
608

STRIPS: A NEW APPROACH TO THE APPLICATION
OF THEOREM PROVING TO PROBLEM SOLVING

Richard E. Fikes
Ni Is .J. Ni lsson

Stanford Research Inst i tu te
Menlo Park, Cal i fornia

L' , o . A ,

ABSTRACT
We describe a new problem solver called STRIPS

that attempts to f ind a sequence of operators in
a space of world models to transform a given
i n i t i a l world model into a model in which a given
goal formula can be proven to be true. STRIPS
represents a world model as an arbi trary col lec­
t ion of f i rs t -order predicate calculus formulas
and is designed to work with models consisting of
1arge numbers of formulas. 1t employs a resolu­
t ion theorem p rover to answer (jues t ions of par t ic­
ular models and uses means-ends analysis to guide
it to the desired goal-satisfying model .

DESCRIPTIVE TERMS

Probl em solv J ng, t heorem prov i rig, robot
planning F heurist ic search.

1 INTRODUCTION

This paper describes a new problem-solving
program cal led STRIPS (STanford Research Ins11tute
Problem Solver). An i n i t i a l version of the pro­
gram has been implemented in LISP on a PDP-10 and
is being used in conjunction with robot research
at SRI. STRIPS is a member of the class of prob­
lem solvers that search a space of "world models"
to ind one in w hich a given goal is achieved .
For any world model, we assume that there exists
a set of appllcable ope rators, each of w hi eh trans-
forms the world model to some other world model.
The task of the problem solver is to find some
composl11on of ope rat ors that trans forms a given
i n i t i a l worId mode] into one t hat sat isf ies some
stated goa1 condltion .

This f rarnewo rk for probl em so 1 v i ng has l>een
cen t ra 1 to much of t he research I n a r t i f i c i a l
Intel licence (1) . Ou r p nmary interest he re is
in the class of p robJ ems faced by a robot in re-
a rranging ob]ec t s and in navigatlng, l .e . f p rob 1 ems
t hat requi re quit e complex and genera 1 world mode Is
compared to t hose needed ln t he solution of pu//1es
and games. In puzzles and games, a simple matrix
or l i s t s t ruet ure is usually adequate to represent
a state of t he p roblem. The wor Id mode 1 for a
robot [J robl em sol ve r, however, mus t i nc 1 ude a 1 arge
numbe r of facts and re 1 ations deallng with t he posi-
t ion of the robot and the positions and attr ibutes
of vjrious ob jec t s , open spaces , and hound a r it-1 s .
In STRI PS, a world mode 1 is represent ed by a set
o(wt 11-formed formulas (wffs) of 1 he f i rs t -order
predicate en 1cu1 us .

Session No. 15 Heuristic Problem Solving

Operators are the basic elements from which a
solution is b u i l t . For robot problems, each
operator corresponds to an action routine* whose
execution causes a robot to take certain actions.
For example, we might have a rout ine that causes
it to go through a doorway, a routine that causes
it to push a box, and perhaps dozens of others.

Green (4) implemented a problem-solving system
that depended exclus ively on formal theorem-
proving methods to search for the appropri ate
sequence of operators. While Green fs formulation
represented a s igni f icant step in the development
of problem-solvers, it suf fered some serious d is-
advant ages connected with the 'frame problem"
t hat prevented it f rom solving nont r i v i a l problems.

In STRIPS, we surmount these d i f f i c u l t i e s by
separatlng ent i re ly the processes of theorem
proving from those of searching through a space
ot world models. This separation allows us to
employ separate st rategies tor these two ac t l v i -
t les and t hereby improve the overal1 performance
of t he sys t em . Theorem-p rovi ng met hods a re used
only within a given world model to answer ques-
tIons about it concerning which operators are
applicable and whether or not goals have been
sa t i s f ied . For searching through the space of
world models, STRIPS uses a GPS-like means-ends
analysis strategy (6) . This combination of means-end^
analysis and formal t heorem-proving methods allows
objects (wor1d mode Is) much more complex and gen­
eral than any of t hose used in GPS and provides
more powerfu1 search heuristics t han t hose found
in t heorem-proving programs.

We proceed by describing the operat ion of
STRIPS in terms of the conventions used to rep­
resent the search space for a problem and the
search methods used to find a solution . We t hen
discuss t he detaiIs of implementation and
present some examples .

The reader should keep in mind the d is t inc t ion
between an operator and i t s associated action
routine. Execution of action routines actually
causes the robot to take actions. Application
of operators to world models occurs during the
planning (i . e . , problem solving) phase when an
attempt is being made to f ind a sequence of
operators whose associated action routines wi11
produce a desired state of the world. (See the
papers by Munson (2) and Fikes (3) for discus­
sions of the relationships between STRIPS and
the robot executive and monitoring functions.

Space does not allow a full discussion of the
frame problem; for a thorough treatment, see
Ref. (5) .

Session No. 15 Heuristic Problem Solving 609

R. F. PIKES, N. J. NILSSON
II THE OPERATION OF STRIPS

A . The Problem Space

The problem space for STRIPS is defined by the
i n i t i a l world model, the set of available opera­
tors and their effects on world models, and the
goal statement.

As already mentioned, STRIPS represents a
world model by a set of well-formed formulas (wf ls) .
For example, to describe a world model in which t he
robot is at location a and boxes B and C are at
locations b and c we would lnclude t he following
wt fs :

ATR(a)
AT(B, h)
AT(C,c)

We might also Inc1ude t he w f i

("u "x Vy) [AT(u,x) A (x= y)] => AT(u,y))

to state the general rule that an object in one place
is not in a different place. Using first-order
predicate calculus wffs, we can represent quite
complex world models and can use existing theorem-
proving programs to answer questions about a model.

The available operators are grouped into fam-
llies called schemata. Consider for example t he
operator goto for moving the robot from one point
on the floor to another, Here there is really a
distinct operator for each different pair of
points, but it is convenient to group all of
these into a family goto(m,n) parameterized by
the initial posit ion* m and t he final position
n. We say that goto(m,n) is an operator schema
whose members are obtained by substituting speci­
fic constants for the parameters m and n. In
STRIPS, when an operator is applied to a world
model, specific const ants will already have been
chosen for the operator parameters.

Each operator is defined by an operator descrip-
t ion consisting of two main parts: a description
of the effects of the operator, and the conditions
under which the operator is applicable. The effects
of an operator are simply defined by a list of wffs
that must be added to the model and a list of wfls
that are no longer t rue and therefore must be
deleted. We shall discuss the process of calcula­
ting these effects in more detail later. It is
convenient to state the applicability condition,
or precondition, for an operator schema as a wff
schema. To determine whether or not there is an
instance of an operator schema applicable to
a world model, we must be able to prove

The parameters m and n are each really vector-
valued, but we avoid vector notation here for
simplicity. In general, we denote constants by
letters near the beginning of the alphabet
(a,b,c, . . .) , parameters by letters in the middle
of the alphabet (m,n, . . .) , and quantified vari-
ables by letters near the end of the alphabet
(x,y,z) .

that there is an instance of t he correspondIng
wff schema that logically follous from t he model .

For example, cons ider t he question oi applying
instances of t he operator subschema got O(m,b) to
a world model containing the wff ATR(a) where a
and b are constants. If the precondition wff
schema of goto(m,n) is ATR(m), then we find that
the instance ATR(a) can be proved from t he world
model. Thus, an appllcable instance of goto(m,b)
is goto(a,b).

It is important to distinguish between t he
parameters appearing in wff schemata and ordinary
existentially and universally quantifiedd variables
that may also appear - Certain modifications mus t
be made to theorem-provlng programs to enable t hem
to handle w ff schemata, t hese a re discussed later.

Goal statements are also represented by wffs .
For example, the t ask "Get Boxes B and C to Loca-
tion a" might be s tated as the wff:

AT(B,a) AT(C,a)

To summarize, the problem space for STRIPS is
deflned by t hree entities:

(1) An initial world model, which is a set
of wffs describing the present state of
the world .

(li) A set of operators, including a descrip­
tion of their effects and their precon­
dition wff schemat a.

(3) A goal condition stated as a wff.

The problem is solved when STRIPS produces a world
model that satisfies the goal wff.

B. The Search Strategy

In a very simple problem-solving system, we
might first apply all of the applicable operators
to the initial world model to create a set of
successor models. We would continue to apply all
applicable operators to these successors and to
their descendants (say in breadth-first fashion)
untill a model was produced in which the goal
formula was a theorem. However, since we envision
uses in which the number of operators applicable
to any given world model might be quite large,
such a simple system would generate an undesirably
large tree of world models and would thus be
impractical.

Instead, we have adopted the GPS strategy of
extracting "differences" between the present world
model and the goal and of identi fying operators
that are "relevant" to reducing these differences
(6). Once a relevant operator has been determined,
we attempt to solve the subproblem of producing
a world model to which it is applicable. If such
a model is found, then we apply the relevant oper­
ator and reconsider the original goal in the
resulting model. In this section, we review this
basic GPS search strategy as employed by STRIPS.

610 Session No. 15 Heuristic Problem Solving

R. E. FIKES, N. J. NILSSON

STRIPS begins by employing a theorem prover
to attempt to prove that the goal wff GO follows
from the set M of wffs describing the initial
world model. If GQ does follow from M(,f the task
is trivially solved in the initial model. Other-
wise, the theorem prover will fail to find a
proof. In this case, the uncompleted proof is
taken to be the 'difference" between MO and GO,
Next, operators that might be relevant to "redu­
cing1' this difference are sought. These are the
operators whose effects on world models would
enable the proof to be continued. In determining
relevance, the parameters of the operators may be
partially or fully instantiated. The correspond-
ing instantiated precondition wff schemata (of
the relevant operators) are then taken to be new
subgoals.

Consider the trivially simple example in which
the task is for the robot to go to location b.
The goal wff is thus ATR(b), and unless the robot
is already at location b, the initial proof attempt
will be unsuccessful. Now, certainly the instance
goto(m,b) of the operator goto(m,n) is relevant
to reducing the difference because its effect
would allow the proof to be continued (in this
case, completed). Accordi ngly, the corresponding
precondition wff schema, say ATR(m), is used as
a subgoal•

STRIPS works on a subgoal using the same tech­
nique. Suppose the precondition wff schema G is
selected as the first subgoal to be worked on.
STRIPS again uses a theorem prover in an attempt
to find instances of G t hat follow from the ini-
tial world model MO. Here again, there are two
possibilities. If no proof can be found, STRIPS
uses the incomplete proof as a difference, and
sets up (sub) subgoals corresponding to their
precondition wffs. If STRIPS does find an in-
stanee of G that follows from MO, then t he cor­
respond 1 ng operator instance is used to t ransform
MO into a new world model M1. In our previous
simple example, the subgoal wff schema G was
ATR(m). If the initial model contains the wff
ATR(a), then an instance of G--namely ATR(a)—can
be proved from Mf). In this case, the correspond­
ing operator instance goto(a,b) is applied to M()
to produce the new model, M1. STRIPS t hen con-
tinues by at tempting to prove GO from M1 . In our
example, GO trivially follows from M1 and we are
through. However, if no proof could be found,
subgoals for t his problem would be set up and t he
process would continue.

The hierarchy of goal, subgoals, and models
generated by the search process is represented by
a search tree. Each node of the search t ree has
the form ((world model)1 (goal list>), and repre­
sents the problem of trying to achieve the sub-
goals on the goal list (in order) f rom t he indi-
cated world model.

An example of such a search tree is shown in
Figure 1. The top node (M ,(GO)) represents the

main task of achieving goal GO from world model
MQ. In this case, two alternative subgoals Ga
and Gb. are set up. These are added to the front
of the goal lists in the two successor nodes.
Pursuing one of these subgoals, suppose that in
the node (MQ,(Ga,G0)), goal Ga is satisfied in
M(); the corresponding operator, say OPa, is then
applied to Mo to yield M1 . Thus, along this
branch, the problem is now to satisfy goal GO
from M1, and this problem is represented by the
node (M1(G0). Along the other path, suppose
Gc is set up as a subgoal for achieving G. and
thus the node (MO, (Gc, Gb, GO)) is created . Suppose
Gc is satisfied in MO and thus OP is applied to
M0 yielding M2. Now STRIPS must st i l l solve the
subproblem Gb before attempting the main goal GO.
Thus, the result of applying OP is to replace MQ
by M2, and to remove Gc from the goal list to
produce the node (M2,(Gb,GO)).

This process continues until STRIPS produces
the node (M4, (G())) . Here suppose G() can be
proved directly from M- so that this node is
terminal. The solution sequence of operators is
thus (OPc,OPb, OPe).

This example search t ree indicates clearly
that when an operator is found to be relevant,
it is not known where it will occur in the com-
pleted plan, that is, it muy be applicable to
the initial model and therefore be the first
operator applied, i ts effects may imply the goal
so that it is the last operator applied, or it
may be some intermediate step toward the goal.
This flexible search strategy embodied in STRIPS
combines many of the advantages of both forward
search (from t he initial model toward the goal)
and backward search (from the goal toward the
initial model).

Whenever STRIPS generates a successor node,
it immediately tests t o see if the first goal on
the goal list is satisfied in the new node's
model . If so, the corresponding operator i s
applied, generating a new successor node, if not,
the difference (i.e., the uncompleted proof) is
stored with t he node . Except for t hose successor
nodes generated as a resuIt of applying operators,
the process of successor generation is as follows:
STRIPS selects a node and uses the difference
stored with the node to select a relevant opera-
tor. It uses the precondition of this operator
to generate a new successor. (If all of the node's
successors have already been generated, STRIPS
selects some other node sti l l having uncompleted
successors .) A flowchart summarizing the STRIPS
search process is s hown in Figure 2.

STRIPS has a heuristic mechanism to select
nodes with uncompleted successors to work on
next . For this purpose we use an evaluat ion func-
tion that takes into account such factors as the
number of remaining goals on the goal list, the
number and types of predicates in t he remaining
goal formulas , and t he complexi ty of t he difference
attached to the node •

Session No. 15 Heuristic Problem Solving 611

612 Session No. 15 Heuristic Problem Solving

R. E. FIKES, N. J. NILSSON

III IMPLEMENTATION

A. Theorem-Proving with Parameters

In this section, we discuss the more impor­
tant details of our implementation of STRIPS, we
begin by describing t he automatic theorem-proving
component.

We next need a way to state the effects of
operator application on world models. These
effects are simply described by two lists. On
the delete list we specify those clauses in the
original model that might no longer be true in
the new model. On the add list are those clauses
that might not have been true in the original
model but are true in the new model.

STRIPS uses the resolution t heorem-prover
QA3.5 (7) when attempting to prove goal and sub-
goal wffs . We assume that the reader is familiar
wi th resolution proof techniques for the predicate
calculus (1). Those techniques must be extended
to handle the parameters occurring in wff schemes;
we discuss t hese extensions next.

The general situation is thnt we have some
goal wff schema G(p), say, that is to be proved
from a set M of clauses where p is a set of schema
parameters. Following the general strategy of
resolution theorem provers, we attempt to prove
the inconsistency of the set [M U~G(p)]. That
is, we attempt to find an instance p' of P for
which [M U ~ G(p ')] is inconsistent .

We have been able to use the standard unifi­
cation algorithm of the resolution method to com­
pute the appropriate ins t ances of schema variables
during the search for a proof. This algorithm
has the advantage that it finds the most general
instances of parameters needed to effect unifica­
tion. To use the unification algorithm we must
sped fy how it is to treat parameters . The follow-
lng substitution types are allowable components
of the output of the modified unification algorithm:

• Terms that can be substituted for a var­
­able: variables, constants, parameters ,
and functional terms not containing the
vari able.

• Terms that can be substituted for a param­
eter: constants, parameters, and func-
tional terms not containing Skolem func-
tions, variables, or t he parameter.

The fact that the same parameter may have multiple
occurrences in a set of clauses demands another
modificat ion to the theorem prover. Suppose two
clauses C1 and C2 resolve to form clause C and
that in t he process some term t is substituted
for parameter p. Then we must make sure that p
is replaced by t in all of the clauses that are
descendants of C.

B. Operator Descriptions and Applications

We have already mentioned that to define an
operator, we must state the preconditions under
which it is applicable and its effects on a world
model schema. Preconditions are stated as wff
schemata. For example, suppose G(p) is the oper­
ator precondition schema of an operator 0(p), p
is a set of parameters, and M is a world model.
Then if p' is a constant instance of p for which
{M U ~ G(p')] is contradictory, then STRIPS can
apply operator O(p') to world model M.

For example, consider an operator push(k,m,n)
for pushing object k from m to n • Such an oper-
ator might be described as follows:

The parameters of an operator schema are
instantiated by constants at the time of opera-
tor application. Some instantiations are made
while deciding what instances of an operator
schema are relevant to reducing a difference, and
the rest are made while deciding what instances
of an operator are applicable in a given world
model . Thus, when the add and delete lis ts are
used to create new world models, all parameters
occurring in them will have been replaced by con-
stants .

(We can make certain modifications to STRIPS
to allow it to apply operators with uninstantiated
parameters• These applications will produce world
model schemata. This generalization complicates
somewhat the simple add and delete-list rules for
computing new world models and needs further s tudy.

For certain operators it is convenient to be
able merely to specify the form of clauses to be
deleted . For example, one of the effects of a
robot goto operator must be to delete information
about the direction that the robot was originally
f acing even though such information might not
have been represented by one of the parameters of
the operator. In this case we would include the
atom FACING($) on the delete list of goto with
the convention that any atom of the form FACING($),
regardless of the value of $, would be deleted.

When an operator descripti on is written, it
may not be possible to name explicitly all the
atoms that should appear on the delete l ist. For
example, it may be the case that a world model
contains clauses that are derived from other
clauses in the model. Thus, from AT(Bl,a) and
from AT(B2,a + A), we might derive NEXTT0(B1, B2)
and insert it into the model. Now, if one of
the clauses on which the derived clause depends

Session No. 15 Heuristic Problem Solving

R. E. KIKES,

is deleted, t hen the derived clause must also he
deleted .

We deal with this problem by defining a set
of primitive predicates (e.g., AT, ATK) and
relating all other predicates to this primitive
set . In particular, we require t he delete list
of an operator description to indicate all the
atoms centaining primitive predicates that should
be deleted when the operator is applied. Also,
we require t hat any nonprimitive clause in t he
world model have associated with it those primi­
tive clauses on which its validity depends . (A
primitive clause is one which contains only prim­
itive predicates.) For example, t he clause
NEXTT0(B1,B2) would have associated with it the
clauses AT(B1,a) and AT(B2,a + A),

IiV using these conventions, we can be assured
that primitive clauses will be correctly deleted
during operator applications, and that t he valid-
ity of nonprimitive clauses can be deterimined
whenever they are to be used in a deduction by
checking to see if all of t he primitive c 1 auses
on which t he nonprimitive clause depends are st i l l
in t he worId model.

C . Computinig Difference and Relevant Operators

STRIPS uses the GPS strategy of attempting to
apply those operators that are relevant to redu-
cing a difference between a world model and a goal
or subgoal . We use the theorem prover as a key
part of this mechainsm .

Suppose we have jus t created a new node in the
search tree represented by (M, ((G1,GN-1, . . ., G())) .
The t heorem prover is called to attempt to find
a contradiction for the set I M U ~ G1} • If one
can be found, the operator w hose precondition
was G1 IS applied to M and t he process continues.

Here, t hough, we are interested l n t he case
in which no contradition is obtained after
investing some prespecified amount of theorem-
proving effort . The uncompleted proof p is
represented by the set of clauses that form
the negation of the goal wff, plus all ot their
descendant s (if any), less any clauses eliminated
by editing strategi (such as suhsumption and
predicate evaluation). We take P to be the dif-
ference between M and G1 and attach P to the node.

Later, in attempting to compute a successor
to this node with incomplete proof P attached,
we firs t must select a relevant operator. The
quest for relevant operators proceeds in two
steps . In the first step an ordered list oi
candidate operators is created. The selection
of candidate operators is based on a simple com­
parison of the predicates in the difference clauses
with those on the add lists of the operator

If P is very large we can heuristica1ly select
some part of P as the difference.

613

N.J. N1LSSON

descriptions . For example, if t he difference
contained a clause having in it t he negation of
a position predicate AT, t hen t he opera tor push
would be considered as a candidate for this
difference.

The second s tep in finding an operator rele-
vant to a Riven difference involves employing
the theorem prover to determine It clauses on
t he add list of a candidate operator can be used
to "resolve away clauses in t he difference (i.e.,
to see if t he proof can be continued based on t he
effects of t he operator) , If t he t heorem prover
can in fact produce new resolvents that are
descendants of the add list clauses, then the
candidate operator (properly instantiated) is
considered to be a relevant opterator for t he
differenee set .

Note that the consideration of one candidate
operator schema may produce several re levant
operator instances. For examp]e, If t he differ-
ence set contains the unit clauses ~ ATK(a) and
— ATR(b), t hen there are two relevant instances
of goto(m,n), namely got o(m,a) and goto(m,b) .
Each new resolvent that is a descendant of the
operator's add list clauses is used to form a
relevant instance of the operator by applying to
t he operator's parameters t he same substitutions
that were made during the production of the
resolvent .

I). Efficient Representation of WorI Model s

A primary design issue in t he implementation
of a system such as STRIPS is hou to satisfy the
storage requirements of a search tree in which
each node may contain a different world model .
We would like to use STRIPS in a robot or question-
answering environmen t w he re t he initial world
model may consist of hundreds of wffs. For such
applications it is infeasIhie to recopy completely
a worId model each time a new model is produced
by application of an operator.

We have dealt with this problem in STRIPS by
first assuming that most of the wffs in a prob-
lem's initial WORLd mode 1 will not be changed
by the application of operators. This is cer­
tainly true for the class of robot problems with
which we are currently concerned . For t hese
probl ems most of t he w f f s I n a mode 1 describe
rooms, walls, doors, and objects, or specify
general properties of the world, which are true
in all models . The only wffs t hat might be
changed "• n this robot environment are the ones
that describe the status of the robot and any
objects which it manipulates.

Given this assumption, we have implemented
t he following scheme for handling multiple world
models. All the wffs for al1 world models are
stored in a common memory s t ructure, Assoclated
with each wft (i.e., clause) is a visibility
flag, and QA3.0 has been modifled to consider
only clauses from the memory structure that are
marked as visi ble. Hence, we can define" a

614 Session No. 15 Heuristic Problem Solving

R. E. FIKES, N. J. NILSSON

part icular world model for QA3.5 by marking that
model's clauses v is ib le and a l l other clauses
inv is ib le . When clauses are entered into the
i n i t i a l world model, they are a l l marked as v is ­
i b l e . Clauses that are not changed remain v is ib le
throughout STRIPS' search for a solut ion.

Each world model produced by STRIPS is defined
by two clause l i s t s . The f i r s t l i s t , DELETIONS,
names a l l those clauses from the i n i t i a l world
model that are no longer present in the model
being defined. The second l i s t , ADDITIONS, names
a l l those clauses in the model being defined that
are not also in the i n i t i a l model. These l i s t s
represent the changes in the i n i t i a l model needed
to form the model being defined, and our assump­
t ion implies they w i l l contain only a small number
of clauses.

To specify a given world model to QA3.5, STRIPS
marks v is ib le the clauses on the model's ADDITIONS
l i s t and marks inv is ib le the clauses on the model's
DELETIONS l i s t . When the ca l l to QA3.5 is com­
pleted, the v i s i b i l i t y markings of these clauses
are returned to their previous sett ings.

When an operator is applied to a world model,
the DELETIONS l i s t of the new world model is a
copy of the DELETIONS l i s t of the old model plus
any clauses from the i n i t i a l model that are
deleted by the operator. The ADDITIONS l i s t of
the new model consists of the clauses from the
old model's ADDITIONS l i s t , as transformed by
the operator, plus the clauses from the operator's
add l i s t .

E. An Example

Tracing through the main points of a simple
example helps to i l l u s t r a te the various mechan­
isms in STRIPS. Suppose we want a robot to
gather together three objects and that the i n i -
t i a l world model is given by:

We attach this incomplete proof to the node and
then select the node to have a successor computed

The only candidate operator is push(k,m,n).
Using the add l i s t clause AT(k,n), we can con­
tinue the uncompleted proof in one of several
ways depending on the substitutions made for k
and n. Each of these substitutions produces a
relevant instance of push. One of these i s :

OP : push(B0X2,m, b)

given by the substitutions B0X2 for k and b for
n. Its associated precondition (in negated form)
is :

Suppose OP1 Is selected and used to create a
successor node. (Later in the search process
another successor using one of the other rele­
vant instances of push might be computed if our
original selection did not lead to a solution.)
Selecting OP1 leads to the computation of the
successor node (M(), (G1 , GO)) .

Session No. 15 Heuristic Problem Solving 615

R. E. FIKES, N. J. NILSSON

The result ing successor node is (M2,(G)) , and
thus STRIPS reconsiders the or ig ina l problem but
now beginning with world model M2. The rest of
the solution proceeds in similar fashion.

Our implementation of STRIPS easily produces
the solution {goto(a, c),push(BOX2, c, b), goto(b,d),
push(B0X3, d, b) } . (Incidental ly, Green's theorem-
proving problem-solver (4) has not been able to
obtain a solution to this version of the 3-Boxes
problem. It did solve a simpler version of the
problem designed to require only two operator
applications.)

IV EXAMPLE PROBLEMS SOLVED BY STRIPS

STRIPS has been designed to be a general-
purpose problem solver for robot tasks, and thus
must be able to work with a variety of operators
and with a world model containing a large number
of facts and re lat ions. This section describes
i t s performance on three di f ferent tasks. The
i n i t i a l world model for a l l three tasks consists
of a corridor with four rooms and doorways (see
Fig. 3) and is described by the l i s t of axioms
in Table 1. I n i t i a l l y , the robot is in ROOM1
at location e. Also in R00M1 are: A large box,
BOX1 at location a; two smaller boxes, BOX2 at
location b, and BOX3 at location c; and a l i gh t -
switch, LIGHTSWITCH1 at location d. The l i gh t -
switch is high on a wall out of normal reach of
the robot.

The f i r s t task is to turn on the l ightswi tch.
The robot can solve this problem by going to the
largest of the three boxes, BOX1, pushing it to
the l ightswitch, climbing on the box* and turning
on the l ightswi tch. The second task is to push
the three boxes in ROOM1 together. (This task is
a more rea l i s t i c elaboration of the three-box
problem used as an example in the last section.)
The th i rd task is for the robot to go to a desig­
nated location, f, in ROOM4.

The operators that are given to STRIPS to
solve these problems are described in Table 1.
For convenience we define two "goto" operators,
gotol and goto2. The operator gotol(m) takes the
robot to any coordinate location m in the same roo
as the robot. The operator goto2(m) takes the
robot next to any item m (e.g. , l ightswitch, door,
or box) in the same room as the robot. The oper­
ator pushto(m,n) pushes any pushable object m next
any item n (e.g. , l ightswitch, door or box) in
the same room as the robot. Addit ionally, we have
operators for turning on lightswitches, going
through doorways, and climbing on and off boxes . The
precise formulation of the preconditions and the
effects of these operators is contained in Table 1

We also l i s t in Table 1 the goal wffs for the
three tasks and the solutions obtained by STRIPS.
Some performance figures for these solutions are
shown in Table 2. In Table 2, the figures in
the "Time Taken" column represent the CPU time
(excluding garbage col lect ion) used by STRIPS in
finding a solut ion. Although some parts of our
program are compiled, most of the time is spent
running interpret ive code; hence, we do not
attach much importance to these times. We note
that in a l l cases most of the time is spent doing
theorem proving (in QA3.5).

The next columns of Table 2 indicate the
number of nodes generated and the number of oper­
ator applications both in the search tree and
along the solution path. (Recall from Fig. 2
that some successor nodes do not correspond to
operator applications.) We see from these figures
that the general search heuristics bu i l t into
STRIPS provide a highly directed search toward
the goal. These heuristics presently give the
search a large "depth- f i rs t " component, and for
this reason STRIPS obtains an interest ing but
nonoptimal solution to the "turn on the l i gh t -
switch" problem.

This task is a robot version of the- so-called
"Monkey and Bananas" problem. STRIPS can solve
the problem even though the current SRI robot
is incapable of climbing boxes and turning on
l ightswitches.

616 Session No. 15 Heuristic Problem Solving

R. E. FIKES, N. J. NLSSON

Table 1

FORMULATION FOR STRIPS TASKS

Session No. 15 Heuristic Problem Solving 617

R. F. FIKES, N. J. NILSSON

618 Session No. 15 Heuristic Problem Solving

R. E. FIKES, N. J. NILSSON

Table 2

PERFORMANCE OF STRIPS ON THREE TASKS

V FUTURE PLANS AND PROBLEMS

The current implementation of STRIPS can be
extended in several d irect ions. These exten­
sions w i l l be the subject of much of our problem-
solving research ac t iv i t ies in the immediate
future. We mention some of these b r ie f l y .

We have seen that STRIPS constructs, a problem-
solving tree whose nodes represent subproblems.
In a problem-solving process of this sort , there
must be a mechanism to decide which node to work
on next. Currently, we use an evaluation func­
t ion that incorporates such factors as the number
and the estimated d i f f i c u l t y of the remaining
subgoals, the cost of the operators applied so
far, and the complexity of the current dif ference.
We expect to devote a good deal of e f for t to
devising and experimenting with various evalua­
tion functions and other ordering techniques.

Another area for future research concerns
the synthesis of more complex procedures than
those consisting of simple l inear sequences of
operators. Specif ical ly, we want to be able to
generate procedures involving i te ra t ion (or
recursion) and conditional branching. In short,
we would l ike STRIPS to be able to generate com­
puter programs. Several researchers (4), (8), (9)
have already considered the problem of automatic
program synthesis and we expect to be able to use
some of their ideas in STRIPS.

We are also interested in gett ing STRIPS to
' learn" by having it define new operators for

i t s e l f on the basis of previous problem solu­
t ions. These new operators could then be used
to solve even more d i f f i c u l t problems. It would
be important to be able to generalize to param­
eters any constants appearing in a new operator,
otherwise, the new operator would not be general
enough to warrant saving. One approach (10) that
appears promising is to modify STRIPS so that it

solves every problem presented to it in terms of
generalized parameters rather than in terms of
constants appearing in the specif ic problem
statements. Hewitt (11) discusses a related
process that he cal ls "procedural abstract ion."
He suggests that, from a few instances of a
procedure, a general version can sometimes be
synthesized.

This type of learning provides part of our
rationale for working on automatic problem
solvers such as STRIPS. Some researchers have
questioned the value of systems for automatically
chaining together operators into higher-level
procedures that themselves could have been "hand
coded" quite easily in the f i r s t place. Their
viewpoint seems to be that a robot system should
be provided a p r io r i with a repertoire of a l l
of the operators and procedures that it w i l l ever
need .

Wo agree that it is desirable to provide
a priora a large number of specialized operators,
but such a repertoire w i l l nevertheless be f i n i t e .
To accomplish tasks just outside the boundary of
a p r i o r i ab i l i t i es requires a process for chaining
together exist ing operators into more complex ones.
We are interested in a system whose operator
repertoire can "grow" in this fashion. Clearly
one must not give such a system a problem too far
away from the boundary of known a b i l i t i e s , because
the combinatorics of search w i l l then make a solu­
t ion unl ike ly . However, a t ru ly " i n te l l i gen t "
system ought always to be able to solve s l igh t l y
more d i f f i c u l t problems than any it has solved
before .

ACKNOWLEDGEMENT

The development of the ideas embodies in STRIPS
has been the result of the combined ef forts of the
present authors, Bertram Raphael, Thomas Garvey,
John Munson, and Richard Waldinger, a l l members of

Session No. 15 Heuristic Problem Solving

R. E. FIKES, N. J. NILSSON

619

620 Session No. 15 Heuristic Problem Solving

R. E. FIKES, N. J. NILSSON

the A r t i f i c i a l Intell igence Group at SRI.

The research reported herein was sponsored by
the Advanced Research Projects Agency and the
National Aeronautics and Space Administration
under Contract NAS12-2221.

REFERENCES

(1) N. J. Nilsson, Problem-Solving Methods in
A r t i f i c i a l Intel l igence (McGraw-Hill Book
Company, New York, New York, 1971).

(2) J. H. Munson, "Robot Planning, Execution,
and Monitoring in an Uncertain Environment,"
Proc. 2nd I n t ' l . Joint Conf. A r t i f i c i a l
Intel l igence, London, England (September 1-3,
1971).

(3) R. E. Fikes, Monitored Execution of Robot
Plans Produced by STRIPS," Proc. IFIP 71,
Ljubljana, Yugoslavia (August 1971).

(4) C. Green, Application of Theorem Proving to
Problem Solving," Proc. I n t ' l . Joint Conf.
A r t i f i c i a l Intel l igence, Washington, D.C.
(May 1969).

(5) B. Raphael, The Frame Problem in Problem-
Solving Systems," Proc. Adv. Study Inst, on
A r t i f i c i a l Intel l igence and Heuristic
Programming, Menaggio, I ta ly (August 1970).

(6) G. Ernst and A. Newell, GPS: A Case Study
in Generality and Problem Solving, ACM
Monograph Series (Academic Press, New York,
New York 1969) .

(7) T. Garvey, and R. Kl ing, User's Guide to
QA3.5 Quest ion-Answering System," Stanford
Research Ins t i tu te A r t i f i c i a l Intel l igence
Group Technical Note 15, Menlo Park,
Cal i fornia (December 1969).

(8) R. Waldinger and R. Lee, "PROW: A Step
Toward Automatic Program Wri t ing, " Proc.
I n t ' l . Conf. A r t i f i c i a l Intel l igence,
Washington, D.C. (May 1969)

(9) Z. Manna and R. Waldinger, Towards Automatic
Program Synthesis," Comm. ACM, Vol. 14, No. 3,
(March 1971) .

(10) P. E. Hart and N. J. Nilsson, "The Construc­
t ion of Generalized Plans as an Approach
Toward Learning," Stanford Research Ins t i tu te
A r t i f i c i a l Intel l igence Group Memo, Menlo
Park, Cal i fornia (5 Apr i l 1971).

(11) C. Hewitt, "PLANNER: A Language for Manip­
ulat ing Models and Proving Theorems in a
Robot," A r t i f i c i a l Intel l igence Memo No. 168
(Revised), Project MAC, Massachusetts
Ins t i tu te of Technology, Cambridge, Massa­
chusetts (August 1970).

