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ABSTRACT 
We describe a new problem solver called STRIPS 

that attempts to f ind a sequence of operators in 
a space of world models to transform a given 
i n i t i a l world model into a model in which a given 
goal formula can be proven to be true. STRIPS 
represents a world model as an arbi trary col lec­
t ion of f i rs t -order predicate calculus formulas 
and is designed to work with models consisting of 
1arge numbers of formulas. 1t employs a resolu­
t ion theorem p rover to answer (jues t ions of par t ic­
ular models and uses means-ends analysis to guide 
it to the desired goal-satisfying model . 

DESCRIPTIVE TERMS 

Probl em solv J ng, t heorem prov i rig, robot 
planning F heurist ic search. 

1 INTRODUCTION 

This paper describes a new problem-solving 
program cal led STRIPS (STanford Research Ins11tute 
Problem Solver). An i n i t i a l version of the pro­
gram has been implemented in LISP on a PDP-10 and 
is being used in conjunction with robot research 
at SRI. STRIPS is a member of the class of prob­
lem solvers that search a space of "world models" 
to ind one in w hich a given goal is achieved . 
For any world model, we assume that there exists 
a set of appllcable ope rators, each of w hi eh trans-
forms the world model to some other world model. 
The task of the problem solver is to find some 
composl11on of ope rat ors that trans forms a given 
i n i t i a l worId mode] into one t hat sat isf ies some 
stated goa1 condltion . 

This f rarnewo rk for probl em so 1 v i ng has l>een 
cen t ra 1 to much of t he research I n a r t i f i c i a l 
Intel licence ( 1 ) . Ou r p nmary interest he re is 
in the class of p robJ ems faced by a robot in re-
a rranging ob]ec t s and in navigatlng, l .e . f p rob 1 ems 
t hat requi re quit e complex and genera 1 world mode Is 
compared to t hose needed ln t he solution of pu//1es 
and games. In puzzles and games, a simple matrix 
or l i s t s t ruet ure is usually adequate to represent 
a state of t he p roblem. The wor Id mode 1 for a 
robot [J robl em sol ve r, however, mus t i nc 1 ude a 1 arge 
numbe r of facts and re 1 ations deallng with t he posi-
t ion of the robot and the positions and attr ibutes 
of vjrious ob jec t s , open spaces , and hound a r it-1 s . 
In STRI PS, a world mode 1 is represent ed by a set 
o( wt 11-formed formulas (wffs) of 1 he f i rs t -order 
predicate en 1cu1 us . 
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Operators are the basic elements from which a 
solution is b u i l t . For robot problems, each 
operator corresponds to an action routine* whose 
execution causes a robot to take certain actions. 
For example, we might have a rout ine that causes 
it to go through a doorway, a routine that causes 
it to push a box, and perhaps dozens of others. 

Green (4) implemented a problem-solving system 
that depended exclus ively on formal theorem-
proving methods to search for the appropri ate 
sequence of operators. While Green fs formulation 
represented a s igni f icant step in the development 
of problem-solvers, it suf fered some serious d is-
advant ages connected with the 'frame problem" 
t hat prevented it f rom solving nont r i v i a l problems. 

In STRIPS, we surmount these d i f f i c u l t i e s by 
separatlng ent i re ly the processes of theorem 
proving from those of searching through a space 
ot world models. This separation allows us to 
employ separate st rategies tor these two ac t l v i -
t les and t hereby improve the overal1 performance 
of t he sys t em . Theorem-p rovi ng met hods a re used 
only within a given world model to answer ques-
tIons about it concerning which operators are 
applicable and whether or not goals have been 
sa t i s f ied . For searching through the space of 
world models, STRIPS uses a GPS-like means-ends 
analysis strategy (6) . This combination of means-end^ 
analysis and formal t heorem-proving methods allows 
objects (wor1d mode Is) much more complex and gen­
eral than any of t hose used in GPS and provides 
more powerfu1 search heuristics t han t hose found 
in t heorem-proving programs. 

We proceed by describing the operat ion of 
STRIPS in terms of the conventions used to rep­
resent the search space for a problem and the 
search methods used to find a solution . We t hen 
discuss t he detaiIs of implementation and 
present some examples . 

The reader should keep in mind the d is t inc t ion 
between an operator and i t s associated action 
routine. Execution of action routines actually 
causes the robot to take actions. Application 
of operators to world models occurs during the 
planning ( i . e . , problem solving) phase when an 
attempt is being made to f ind a sequence of 
operators whose associated action routines wi11 
produce a desired state of the world. (See the 
papers by Munson (2) and Fikes (3) for discus­
sions of the relationships between STRIPS and 
the robot executive and monitoring functions. 

Space does not allow a full discussion of the 
frame problem; for a thorough treatment, see 
Ref. (5) . 
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II THE OPERATION OF STRIPS 

A . The Problem Space 

The problem space for STRIPS is defined by the 
i n i t i a l world model, the set of available opera­
tors and their effects on world models, and the 
goal statement. 

As already mentioned, STRIPS represents a 
world model by a set of well-formed formulas (wf ls) . 
For example, to describe a world model in which t he 
robot is at location a and boxes B and C are at 
locations b and c we would lnclude t he following 
wt fs : 

ATR(a) 
AT(B, h) 
AT(C,c) 

We might also Inc1ude t he w f i 

("u "x Vy) [AT(u,x) A (x= y)] => AT(u,y)) 

to state the general rule that an object in one place 
is not in a different place. Using first-order 
predicate calculus wffs, we can represent quite 
complex world models and can use existing theorem-
proving programs to answer questions about a model. 

The available operators are grouped into fam-
llies called schemata. Consider for example t he 
operator goto for moving the robot from one point 
on the floor to another, Here there is really a 
distinct operator for each different pair of 
points, but it is convenient to group all of 
these into a family goto(m,n) parameterized by 
the initial posit ion* m and t he final position 
n. We say that goto(m,n) is an operator schema 
whose members are obtained by substituting speci­
fic constants for the parameters m and n. In 
STRIPS, when an operator is applied to a world 
model, specific const ants will already have been 
chosen for the operator parameters. 

Each operator is defined by an operator descrip-
t ion consisting of two main parts: a description 
of the effects of the operator, and the conditions 
under which the operator is applicable. The effects 
of an operator are simply defined by a list of wffs 
that must be added to the model and a list of wfls 
that are no longer t rue and therefore must be 
deleted. We shall discuss the process of calcula­
ting these effects in more detail later. It is 
convenient to state the applicability condition, 
or precondition, for an operator schema as a wff 
schema. To determine whether or not there is an 
instance of an operator schema applicable to 
a world model, we must be able to prove 

The parameters m and n are each really vector-
valued, but we avoid vector notation here for 
simplicity. In general, we denote constants by 
letters near the beginning of the alphabet 
(a,b,c, . . . ) , parameters by letters in the middle 
of the alphabet (m,n, . . . ) , and quantified vari-
ables by letters near the end of the alphabet 
(x,y,z) . 

that there is an instance of t he correspondIng 
wff schema that logically follous from t he model . 

For example, cons ider t he question oi applying 
instances of t he operator subschema got O(m,b) to 
a world model containing the wff ATR(a) where a 
and b are constants. If the precondition wff 
schema of goto(m,n) is ATR(m), then we find that 
the instance ATR( a) can be proved from t he world 
model. Thus, an appllcable instance of goto(m,b) 
is goto(a,b). 

It is important to distinguish between t he 
parameters appearing in wff schemata and ordinary 
existentially and universally quantifiedd variables 
that may also appear - Certain modifications mus t 
be made to theorem-provlng programs to enable t hem 
to handle w ff schemata, t hese a re discussed later. 

Goal statements are also represented by wffs . 
For example, the t ask "Get Boxes B and C to Loca-
tion a" might be s tated as the wff: 

AT(B,a) AT(C,a) 

To summarize, the problem space for STRIPS is 
deflned by t hree entities: 

(1) An initial world model, which is a set 
of wffs describing the present state of 
the world . 

(li) A set of operators, including a descrip­
tion of their effects and their precon­
dition wff schemat a. 

(3) A goal condition stated as a wff. 

The problem is solved when STRIPS produces a world 
model that satisfies the goal wff. 

B. The Search Strategy 

In a very simple problem-solving system, we 
might first apply all of the applicable operators 
to the initial world model to create a set of 
successor models. We would continue to apply all 
applicable operators to these successors and to 
their descendants (say in breadth-first fashion) 
untill a model was produced in which the goal 
formula was a theorem. However, since we envision 
uses in which the number of operators applicable 
to any given world model might be quite large, 
such a simple system would generate an undesirably 
large tree of world models and would thus be 
impractical. 

Instead, we have adopted the GPS strategy of 
extracting "differences" between the present world 
model and the goal and of identi fying operators 
that are "relevant" to reducing these differences 
(6). Once a relevant operator has been determined, 
we attempt to solve the subproblem of producing 
a world model to which it is applicable. If such 
a model is found, then we apply the relevant oper­
ator and reconsider the original goal in the 
resulting model. In this section, we review this 
basic GPS search strategy as employed by STRIPS. 
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STRIPS begins by employing a theorem prover 
to attempt to prove that the goal wff GO follows 
from the set M of wffs describing the initial 
world model. If GQ does follow from M(,f the task 
is trivially solved in the initial model. Other-
wise, the theorem prover will fail to find a 
proof. In this case, the uncompleted proof is 
taken to be the 'difference" between MO and GO, 
Next, operators that might be relevant to "redu­
cing1' this difference are sought. These are the 
operators whose effects on world models would 
enable the proof to be continued. In determining 
relevance, the parameters of the operators may be 
partially or fully instantiated. The correspond-
ing instantiated precondition wff schemata (of 
the relevant operators) are then taken to be new 
subgoals. 

Consider the trivially simple example in which 
the task is for the robot to go to location b. 
The goal wff is thus ATR(b), and unless the robot 
is already at location b, the initial proof attempt 
will be unsuccessful. Now, certainly the instance 
goto(m,b) of the operator goto(m,n) is relevant 
to reducing the difference because its effect 
would allow the proof to be continued (in this 
case, completed). Accordi ngly, the corresponding 
precondition wff schema, say ATR(m), is used as 
a subgoal• 

STRIPS works on a subgoal using the same tech­
nique. Suppose the precondition wff schema G is 
selected as the first subgoal to be worked on. 
STRIPS again uses a theorem prover in an attempt 
to find instances of G t hat follow from the ini-
tial world model MO. Here again, there are two 
possibilities. If no proof can be found, STRIPS 
uses the incomplete proof as a difference, and 
sets up (sub) subgoals corresponding to their 
precondition wffs. If STRIPS does find an in-
stanee of G that follows from MO, then t he cor­
respond 1 ng operator instance is used to t ransform 
MO into a new world model M1. In our previous 
simple example, the subgoal wff schema G was 
ATR(m). If the initial model contains the wff 
ATR(a), then an instance of G--namely ATR(a)—can 
be proved from Mf). In this case, the correspond­
ing operator instance goto(a,b) is applied to M() 
to produce the new model, M1. STRIPS t hen con-
tinues by at tempting to prove GO from M1 . In our 
example, GO trivially follows from M1 and we are 
through. However, if no proof could be found, 
subgoals for t his problem would be set up and t he 
process would continue. 

The hierarchy of goal, subgoals, and models 
generated by the search process is represented by 
a search tree. Each node of the search t ree has 
the form ( (world model)1 (goal list>), and repre­
sents the problem of trying to achieve the sub-
goals on the goal list (in order) f rom t he indi-
cated world model. 

An example of such a search tree is shown in 
Figure 1. The top node (M ,(GO )) represents the 

main task of achieving goal GO from world model 
MQ. In this case, two alternative subgoals Ga 
and Gb. are set up. These are added to the front 
of the goal lists in the two successor nodes. 
Pursuing one of these subgoals, suppose that in 
the node (MQ,(Ga,G0)), goal Ga is satisfied in 
M(); the corresponding operator, say OPa, is then 
applied to Mo to yield M1 . Thus, along this 
branch, the problem is now to satisfy goal GO 
from M1, and this problem is represented by the 
node (M1(G0). Along the other path, suppose 
Gc is set up as a subgoal for achieving G. and 
thus the node (MO, (Gc, Gb, GO) ) is created . Suppose 
Gc is satisfied in MO and thus OP is applied to 
M0 yielding M2. Now STRIPS must st i l l solve the 
subproblem Gb before attempting the main goal GO. 
Thus, the result of applying OP is to replace MQ 
by M2, and to remove Gc from the goal list to 
produce the node (M2,(Gb,GO)). 

This process continues until STRIPS produces 
the node (M4, (G())) . Here suppose G() can be 
proved directly from M- so that this node is 
terminal. The solution sequence of operators is 
thus (OPc,OPb, OPe). 

This example search t ree indicates clearly 
that when an operator is found to be relevant, 
it is not known where it will occur in the com-
pleted plan, that is, it muy be applicable to 
the initial model and therefore be the first 
operator applied, i ts effects may imply the goal 
so that it is the last operator applied, or it 
may be some intermediate step toward the goal. 
This flexible search strategy embodied in STRIPS 
combines many of the advantages of both forward 
search (from t he initial model toward the goal) 
and backward search (from the goal toward the 
initial model). 

Whenever STRIPS generates a successor node, 
it immediately tests t o see if the first goal on 
the goal list is satisfied in the new node's 
model . If so, the corresponding operator i s 
applied, generating a new successor node, if not, 
the difference (i.e., the uncompleted proof) is 
stored with t he node . Except for t hose successor 
nodes generated as a resuIt of applying operators, 
the process of successor generation is as follows: 
STRIPS selects a node and uses the difference 
stored with the node to select a relevant opera-
tor. It uses the precondition of this operator 
to generate a new successor. (If all of the node's 
successors have already been generated, STRIPS 
selects some other node sti l l having uncompleted 
successors .) A flowchart summarizing the STRIPS 
search process is s hown in Figure 2. 

STRIPS has a heuristic mechanism to select 
nodes with uncompleted successors to work on 
next . For this purpose we use an evaluat ion func-
tion that takes into account such factors as the 
number of remaining goals on the goal list, the 
number and types of predicates in t he remaining 
goal formulas , and t he complexi ty of t he difference 
attached to the node • 
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III IMPLEMENTATION 

A. Theorem-Proving with Parameters 

In this section, we discuss the more impor­
tant details of our implementation of STRIPS, we 
begin by describing t he automatic theorem-proving 
component. 

We next need a way to state the effects of 
operator application on world models. These 
effects are simply described by two lists. On 
the delete list we specify those clauses in the 
original model that might no longer be true in 
the new model. On the add list are those clauses 
that might not have been true in the original 
model but are true in the new model. 

STRIPS uses the resolution t heorem-prover 
QA3.5 (7) when attempting to prove goal and sub-
goal wffs . We assume that the reader is familiar 
wi th resolution proof techniques for the predicate 
calculus (1). Those techniques must be extended 
to handle the parameters occurring in wff schemes; 
we discuss t hese extensions next. 

The general situation is thnt we have some 
goal wff schema G(p), say, that is to be proved 
from a set M of clauses where p is a set of schema 
parameters. Following the general strategy of 
resolution theorem provers, we attempt to prove 
the inconsistency of the set [M U~G(p)]. That 
is, we attempt to find an instance p' of P for 
which [M U ~ G(p ') ] is inconsistent . 

We have been able to use the standard unifi­
cation algorithm of the resolution method to com­
pute the appropriate ins t ances of schema variables 
during the search for a proof. This algorithm 
has the advantage that it finds the most general 
instances of parameters needed to effect unifica­
tion. To use the unification algorithm we must 
sped fy how it is to treat parameters . The follow-
lng substitution types are allowable components 
of the output of the modified unification algorithm: 

• Terms that can be substituted for a var­
­able: variables, constants, parameters , 
and functional terms not containing the 
vari able. 

• Terms that can be substituted for a param­
eter: constants, parameters, and func-
tional terms not containing Skolem func-
tions, variables, or t he parameter. 

The fact that the same parameter may have multiple 
occurrences in a set of clauses demands another 
modificat ion to the theorem prover. Suppose two 
clauses C1 and C2 resolve to form clause C and 
that in t he process some term t is substituted 
for parameter p. Then we must make sure that p 
is replaced by t in all of the clauses that are 
descendants of C. 

B. Operator Descriptions and Applications 

We have already mentioned that to define an 
operator, we must state the preconditions under 
which it is applicable and its effects on a world 
model schema. Preconditions are stated as wff 
schemata. For example, suppose G(p) is the oper­
ator precondition schema of an operator 0(p), p 
is a set of parameters, and M is a world model. 
Then if p' is a constant instance of p for which 
{M U ~ G(p')] is contradictory, then STRIPS can 
apply operator O(p') to world model M. 

For example, consider an operator push(k,m,n) 
for pushing object k from m to n • Such an oper-
ator might be described as follows: 

The parameters of an operator schema are 
instantiated by constants at the time of opera-
tor application. Some instantiations are made 
while deciding what instances of an operator 
schema are relevant to reducing a difference, and 
the rest are made while deciding what instances 
of an operator are applicable in a given world 
model . Thus, when the add and delete lis ts are 
used to create new world models, all parameters 
occurring in them will have been replaced by con-
stants . 

(We can make certain modifications to STRIPS 
to allow it to apply operators with uninstantiated 
parameters• These applications will produce world 
model schemata. This generalization complicates 
somewhat the simple add and delete-list rules for 
computing new world models and needs further s tudy. 

For certain operators it is convenient to be 
able merely to specify the form of clauses to be 
deleted . For example, one of the effects of a 
robot goto operator must be to delete information 
about the direction that the robot was originally 
f acing even though such information might not 
have been represented by one of the parameters of 
the operator. In this case we would include the 
atom FACING($) on the delete list of goto with 
the convention that any atom of the form FACING($), 
regardless of the value of $, would be deleted. 

When an operator descripti on is written, it 
may not be possible to name explicitly all the 
atoms that should appear on the delete l ist. For 
example, it may be the case that a world model 
contains clauses that are derived from other 
clauses in the model. Thus, from AT(Bl,a) and 
from AT(B2,a + A), we might derive NEXTT0(B1, B2) 
and insert it into the model. Now, if one of 
the clauses on which the derived clause depends 
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is deleted, t hen the derived clause must also he 
deleted . 

We deal with this problem by defining a set 
of primitive predicates (e.g., AT, ATK) and 
relating all other predicates to this primitive 
set . In particular, we require t he delete list 
of an operator description to indicate all the 
atoms centaining primitive predicates that should 
be deleted when the operator is applied. Also, 
we require t hat any nonprimitive clause in t he 
world model have associated with it those primi­
tive clauses on which its validity depends . (A 
primitive clause is one which contains only prim­
itive predicates.) For example, t he clause 
NEXTT0(B1,B2) would have associated with it the 
clauses AT(B1,a) and AT(B2,a + A), 

IiV using these conventions, we can be assured 
that primitive clauses will be correctly deleted 
during operator applications, and that t he valid-
ity of nonprimitive clauses can be deterimined 
whenever they are to be used in a deduction by 
checking to see if all of t he primitive c 1 auses 
on which t he nonprimitive clause depends are st i l l 
in t he worId model. 

C . Computinig Difference and Relevant Operators 

STRIPS uses the GPS strategy of attempting to 
apply those operators that are relevant to redu-
cing a difference between a world model and a goal 
or subgoal . We use the theorem prover as a key 
part of this mechainsm . 

Suppose we have jus t created a new node in the 
search tree represented by (M, ((G1,GN-1, . . ., G()) ) . 
The t heorem prover is called to attempt to find 
a contradiction for the set I M U ~ G1} • If one 
can be found, the operator w hose precondition 
was G1 IS applied to M and t he process continues. 

Here, t hough, we are interested l n t he case 
in which no contradition is obtained after 
investing some prespecified amount of theorem-
proving effort . The uncompleted proof p is 
represented by the set of clauses that form 
the negation of the goal wff, plus all ot their 
descendant s (if any ), less any clauses eliminated 
by editing strategi (such as suhsumption and 
predicate evaluation). We take P to be the dif-
ference between M and G1 and attach P to the node. 

Later, in attempting to compute a successor 
to this node with incomplete proof P attached, 
we firs t must select a relevant operator. The 
quest for relevant operators proceeds in two 
steps . In the first step an ordered list oi 
candidate operators is created. The selection 
of candidate operators is based on a simple com­
parison of the predicates in the difference clauses 
with those on the add lists of the operator 

If P is very large we can heuristica1ly select 
some part of P as the difference. 
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descriptions . For example, if t he difference 
contained a clause having in it t he negation of 
a position predicate AT, t hen t he opera tor push 
would be considered as a candidate for this 
difference. 

The second s tep in finding an operator rele-
vant to a Riven difference involves employing 
the theorem prover to determine It clauses on 
t he add list of a candidate operator can be used 
to "resolve away clauses in t he difference (i.e., 
to see if t he proof can be continued based on t he 
effects of t he operator) , If t he t heorem prover 
can in fact produce new resolvents that are 
descendants of the add list clauses, then the 
candidate operator (properly instantiated) is 
considered to be a relevant opterator for t he 
differenee set . 

Note that the consideration of one candidate 
operator schema may produce several re levant 
operator instances. For examp]e, If t he differ-
ence set contains the unit clauses ~ ATK(a) and 
— ATR(b), t hen there are two relevant instances 
of goto(m,n), namely got o(m,a) and goto(m,b) . 
Each new resolvent that is a descendant of the 
operator's add list clauses is used to form a 
relevant instance of the operator by applying to 
t he operator's parameters t he same substitutions 
that were made during the production of the 
resolvent . 

I). Efficient Representation of WorI Model s 

A primary design issue in t he implementation 
of a system such as STRIPS is hou to satisfy the 
storage requirements of a search tree in which 
each node may contain a different world model . 
We would like to use STRIPS in a robot or question-
answering environmen t w he re t he initial world 
model may consist of hundreds of wffs. For such 
applications it is infeasIhie to recopy completely 
a worId model each time a new model is produced 
by application of an operator. 

We have dealt with this problem in STRIPS by 
first assuming that most of the wffs in a prob-
lem's initial WORLd mode 1 will not be changed 
by the application of operators. This is cer­
tainly true for the class of robot problems with 
which we are currently concerned . For t hese 
probl ems most of t he w f f s I n a mode 1 describe 
rooms, walls, doors, and objects, or specify 
general properties of the world, which are true 
in all models . The only wffs t hat might be 
changed "• n this robot environment are the ones 
that describe the status of the robot and any 
objects which it manipulates. 

Given this assumption, we have implemented 
t he following scheme for handling multiple world 
models. All the wffs for al1 world models are 
stored in a common memory s t ructure, Assoclated 
with each wft (i.e., clause) is a visibility 
flag, and QA3.0 has been modifled to consider 
only clauses from the memory structure that are 
marked as visi ble. Hence, we can define" a 
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part icular world model for QA3.5 by marking that 
model's clauses v is ib le and a l l other clauses 
inv is ib le . When clauses are entered into the 
i n i t i a l world model, they are a l l marked as v is ­
i b l e . Clauses that are not changed remain v is ib le 
throughout STRIPS' search for a solut ion. 

Each world model produced by STRIPS is defined 
by two clause l i s t s . The f i r s t l i s t , DELETIONS, 
names a l l those clauses from the i n i t i a l world 
model that are no longer present in the model 
being defined. The second l i s t , ADDITIONS, names 
a l l those clauses in the model being defined that 
are not also in the i n i t i a l model. These l i s t s 
represent the changes in the i n i t i a l model needed 
to form the model being defined, and our assump­
t ion implies they w i l l contain only a small number 
of clauses. 

To specify a given world model to QA3.5, STRIPS 
marks v is ib le the clauses on the model's ADDITIONS 
l i s t and marks inv is ib le the clauses on the model's 
DELETIONS l i s t . When the ca l l to QA3.5 is com­
pleted, the v i s i b i l i t y markings of these clauses 
are returned to their previous sett ings. 

When an operator is applied to a world model, 
the DELETIONS l i s t of the new world model is a 
copy of the DELETIONS l i s t of the old model plus 
any clauses from the i n i t i a l model that are 
deleted by the operator. The ADDITIONS l i s t of 
the new model consists of the clauses from the 
old model's ADDITIONS l i s t , as transformed by 
the operator, plus the clauses from the operator's 
add l i s t . 

E. An Example 

Tracing through the main points of a simple 
example helps to i l l u s t r a te the various mechan­
isms in STRIPS. Suppose we want a robot to 
gather together three objects and that the i n i -
t i a l world model is given by: 

We attach this incomplete proof to the node and 
then select the node to have a successor computed 

The only candidate operator is push(k,m,n). 
Using the add l i s t clause AT(k,n), we can con­
tinue the uncompleted proof in one of several 
ways depending on the substitutions made for k 
and n. Each of these substitutions produces a 
relevant instance of push. One of these i s : 

OP : push(B0X2,m, b) 

given by the substitutions B0X2 for k and b for 
n. Its associated precondition ( in negated form) 
is : 

Suppose OP1 Is selected and used to create a 
successor node. (Later in the search process 
another successor using one of the other rele­
vant instances of push might be computed if our 
original selection did not lead to a solution.) 
Selecting OP1 leads to the computation of the 
successor node (M(), (G1 , GO ) ) . 
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The result ing successor node is (M2,(G ) ) , and 
thus STRIPS reconsiders the or ig ina l problem but 
now beginning with world model M2. The rest of 
the solution proceeds in similar fashion. 

Our implementation of STRIPS easily produces 
the solution {goto(a, c),push(BOX2, c, b), goto(b,d), 
push( B0X3, d, b) } . ( Incidental ly, Green's theorem-
proving problem-solver (4) has not been able to 
obtain a solution to this version of the 3-Boxes 
problem. It did solve a simpler version of the 
problem designed to require only two operator 
applications.) 

IV EXAMPLE PROBLEMS SOLVED BY STRIPS 

STRIPS has been designed to be a general-
purpose problem solver for robot tasks, and thus 
must be able to work with a variety of operators 
and with a world model containing a large number 
of facts and re lat ions. This section describes 
i t s performance on three di f ferent tasks. The 
i n i t i a l world model for a l l three tasks consists 
of a corridor with four rooms and doorways (see 
Fig. 3) and is described by the l i s t of axioms 
in Table 1. I n i t i a l l y , the robot is in ROOM1 
at location e. Also in R00M1 are: A large box, 
BOX1 at location a; two smaller boxes, BOX2 at 
location b, and BOX3 at location c; and a l i gh t -
switch, LIGHTSWITCH1 at location d. The l i gh t -
switch is high on a wall out of normal reach of 
the robot. 

The f i r s t task is to turn on the l ightswi tch. 
The robot can solve this problem by going to the 
largest of the three boxes, BOX1, pushing it to 
the l ightswitch, climbing on the box* and turning 
on the l ightswi tch. The second task is to push 
the three boxes in ROOM1 together. (This task is 
a more rea l i s t i c elaboration of the three-box 
problem used as an example in the last section.) 
The th i rd task is for the robot to go to a desig­
nated location, f, in ROOM4. 

The operators that are given to STRIPS to 
solve these problems are described in Table 1. 
For convenience we define two "goto" operators, 
gotol and goto2. The operator gotol(m) takes the 
robot to any coordinate location m in the same roo 
as the robot. The operator goto2(m) takes the 
robot next to any item m (e.g. , l ightswitch, door, 
or box) in the same room as the robot. The oper­
ator pushto(m,n) pushes any pushable object m next 
any item n (e.g. , l ightswitch, door or box) in 
the same room as the robot. Addit ionally, we have 
operators for turning on lightswitches, going 
through doorways, and climbing on and off boxes . The 
precise formulation of the preconditions and the 
effects of these operators is contained in Table 1 

We also l i s t in Table 1 the goal wffs for the 
three tasks and the solutions obtained by STRIPS. 
Some performance figures for these solutions are 
shown in Table 2. In Table 2, the figures in 
the "Time Taken" column represent the CPU time 
(excluding garbage col lect ion) used by STRIPS in 
finding a solut ion. Although some parts of our 
program are compiled, most of the time is spent 
running interpret ive code; hence, we do not 
attach much importance to these times. We note 
that in a l l cases most of the time is spent doing 
theorem proving ( in QA3.5). 

The next columns of Table 2 indicate the 
number of nodes generated and the number of oper­
ator applications both in the search tree and 
along the solution path. (Recall from Fig. 2 
that some successor nodes do not correspond to 
operator applications.) We see from these figures 
that the general search heuristics bu i l t into 
STRIPS provide a highly directed search toward 
the goal. These heuristics presently give the 
search a large "depth- f i rs t " component, and for 
this reason STRIPS obtains an interest ing but 
nonoptimal solution to the "turn on the l i gh t -
switch" problem. 

This task is a robot version of the- so-called 
"Monkey and Bananas" problem. STRIPS can solve 
the problem even though the current SRI robot 
is incapable of climbing boxes and turning on 
l ightswitches. 
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Table 1 

FORMULATION FOR STRIPS TASKS 



Session No. 15 Heuristic Problem Solving 617 

R. F. FIKES, N. J. NILSSON 



618 Session No. 15 Heuristic Problem Solving 

R. E. FIKES, N. J. NILSSON 

Table 2 

PERFORMANCE OF STRIPS ON THREE TASKS 

V FUTURE PLANS AND PROBLEMS 

The current implementation of STRIPS can be 
extended in several d irect ions. These exten­
sions w i l l be the subject of much of our problem-
solving research ac t iv i t ies in the immediate 
future. We mention some of these b r ie f l y . 

We have seen that STRIPS constructs, a problem-
solving tree whose nodes represent subproblems. 
In a problem-solving process of this sort , there 
must be a mechanism to decide which node to work 
on next. Currently, we use an evaluation func­
t ion that incorporates such factors as the number 
and the estimated d i f f i c u l t y of the remaining 
subgoals, the cost of the operators applied so 
far, and the complexity of the current dif ference. 
We expect to devote a good deal of e f for t to 
devising and experimenting with various evalua­
tion functions and other ordering techniques. 

Another area for future research concerns 
the synthesis of more complex procedures than 
those consisting of simple l inear sequences of 
operators. Specif ical ly, we want to be able to 
generate procedures involving i te ra t ion (or 
recursion) and conditional branching. In short, 
we would l ike STRIPS to be able to generate com­
puter programs. Several researchers (4), (8), (9) 
have already considered the problem of automatic 
program synthesis and we expect to be able to use 
some of their ideas in STRIPS. 

We are also interested in gett ing STRIPS to 
' learn" by having it define new operators for 

i t s e l f on the basis of previous problem solu­
t ions. These new operators could then be used 
to solve even more d i f f i c u l t problems. It would 
be important to be able to generalize to param­
eters any constants appearing in a new operator, 
otherwise, the new operator would not be general 
enough to warrant saving. One approach (10) that 
appears promising is to modify STRIPS so that it 

solves every problem presented to it in terms of 
generalized parameters rather than in terms of 
constants appearing in the specif ic problem 
statements. Hewitt (11) discusses a related 
process that he cal ls "procedural abstract ion." 
He suggests that, from a few instances of a 
procedure, a general version can sometimes be 
synthesized. 

This type of learning provides part of our 
rationale for working on automatic problem 
solvers such as STRIPS. Some researchers have 
questioned the value of systems for automatically 
chaining together operators into higher-level 
procedures that themselves could have been "hand 
coded" quite easily in the f i r s t place. Their 
viewpoint seems to be that a robot system should 
be provided a p r io r i with a repertoire of a l l 
of the operators and procedures that it w i l l ever 
need . 

Wo agree that it is desirable to provide 
a priora a large number of specialized operators, 
but such a repertoire w i l l nevertheless be f i n i t e . 
To accomplish tasks just outside the boundary of 
a p r i o r i ab i l i t i es requires a process for chaining 
together exist ing operators into more complex ones. 
We are interested in a system whose operator 
repertoire can "grow" in this fashion. Clearly 
one must not give such a system a problem too far 
away from the boundary of known a b i l i t i e s , because 
the combinatorics of search w i l l then make a solu­
t ion unl ike ly . However, a t ru ly " i n te l l i gen t " 
system ought always to be able to solve s l igh t l y 
more d i f f i c u l t problems than any it has solved 
before . 
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