOE

GOAL-LIST » THE GOAL-LIST QF TuE NODF

'

GENERATION OF A
SUCCESSOR NODE

Sotect an Operstor OF Relavan!
10 Reducing the Dvilerence
Allacted to NODL

GOAL LISY * List +orivwd by
Agthng the Precondit:on of OP
o the Fromt of GOAL - 18T

NODE « IM GOAL-LIST

F__

FLOW CHART FOR STRIPS

Ya riof3y 24

611

612 Session No. 15 Heuristic Problem Solving

R E FAKES, N. J NSSON

111 NMRBEVENTATON We next need a wey to state the effects of
operator application on world models. These
A. TheoemProving with Parameters effects are simply described by two lists. On
the delete list we specify those dauses in the

In this section, we discuss the nae Impor- original modd that might no longer be true in
tant details of our implementation of STRPS, we the renv model. On the ad list are those dauses
begin by describing t he automatic theorem-proving that might not have been true In the original
component model but are true In the rev model.

SIRFS uses the resolution t heorem{orover For example, consider an operator push(k,m,n)
QA35 (7)) wen attempting to prove goal ad sub- for pushing object k rom m to n - Sudh an oper-
goal wffs. We asmne that the reader is familiar ator might be described as follows:
wi th resolution proof techniques for the predicate
calculus (1). Those techniques mE be exiended push(k,m, n)
to hande the parameters occurring in wif sdhemes;
we discuss t hese extensions next. Prcecondition: ATR(m)

N AT(k,m)

The general situation s thnt we have sore
goal wif sdtea G(p), say, that is to be poved delete list
from a set M of dauses where p is a set of sdtaa
parameters. Following the general strategy of

resolution theorem provers, we attempt to prove AT(k,m)
the inconsistency of the set M U~G(p)]. That

ATR(m) ;

Is, we attempt to find an instance p' of P for add Iist
which MU~ Gp ')] is inconsistent . ATR(n);

We have been able o use the standard unifi- ATk, n)
cation algonthm of the resolution melhod to com- The parameters of an operator sdhhema are
pute the appropriate instances of st ama variables instantiated by constants at the time of opera-
during the search for a proof. This algorithm tor application. Sme instantiations are nmaee
hes the advantage that it finds the nogt gened while deciding what instances of an operator
Instances of paramelers nesded to effect unifica- shema are relevant to reducing a difference, ad
tion. To use the unification algorithm we Mt the rest are meace while deciding whet instances
spedfy how it is to treat paramelers . The follow- of an operator are applicable in a given world
Ing substitution types are allowable cormporens moddl . Thus, when the add ad delete lis ts are

of the output of the modified unification algorithm: used to create renv world models, all parameters
occurring in hem will have been replaced by con-

« Tans that can be substituted for a var- stants .
-able: variables, constants, parameters,
ad functional s not containing the We can mee certain modifications o STRFS
vari able. to allow it to apply operators with uninstantiated
e Tans that can be substituted for a paam- parameterse These applications will produce world
eter: constants, parameters, ad func- nmodel schemata. This generalization complicates
tional terms not containing Skdem func- sorewd the simple add ad delete-list rules for
tions, variables, or t he parameter. computing rev wordld models ad needs further s tudy.
The fact that the sare parameter nay have multiple For certain operators it is convenient to be
occurences in a set of dauses daraxks another able merely to specify the foomm of clauses to be
modification to the theorem prover. Suyose WwWo deleted. For example, ae of the effects of a
clauses C; ad C; resolve to fom dause C ad robot goto operator nust be to delete information
that in the process sore tem t is substituted about the direction that the robot wes originally
for parameter p. Then we mua neke sure that p f acing even though such information might not
IS replaced by t in all of the dauses that are have been represented by ae of the parameters of
descendants of C. the operator. In this case we would include the
aom FACING®) on the delete list of goto with
B. Operator Descriptions ad Applications the convention that ay aom of the foorm FACING®),

regardless of the value of $, would be deleted.
We have already mentioned that to define an

operator, we mugt state the preconditions under Whan an operator description is written, it
which it is applicable ad its effects on a world may not be possible to rae explicitly all the
model schema. Preconditions are stated as wif aoms that should gppear on the delete list. For
schemata. For example, suppose Gp) is the oper- example, it ray be the case that a world modd
ator precondition st ema of an operator O(p), p contains dauses that are derived from other

IS a set of parameters, ad M is a world model. clauses in the model. Thus, from AT(Bl,a) ad
Then if p' is a constant instance of p for which from AT[B2a + A), we might derive NEXTTOB1, B2)
MU ~ G(p')] is contradictory, then STRFS can ad insert it into the model. Now, if one of

apply operator O(p') to world mode M. the clauses on which the derived clause depends

Session No. 15 Heuristic Problem Solving

R E. KKES,

IS deleted, then the dernved cdause mHA also he
deleted .

We deal with this problem by defining a set
of primitive predicates (e.g., Al, AIK ad
relating all other predicates to this primitive
set. In particular, we require the delete list
of an operator description to indicate all the
doms centaining pnmitive predicates that should
be deleted when the operator is applied. Also,
we require t hat any nonprimitive clause in t he
world node heve associated with it those primi-
tive causes on which its validity depends . (A
primitive clause is ae which contains only prim-
itive predicates.) For example, t he clause
NEXTTOB1B2) would heve associated with it the
clauses AT(B1a) ad ATB2a + A),

IV usng these conventions, we can be assured
that primitive dauses will be correctly deleted
during operator applications, ad that the valid-
ty of nonprimitive dauses can be deterimined
whenever they are 1o be used in a deduction by
checking to see if all of the primitive c 1 auses
on which the nonprimitive dause degpeds are still
n the world nod

C. Compuing Difference ad Relevant Operators

SIRFPS usss the 5 strategy of attempting to
apply those operators that are relevant to redu-
cing a difference between a world nodd ad a goal
or subgoal . We use the theoem prover as a key
part of this mednanam .

Sy we have jus t created a rev noce in the
search tree represented by (M, (G+,Gne1, - - -5, Gp)) -
The theoeam prover is called to attempt to find
a contradiction for the set IMU ~G4}+ If ae
can be found, the operator w hose precondition
wes G, IS applied to M ad t he process continues.

Here, t hough, we are interested | n t he case
in which no contradition is obtained after
investing sore prespecified arout of theorenm-
proving effort. The uncompleted proof p is
represented by the set of dauses that fom
the negation of the goal wif, plus all ot their
descendants (if ay), less awy dauses eliminated
by editing strategi (such as suhsumpton ad
predicate evaluation). We take P to be the dif-
ference beween M ad G, ad attach P to the node.

Later, in attempting to compue a successor
to this node with incomplete proof P attached,
we first must select a relevant operator. The
quest for relevant operators prooceeds in two
steps. In the first step an ordered list oi
candidate operators is created. The selection
of candidate operators is based on a simple com-
parison of the predicates in the difference clauses
with those on the add lists of the operator

If P is very large we can heuristically select
soe part of P as the difference.

613

N.J. NLSSON

descriptions . For example, if t he difference
contained a dause having in it the negation of
a position predicate AI, t hen t he opera tor push
would be considered as a candidate for this
difference.

The secod step in finding an operator rele-
vant to a Riven difference involves employing
the theoem prover to determmine It dauses on

t he add list of a candidate operator can be used
to "resolve aney dauses in the difference (e,
to see if the proof can be continued based on the
effects of t he operator) , If t he t heaem prover
can in fadd produce rev resolvents that are
descendants of the ald list clauses, then the
candidate operator (properly instantiated) is
considered to be a relevant opterator for the
differenee set .

Note that the consideration of ae candidate
operator sdema nay produce several re levant
operator instances. For example, If the differ-
ene set contains the unit dauses ~ ATK@ ad
— ATR((D), t hen there are o relevant instances
of goto(m,n), namely goto(m,a) axd goto(m,b) .
Eadch new resolvent that is a descendant of the
operator's ald list dauses is used to fom a
relevant instance of the operator by applying to
t he operator's parameters the sare substitutions
that were nace during the production of the
resolvent .

). Efficient Representaton of Waol Modd s

A prnmary design issue in the implementation
of a system such as SIRFS is hau to satisfy the
storage requirements of a search tree in which
eadh node nay contain a different world modd .
We woud like to use STRES in a robot or question-
answenng environmen t w he re t he initial world
model nmey consist of hundeds of wffs. For such
applications it is infeaslhie to recopy completely
a world noH each tme a rev modd s produced
by application of an operator.

We have dealt with this problem n STRPES by
first assuming that nogt of the wifs in a prob-
ems initial woRd noe 1 will not be dhanged
by the application of operators. This is cer-
tainly true for the class of robot problems with
which we are currently concemed . For these
probl ers nost of the w ffs | na naodke 1 describe
rooms, walls, doors, axd objects, or specify
general properties of the world, which are true
N allmodels . The only wifs t hat might be
daxged " n this robot environment are the anes
that describe the status of the robot axd awy
objects which it manipulates.

Gihven this assumption, we have implemented
t he following sdteme for handling multiple world
models. All the wifs for all world models are
stored In a amon maay structure, Assoclated
with each wit (i.e., clause) is a V|S|b|I|ty
flag, ad QA30 hes been modified to consider
only dauses from the maray structure that are
maked as visible. Hence, we can define"” a

614

R. E. FIKES,

particular world model for QA3.5 by marking that
model's clauses visible and all other clauses
invisible. When clauses are entered into the
initial world model, they are all marked as vis-
ible. Clauses that are not changed remain visible
throughout STRIPS' search for a solution.

Each world model produced by STRIPS is defined
by two clause lists. The first list, DELETIONS,
names all those clauses from the initial world
model that are no longer present in the model
being defined. The second list, ADDITIONS, names
all those clauses in the model being defined that
are not also Iin the initial model. These lists
represent the changes in the initial model needed
to form the model being defined, and our assump-
tion implies they will contain only a small number
of clauses.

To specify a given world model to QA3.5, STRIPS

marks visible the clauses on the model's ADDITIONS

list and marks invisible the clauses on the model's

DELETIONS list. When the call to QA3.5 is com-
pleted, the visibility markings of these clauses

are returned to their previous settings.

When an operator is applied to a world model,
the DELETIONS list of the new world model is a
copy of the DELETIONS list of the old model plus
any clauses from the initial model that are
deleted by the operator. The ADDITIONS list of
the new model consists of the clauses from the
old model's ADDITIONS list, as transformed by
the operator, plus the clauses from the operator's

add list.

E. An Example

Tracing through the main points of a simple
example helps to illustrate the various mechan-
isms in STRIPS. Suppose we want a robot to
gather together three objects and that the ini-
tial world model is given by:

ATR(a))
M- AT (BOX1, b)
0 AT(BOX2, c)

AT(BOXS,d)‘

The goal wff describing this task 1s

G, (Ix) [AT(BOX1, x) A AT(BOX2, x)
A AT (BOX3, x) |

Its negated form is

~ G,: ~ AT(BOX1,x) v~ AT(BOX2,x)
V ~ AT(BOX3, x)

(In ~ G, the term x 1s a universally quantified
variable.)

We admit the following operators:

(1) push(k,m,n): Robot pushes object
k from place m to place n,.

Session No. 15 Heuristic Problem Solving

N. J. NILSSON

Precondition: AT(k,m) A ATR(m)
Ne;ated precondition: ~ AT(k,m) Vv~ ATR(m)

Delete list: ATR(m)

AT(k,m)
Add list: AT(k, n)
ATR(n)
(2) goto(m,n): Robot goes from place m to
place n.

Precondition: ATR(m)
Negated precondition: ~ ATR(m)

Delete 1list: ATR(m)
Add 1list: ATR(n)

Following the flow chart of Fig. 2, STRIPS
first creates the initial node (Mg, (Gg)) and
attempts to find a contradiction to (M, U~ G,].
This attempt is unsuccessful; suppose the incom-
plete proof is:

~ AT(BOX1,x) v ~ AT(BOX2,x) Vv ~ AT(BOX3, x)

AT(BOX1, b) vmxz,c) AT (BOX3, d)
1

~ AT(BOX1l,c) V ~ AT(BOX3,c)

~ AT(BOX2,b) VvV ~ AT(BOX3,b) \

~ AT(BOX1l,d) v ~ AT(BOX2,d)

We attach this incomplete proof to the node and
then select the node to have a successor computed

The only candidate operator is push(k,m,n).
Using the add list clause AT(k,n), we can con-
tinue the uncompleted proof in one of several
ways depending on the substitutions made for k
and n. Each of these substitutions produces a
relevant instance of push. Ore of these is:

OP : push(BOX2,m, b)

given by the substitutions BOX2 for k and b for
n. Its associated precondition (in negated form)

IS :
~ Gy: ~ AT(BOX2,m) v ~ ATR(m)

Suopose OP4 Is selected ad used to create a
successor node. (Later in the search process
another successor using one of the other rele-

vant instances of push might be compuked if our
original selection did not lead to a solution.)
Selecting OP, leads to the computation of the
successor node (M, (G1,Go)).

STRIPS next attempts to find a contradiction
for M, _ ~ Gy}. The 1ncompleted proof (differ-
ence) attached to the node contains:

~ AT(BOX2,m) V ~ ATR(m)

AT(BO&ELﬁlEit:::S \\\\\\\\\\v///ﬁzﬁ(a)

~ ATR(c) ~ AT(BOXZ, a)

Session No. 15 Heuristic Problem Solving

615

R. E. FIKES, N. J. NLSSON

When this node is later selected to have a suc-
cessor computed, one of the candidate operators

is goto(m,n). The relevant instance is determined
to be

0P2: goto(m, c)

with (negated) precondition

«-02: ATR(m)
This relevant operator results in the successor

Next STRIPS determines that (MO U~ Gy) 1is
contradictory with m = a. Thus, STRIPS applies
the operator goto(a,c) to Mg to yield

ATR(c)
. AT (BOX1, b)
1 AT(BOX2, c)
AT (BOX3, d)

The successor node 1s (Ml'(Gl'G)). Immediately,
STRIPS determines that (M1 L) ~ 81) is contradic-
tory with m = ¢c. Thus, STRIPS applies the oper-
ator push(BOX2,c,b) to yield

ATR(b)
_ AT (BOX1, b)
2° AT(BOX2, b)
AT (BOX3,d)

The resulting successor node is (M,,(G)), and
thus STRIPS reconsiders the original problem but
now beginning with world model M,. The rest of
the solution proceeds in similar fashion.

Our implementation of STRIPS easily produces
the solution {goto(a, c),push(BOX2, c, b), goto(b,d),
push(BOX3,d, b)}. (Incidentally, Green's theorem-
proving problem-solver (4) has not been able to
obtain a solution to this version of the 3-Boxes
problem. It did solve a simpler version of the
problem designed to require only two operator
applications.)

NV BAVPLEE FROBIEVS SOLMVBED BY STRIPS

STRIPS has been designed to be a general-
purpose problem solver for robot tasks, and thus
must be able to work with a variety of operators
and with a world model containing a large number
of facts and relations. This section describes
its performance on three different tasks. The

initial world model for all three tasks consists
of a corridor with four rooms and doorways (see
Fig. 3) and is described by the list of axioms
in Table 1. Initially, the robot is in ROOV
at location e. Also in ROOM1 are: A large box,
BOX1 at location a; two smaller boxes, BOX2 at
location b, and BOX3 at location c; and a light-
switch, LIGHTSWITCH1 at location d. The light-
switch is high on a wall out of normal reach of
the robot.

The first task is to turn on the lightswitch.
The robot can solve this problem by going to the
largest of the three boxes, BOX1, pushing it to
the lightswitch, climbing on the box® and turning
on the lightswitch. The second task is to push
the three boxes in ROOMI together. (This task is
a more realistic elaboration of the three-box
problem used as an example in the last section.)
The third task is for the robot to go to a desig-
nated location, f, in ROOM

The operators that are given to STRIPS to
solve these problems are described in Table 1.
For convenience we define two "goto" operators,
gotol and goto2. The operator gotol(m) takes the
robot to any coordinate location m in the same roo
as the robot. The operator goto2(m) takes the
robot next to any item m (e.g., lightswitch, door,
or box) in the same room as the robot. The oper-
ator pushto(m,n) pushes any pushable object m next
any item n (e.g., lightswitch, door or box) in
the same room as the robot. Additionally, we have
operators for turning on lightswitches, going
through doorways, and climbing on and off boxes. The
precise formulation of the preconditions and the
effects of these operators is contained in Table 1

We also list in Table 1 the goal wffs for the
three tasks and the solutions obtained by STRIPS.
Some performance figures for these solutions are
shown in Table 2. In Table 2, the figures in
the "Time Taken" column represent the CPU time
(excluding garbage collection) used by STRIPS in
finding a solution. Although some parts of our
program are compiled, most of the time is spent
running interpretive code; hence, we do not
attach much importance to these times. We note
that in all cases most of the time is spent doing
theorem proving (in QA3.5).

The next columns of Table 2 indicate the
number of nodes generated and the number of oper-
ator applications both in the search tree and
along the solution path. (Recall from Fig. 2
that some successor nodes do not correspond to
operator applications.) We see from these figures
that the general search heuristics built into
STRIPS provide a highly directed search toward
the goal. These heuristics presently give the
search a large "depth-first" component, and for
this reason STRIPS obtains an interesting but
nonoptimal solution to the "turn on the light-
switch” problem.

This task is a robot version of the- so-called
"Monkey and Bananas" problem. STRIPS can solve
the problem even though the current SRI robot
Is incapable of climbing boxes and turning on
lightswitches.

616 Session No. 15 Heuristic Problem Solving
R. E. FIKES, N. J. NLSSON

Table 1

FORMULATION FOR STRIPS TASKS

Initial World Modcl

CONNECTS (DOOR 1 .ROOM1 ,ROOMS) ACONNECT S (DOOR 1, ROOMS5 , ROOM 1)
CONNECTS (DOOR2 , ROOM2 , ROOM5) ACONNECTS (DOORZ2 , ROOM5 , ROOM2)
CONNECTS (DOOR3 , ROOM3 , ROOM5) ACONNECT'S (DOORJS , ROOMS , ROOM.3)

CONNECTS (DOOR-1, ROOM:1 , ROOMS) ACONNECTS (DOOR 1, ROOMS , ROOM-1)

LOC INROOM(f ,ROOM-1) I NROOM(BOX1 ,ROOM1)

AT (BOX1 ,a) INROOM(BOXZ2 ,ROOM!)

Al (BOXZ . b) I NROOM(BOX3 ,ROOM3)

AT (BOX3,¢) I NROOM(ROBOT ,ROOM1)

AT (LIGHTSWIICH] , d) INROOM(LI1GHT SWI'TCHL ,ROOML)
ATROBOT (¢) PUSHABLL (BOX1)

I YPE (BOX1,BOX) PUSHABLE (BOX2)

TYPE(BOX2 ,BOX) PUSHABLE (ROX3)

TYPF (BOX3 ,BOY) ONT LOOR

STATUS(LIGITTSWITCHL O)
INPECLIGHTSWETCH) LIGHTSWITCH)

Operators

potol(m) - Robot goes to coordinagte location n,

Precondirtrons
(ONE LOOR) . (- x) | INROOMCROBO!L [x) " LOC INROOMOm, v) |
Do lete Tist ATROBOT () NI XTTO(CROBOT | &)
Add Tis1 ATROBOL (n)

potolim) Robot pocs next ta 1tem m,

Preconditiions
(ONTF LOOR)Z T (7 x) T INROOMCROBO!L ,x) 2 INROOMOm, x40 L N, 7v) | INROOM(ROBOT ,x) "CONNLCTIS(m, x,v)]!
Dolete 1Tist ATROBOLI(S) M XTTOCROBO] [N)
Add 1141 NEXT TOCROBOT ,m)

pushto(n n) robot pushes obyect m next to yten n

Proconditron
PUSHABLE (n) /7 ONE LOORZ NEXTTOCROBOL ,m) 10) [INROOMCn,)/ INROOM(1, %))
O N, TV T INROOMOn, <)/ CONNEC TS (nyn v) 1Y)
De 1o te 1ist VIROBOT(S) L AT (L S) NENTTOCROBUL (S) U NEXT1O(m, S) ONEXTTO(S)
Veldd 1 as NN TO(m,)
NEXTTO(n m)

NEYXT TOCROBOT ,m)

Session No. 15 Heuristic Problem Solving 617

R. F. FIKES, N. J. NLSSON

Table 1 (Coneluded)

turnonlyght(m): robot turns on lightswitch m,

Precondition
TYPE(m, LIGHTSW I'TCH) AON(ROBOT , BON 1)/ NEXTTO(BONL ,m)
Delete lyst: STATUS(m,OFF)
Add list- STATUS(m,ON)

climbonbox{m) - Robot c¢limbs up on box m.

Preconditions,
ONFLOORANTYPE (i, BOX) ZANEXTTO(ROBOL , m)
Delete list: ATROBOT (%) ,ONFIOOR
Acdd list: ON(ROBOT ,m)

climboifbox(m): Robot ¢limbs of{ boyx m.

Precondirtions:
TYPE (m,ROXN)/AONCROB(,m)
Delete List ON(ROBOT, m)
Add li1st- ONFLOOR

gothrudoor(k, £,m) Robot goes through door d {from room £ 1nto room m.

Precondit ions
NEXTTO(ROBOT , K)ANCONNECIS (K, £, m)AINROOM(ROBOL , £)/\ONFILOOR
Delete list ATROBO1 (%) ,NLXTTO(ROBOT ,8) , INROOM(ROBO1 , %)
Add 1i1st: INROOM(ROBO!L ,m)

Tasks

1. Turn on the lightswitch

Goal wtt- STATUSCLIGHTSWITCHI1 ,0ON)
STRIPS solution: [gutnR(BUXl),cl1mbnnbux(H0Xl),cllmbutthox(BOXl),
pushto(BOX1,LIGHTSWITCHL) ,climbonhox(BOX1) , turnonlight (LLIGHTSWITCH1) }

2. Push threce hoxes together

Goal wff: NEXTTO(BOXI ,BOXZ2)ANEXTTO(BOXZ2 BOX3)
STRIPS solution. fgotoZ(BOXI),pushtu(ﬂOXl,BOXB).gotoz(BOXS),pushto(BOXS,noxz)}

3. Go to a location 1n another room

Goal wtf: ATROBOT(f)
STRIPS solution- [gnluZ(UOORl),golhrudoor(DOORl,ROOMI,ROOMS),

golﬁz(DOORd),golhrudoor(DOORJ,ROOMS,ROOM4).gotol([)]

618

Session No. 15 Heuristic Problem Solving

R. E. FIKES, N. J. NLSSON

Table 2

= OF STRIPS ON THREE TASKS

q
*I Number of Operator
Time Taken Number of Nodes Applications
(in seconds) On Solutionﬁwln Search { On Solutionjrin Search
_ A!TotaJ:ITheorem-Provlng Path 1 Tree 4 Path] Tree
turn on the
65.0 46 .5 13 6 6
lightswitch
L(- # # -+ r— e j; . |
h t
pus hree 122 1 92 .5 14 4 6
boxes together
-+ . . < 'ﬂ - 4
0O to a location
go 1O . 125.9 103.0 12 5 5
1N another room
i | A

V' HUTURE PLANS AND FROBLBEVIS

The current implementation of STRIPS can be
extended in several directions. These exten-
sions will be the subject of much of our problem-
solving research activities in the Iimmediate
future. We mention some of these briefly.

We have seen that STRIPS constructs, a problem-
solving tree whose nodes represent subproblems.
In a problem-solving process of this sort, there
must be a mechanism to decide which node to work
on next. Currently, we use an evaluation func-
tion that incorporates such factors as the number
and the estimated difficulty of the remaining
subgoals, the cost of the operators applied so
far, and the complexity of the current difference.
We expect to devote a good deal of effort to
devising and experimenting with various evalua-
tion functions and other ordering techniques.

Another area for future research concerns
the synthesis of more complex procedures than
those consisting of simple linear sequences of
operators. Specifically, we want to be able to
generate procedures involving iteration (or
recursion) and conditional branching. In short,
we would like STRIPS to be able to generate com-
puter programs. Several researchers (4), (8), (9)
have already considered the problem of automatic
program synthesis and we expect to be able to use
some of their ideas in STRIPS.

We are also interested in getting STRIPS to
'learn” by having it define new operators for
itself on the basis of previous problem solu-
tions. These new operators could then be used
to solve even more difficult problems. It would
be important to be able to generalize to param-
eters any constants appearing in a new operator,
otherwise, the new operator would not be general
enough to warrant saving. Ore approach (10) that
appears promising is to modify STRIPS so that it

solves every problem presented to it in terms of
generalized parameters rather than in terms of
constants appearing in the specific problem
statements. Hewitt (11) discusses a related
process that he calls "procedural abstraction.”
He suggests that, from a few instances of a
procedure, a general version can sometimes be

synthesized.

This type of learning provides part of our
rationale for working on automatic problem
solvers such as STRIPS. Sare researchers have
questioned the value of systems for automatically
chaining together operators into higher-level
procedures that themselves could have been "hand
coded" quite easily in the first place. Their
viewpoint seems to be that a robot system should
be provided a priori with a repertoire of all
of the operators and procedures that it will ever

need .

Wo agree that it is desirable to provide
a priora a large number of specialized operators,
but such a repertoire will nevertheless be finite.
To accomplish tasks just outside the boundary of
a priori abilities requires a process for chaining
together existing operators into more complex ones.
We are interested in a system whose operator
repertoire can "grow" in this fashion. Clearly
one must not give such a system a problem too far
awvay from the boundary of known abilities, because
the combinatorics of search will then make a solu-
tion unlikely. However, a truly "intelligent”
system ought always to be able to solve slightly
more difficult problems than any it has solved

before .

ACKANONEDCEVENT

The development of the ideas embodies in STRIPS
has been the result of the combined efforts of the
present authors, Bertram Raphael, Thomas Garvey,
John Munson, and Richard Waldinger, all members of

Session No. 15 Heuristic Problem Solving

ROOM)]

I Bole

[| |

LlGHTS'ITCHl.—d—

=]

R. E. FIKES, N. J. NLSSON

ROOM2

o p—

| = |

FIGURE 3

619

ROOM4

I ROOMJ
:
L

ROOM PLAN FOR THE ROBOT TASKS

o |

620

Session No. 15 Heuristic Problem Solving

R. E. FIKES, N. J. NILSSON

the Artificial Intelligence Group at SRI.

The research reported herein was sponsored by

the Advanced Research Projects Agency and the
National Aeronautics and Space Administration
under Contract NAS12-2221.

(1)

(2)

(3)

(9)

(10)

(11)

N. J. Nilsson, Problem-Solving Methods in
Artificial Intelligence (McGraw-Hill Book
Company, New York, New York, 1971).

J. H. Munson, "Robot Planning, Execution,
and Monitoring in an Uncertain Environment,”
Proc. 2nd Int'l. Joint Conf. Artificial
Intelligence, London, England (September 1-3,
1971).

R. E. Fikes, Monitored Execution of Robot
Plans Produced by STRIPS," Proc. IFIP 71,
Ljubljana, Yugoslavia (August 1971).

C. Green, Application of Theorem Proving to
Problem Solving," Proc. Int'l. Joint Conf.
Artificial Intelligence, Washington, D.C.
(May 1969).

B. Raphael, The Frame Problem in Problem-
Solving Systems," Proc. Adv. Study Inst, on
Artificial Intelligence and Heuristic

Programming, Menaggio, Italy (August 1970).

G. Ernst and A. Newell, GPS. A Case Study
in Generality and Problem Solving, AOM
Monograph Series (Academic Press, New York,
New York 1969) .

T. Garvey, and R. Kling, User's Guide to
QA3.5 Question-Answering System," Stanford
Research Institute Artificial Intelligence
Group Technical Note 15, Menlo Park,
California (December 1969).

R. Waldinger and R. Lee, "PRONV. A Step
Toward Automatic Program Writing," Proc.
Int'l. Conf. Artificial Intelligence,
Washington, D.C. (May 1969)

Z. Manna and R. Waldinger, Towards Automatic
Program Synthesis," Coom. ACM, Vol. 14, No. 3,
(March 1971) .

P. E. Hart and N. J. Nilsson, "The Construc-
tion of Generalized Plans as an Approach
Toward Learning," Stanford Research Institute
Artificial Intelligence Group Memo, Menlo
Park, California (5 April 1971).

C. Hewitt, "PLANNER: A Language for Manip-
ulating Models and Proving Theorems in a
Robot," Artificial Intelligence Meno No. 168
(Revised), Project MAC, Massachusetts
Institute of Technology, Cambridge, Massa-
chusetts (August 1970).

