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1. INTRODUCTION

An acquisition theory for language must

contain according to Chomsky (1):

(1) an enumeration of the class {y.}of
possible sentences;

(ii) an enumeration of the class {s.}of
possible structural descriptions;

(iii) an enumeration of the class {G.}of
possible grammars; 3
(iv) specification of function (i,] )+f
which specifies the structure s assi-

gned by any grammar G. to any sentences

a way of evaluating and selecting
possible alternative grammars.

A model for language acquisition at
tempts to model language learning, or mo-
re precisely the learning of linguistic
"competence”. In a very abstract version,
the model is an algorithm which works on
certain primary linguistic data, and pro-
duces a grammar.

This paper presents a model for langua
ge acquisition which operates on the fol-
lowing primary data:

a) a finite sample of sentences,
b) their structural descriptions;
c) non-sentences identified as such.

(V)

and

We note that the availability of struc
ture (item b)) differentiates this model
from other current studies on the acquisi
tion of grammar (2) (3).

The knowledge of structure, prior to
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the acquisition of a grammar, can be de-
fended on three grounds. First a child
learning a language has stress and intona
tion information available to him, and
this could be interpreted as a type of
structural information. Second, if our
grammars describe the base component(deep
structure) of a language, then there s
an intimate relation between structure
and meaning, the structure being a prere
quisite for understanding a sentence. The
widespread belief the there must be a par
tially semantic basis for the acquisition
of syntax then implies the availability
of some structural information to the
learner of the language. Third, availa
bility of structure greally reduces the
number of alternative possible grammars,
and insures that the acquired grammar g
nerates sentences with structures consi-
stent with their meanings.

Given the data, a model could consider
the enumeration (iii) of attainable gram-
mars, and test their compatibility with
the data a), b) and c). The test is possi
ble because of (iv).

The model then selects one of the com-
patible grammars by means of the evalua-
tion measure (v). A more accurate model
should also explain the gradual develop-
ment of an appropriate hypothesis, and
the continual accretion of linguistic com
petence, rather than just considering the
idealized instantaneous moment of acquisi
tion of the correct grammar.

We note with Chomsky that different e-
valuation measures will assign different
ranks to alternative hypotheses regarding
the language of which the primary data
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are a sample. Henoe choice of an evalua-
tion measure for gammars amounts to de-
ciding which generalizations about lan-
guage are significant.

The class of possible hypotheses must
be limited, if a realistic theory of syn
tax acquisition is to be developed. How
ever, the limitation must still yield a
class of gammars that is adequate In
strong (and a_ fortiori weak) generative
capacity. But beyond this, the require-
mert of feasibility is the major con-
straint of the model.

| shall have very few words to add to
Chomsky's formulation of the problem,
mainly for carrying further the formali-
zation. My concern was for (1) delimiting
a class of gammars which proved adequate
In strong generative capacity, and defin
Ing a strategy for (2) reduction of pos-
sible hypotheses, and for (3) selecting
a unigue grammar. There is sore similari
ty between the gammars that we are going
to describe, and Bar-Hillel's (4 ) catego
rial grammars.

A model similar to the one that we
shall describe - although of reduced sco
pe - proved its feasibility on the acopu
ter (5)(6) .

Following Gold (7), Feldman (2), Cre-
spi-Reghizzi (5)(6) and Biermann (3),con
sider a context-free source gammar Gg
and a source language Ls = L(Gs ).

The parenthesis gamma [Gs] Is de
rived from G = (V/,, VT P,S) by replacement

of every production A~u, u in V - V, we_
re, V = V UV+t, with the parenthesized

N T
production A ={u], where "I" and "] are
not in V. Note that "renaming produc-
tions"” I1.e. productions such as A+Bwhere
B is a nonterminal, are not parenthesized

Example
Gl: S+HS!|Ha [61]) : s-[Hs] | [Ha |
H>bih}a ns{bh ] [a]

A structural information seguence lsof
language L. 1s the ordered set:
I. = {sl,s , +++.) wherc s, is in L([GS:D,
anhd every fentence of the latter language
occurs sooner or later, perhaps with repe
tition, 1n L_. -
We norte tﬁat I provides items a) and

b) of the primary data. The information
sequence could start with the strings:

11 = ([ Cadall [o[0a] ] Jad .
o ol o P e SRS !

Alternatively, we shall write [ [aj a:]
as a a

Similarly, we introduce a negative in-
formation sequence N, defined as an enume

[ W a—
ration of all the non-sentences:
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NS = { nl,nz, .} where n, is in V; - LS’
v, = v.ui([,]
A positive sample S ={s,,s”,...,s }
and a negative sample M ={ n,n,...,n }

compose the primary data available to the
model at the discrete time t. At each time
t we are interested in observing the gam
mar G which is output by the gammar ac-
quisition device to account for the sam-
ple S andMy. G must meet two require-

t t t
ments for compatibility with the data:

1) L( [G ] : 2) L(IG JHM =]
If the model has to account for the In

creasing linguistic skill of the learner

we have to consider the gammars G ,,G

., at successive time instants

’£1- ,t> , ... corresponding to samples
S, , S . ., . We shall expect the gues-

ses of the algorithm to become closer to
the source language, as the sample is en-
larged .

The model is said to identify the sour-
ce gammar Ggs in the limit if there is a
time t such that for t>t', and for any
information sequences | N

3) G. = G ; 4) L([Gd) = L(IGs]).

In other words, identification in the
limit implies that there are primary data
St , My, t>t', which cause the model to se

lect a gammar which is not later changed
and is strongly equivadcnt to the source
grammar. This must be true for any infor-
mation sequences for that source grammar.
™wo results, due to Gold (7), should
be mentioned.
Theoem 1 - Let C be a class of decidable
gammars (i.e. gammars for
which it Is decidable whether a string is
generated by the grammar). Then, if Gg is
in C there is an algorithm which identi-
fies Gg Iin the |limit.
Theoem 2 - Let C be a class of gammars
which generam all the finite
languages and any one infinite language.
Assume the primary data consist only of a
positive information sequence. Then, if
Gs is In C there exists no algorithm for
the class C which is able to identifv G%
INn the limit,

As a special case of Theoem 1, context
free languages are identifiable in the |l
mit , if sentences and non-sentences (iden
tified as such) are given. If the latter
are not available, Theorem 7?7 implies that
not even finite state languages can be
identified Iin the limit.

We note that the proof of the first
theorem is based on the fact that garmas
are enumerable, and on the possibility of
testing 1) and 2) for a decidable grammar.
Such a proof does not lend itself to a
feasible gammar acquisition method for
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context-free grammars, because of the
astronomical number of grammars to be te
sted.

2. A CHARACTERIZATION OF POSSIBLE GRAM-

MARS

In a previous work (5)(6) we have in-
troduced a subclass of context-free gram
mars, termed free operator precedence
grammars, for which identification in the
limit Is possible when only positive in-
formation is available. In this sequel we
discuss an extension of these concepts,to

include more general classes of languages.

We shall first define a family of clas
ses of grammars(K-distinct grammars)which
cover the entire spectrum of context-free
languages.

When a further restriction on the form
of productions is imposed we obtain the
family of k-distinct and k-homogeneous
grammars, whose strong generative capaci
ty does not cover the full spectrum of
context-free languages,although our new
grammars are able to account for self-em
bedding, nesting and other features re-
quired for natural languages.

For each class of grammars in the fami
ly,identification in the l|limit - without
knowledge of non-sentences - is theoreti
cally possible and practically feasible.

We now introduce some new definitions.
Let G = (VV,P,S) be a context-free
grammar, and let V, = V 1 U{( ,)}.

Define the left profile of order Kk of
a gﬂring X 1n V™ as:

5) Lk(x) = {uly = uv , u in V
B
v 1in V
P or
x
a = y(§} - lyl, X =DV
(6]
: + : .
y in Vg ¢ is nort in Vo)

Similarly, the right profile of order
k of a string x is:

|
k
6) R, (x) = {uly = vu, x =» y, u in V_,
K EG] P
v in Vo

P or

u - {$} k-(YI)’,X =» vy,

y in V; $ is not in VP}

Example:

For the previous Gl we have
x L GOl L(x) | Ry(x)] R,y(x)

=1 T =
HS L I:a,[b ] a_l] _
Ha l: [b,[a a ja
bH | b b[ 7 | aldd_
a | a | ad a $a
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Next, we define the k-profile pk(x)
of a string x in V as:

7) k(x) = (Lk(x) : Rp(x))

The k-profile of a nonterminal A is de
fined as:

8 ) Pk(A) = (? Lk(xi) ; g Rk(xi)),where the

union is performed for every production
N»xi in the productrion sert,

A grammar is k-distinct iff, for any
Two nonterminals A, BR: P_(A) = P (B)
: . k k
implies A = R,

Examg}e:

Gl is l-distinct since:
P.(s) = ({[} 3 (a, J1)
P () = ({a,b} 5 {a,]1})

It is obvious that if a grammar 1is k-
distinct, it is also m-distinct, for any
m> k.

Let G = (V P,5), and suppose that

for A, B in VE, T’
% *
T E{x|A=yx, x in V1} # (x|R=px, x in
. G G
Vp }= Tg In this case we say that G has

no duplicated productions. It would be
easy to prove that every c.f. grammar has
a strongly equivalent grammar with no du-
plicated productions and we can restrict
our attention to non duplicated grammars
without loss of generality.

Next we prove that any context-free
grammar with no duplicated productions
iIs k-distinct for some k>0.

Theorem 3 - G is k-distinct for some k>O0.

Proof - Let u be the shortest string which
iIs in T but not in T , and let j = u +1.
Then u$ is in L.(x.), for some A->x. in P1!
Since u$ is not’in L.(y.) for any other
productionB->y, , it follows that P.(A) #
P.(B). In the same way determine j for
any pair A, B in V , and let k be the larg
est of the integers thus determined. Then
G is k-distinct.

Non-terminals of a k-distinct grammar
are uniquely characterized by their k-pro
files, which can be used as standard na-
mes for nonterminal characters.

Example:

Gl is I-distinct and can be rewritten as
follows

Gl ;<[ : a,:|> + <a,b , a,:|><[; a,}l
<a,b ; a,:} a

<a,b ; a,:F+ b<a,b ; a,:Fla

* For the sake of readibility we write

Pk(A) A5 <..elee.®
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It is obvious that the set of nontermi
nal names for any k-distinct grammar of
finite terminal vocabulary is finite. It
follows that

Theorem 4 - The class of k-distinct gram-
mars with standard nontermi-
nal names and with right parts of bounded
length, over a finite terminal alphabet

Vi, is finite.

Proof - For any production A+x we have

X &<n, forsome n>0. Bur there
are finitely many strings of length n+1
over the finite s ev, y net of nontermi

nals of a k-distinct grammar }

3. A GRAMMAR ACQUISITION ALGORITHM

The algorithm to be described is able
to identify in the |limit a subclass of k-
distinct grammars, which we will define
after presenting the algorithm.

Consider a sample S of L , and let

$=aiy az ...an be a string of S Enclose
s between special delimiters a =-L and
a = X The algorithm is sofhehow simi-

lar to a syntax analyzer, and makes use
of a pushdown stack where all scanned sym
bols are copied and renamed Q@ Q. ...Q,
Provisions for detecting errofs tn trie’
strings (e.e. non-balancing brackets)c#uld
be easily added.

Comment algorithm for the construction of
a k-distinct grammar from a string s;

Q : = a 3 1 := 0y h := 1
o) o)
Ll: 1if ay # "1'" then
be&ﬁn i =9 =1+ 1 ; Qi . = a h :=h+l;
3 - " !
i£ Qi = :} then
L2:begin 3J := ] = 1
if Q, # "[" czhen go ro L2;
QJ .- pk (Qj+l L Qi_l)s
N : "
Create the production <pk(Qj+l...

[ SN
"Qi-l)> +Qj+1"'Qi-l ’
i := J 5 go ro Ll
end else po to L1j
end
create Tthe production

! LI
S+Q. 75

It is best seen from an example that
the grammar G. constructed by the algori-
thm from the stri s, is coiti bl e with

S., i.e., s. is in Lf[ci:]).
Example
Applying the algorithm to s; = a_a, we de
rive the 1-distinct grammar G,
Intermediarte Grammar Gl
steps

[ [2]a]

[<a ; a> a | < ; a> + <a ; ava

S S -+ <[;a>
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or in a more readable form

°)

v + ¢

@ >
o1

A
B
S

In order to complete the grammar ac-
quisition process, the algorithm is then
applied to the sentences sy ,s»,...,s of
the sample S , yielding the grammars G |,
Gz,__..,GtT. Next the union is performed:
t = ’
G! =G, UG, U SRV

wote that the grammars G ., G_,..., G
have non-disjoint nonterminal vhcahula-"
ries.

Consider the sample & ={

A a a, b Db aag

a a a a) from the grammar G

l ]

Carrying on the example, from the se-

cond sentence 82 = b b aa we derive G?:
GQ: <a ; a»~+ a A =+ a

<h :|>+b<a ; a> C » bA

<bh ; ] >+b<b ; p C + bC

<[ ; a>=*><hb ;} a B + Ca

5 -+ {[ ; a> & + B

and, finally, from 5, = 33aaa we deri
ve GS:
GS: <a 3 a> ~*a A =+ a

<[; a>* <a ; a>a B+ Aa

([;}+<a s a><[; a- D - AR
<[;:b+<a . a>4:;]> D + AD
S =+ (E;j) S D

1 ' = 3 I . .
The union G3 = Glu ("2 UV ("3 1s

a
AalCa
bA | h(C
AB|AD
B | D

oY
-3

"o N o>
A 2R 2R 2R R

Fxamining G! we see that Gé is compati
ble with 83’ but thart L([___G,%:] )& L(EGI])
since for instance b a a a a =~ is not ge-

nerated by G'!. Considering now a larger

sample 3
S = sS.v{baaaa, baa al , we deri-
ve the grammar G_: as Gé = Gé v G, U'Gg.
G A 7 a
= + a5
B AalCa
C * bAIbC
D * aRlAaDICBlCD
S * BlD

This grammar is strongly equivalent to G1,
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and the grammar acquisition procedure is
thus complexed.

Any grammar produced by the preceding
algorithm 1is k-distinct, and, in addition
has the following properties:

(1) There are no renaming rules, except

for S+A, A in VN;

(2) for any two alternatives A+x, A+y,whe
re A is in Vi - S, pk(x) = pk(y).

a grammar having properties
(1) and (2) is called Kk -

Definition

homogeneous .

Consequently, the hypotheses space for
this grammar acquisition model consists of
the class of k-distinct and k-homogeneous
grammars (shortened to k-d.h.). We already
know from Theorem 3 that any c.f. grammar
has a strongly equivalent k-distinct form.

It would be easy to prove that any con-
text-free grammar admits a k-homogeneous
strongly equivalent form. What is more re-
levant to our discussion is that there are
context-free grammars which do not admit a
strongly equivalent k-d.h. grammar, i1.e. a
grammar that is simultaneously k-distinct
and k-homogeneous. An example is provided
by the grammar G2

ol ¢ S + Ha
H = Sala

which generates the set {a2n|n = 1,2,¢0.}

with a lefrlinear structure. (2 1s 1l-dis-
Tinct but not l-homogeneous, because

p,(Sa) = ({ T 1; {a} ) # p,(a) = ({a};{al).

Any attempt to render G2 l-homogeneous (by
splitting H+Sala into H_-=Sa, H_+a) will
alter the profiles in such A way tgat the
new grammar is no longer l-distinct. The
same can be shwon to be true for any order
k of profiles.

On the other hand we notice that the sa
me language is generated with a different
structure by the l-d.h. grammar G3:

G3 : S + aHlaK
H -+ a
K - Sa

We do not know how to characterize In
general the languages which cannot be strcn
gly generated by k-d.h. grammars. From pre
liminary observations it seems that these
languages are not too relevant to natural
(or programming)languages, as is the case
with {a“"|ln = 1,2,...} , and that restrif
tion of the hypothesis space to the class
of k-d.h. languages is hopefully not too
severe. An accurate examination of this
crucial point is the main target of our fu
ture investigations.

Assume now that the source language Ls
admits a k-d.h. gram G_.rlf the order
k of the source grammar 18 known, the algo
rithm will select at any instant t just one
grammar out of the k-d.h. grammars which
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are compatible with S . The selection of
the grammar is performed by the algorithm
with a criterion which leads to identifi-
cation in the limit from a positive sam-
ple. The selected grammar generates the
smallest language among the k-d.h. gram-
mars which are compatible with the sample.

lemma 4 - Let G =G(S )be the k-d.h.gramma?

derived By the algorithm from the
sample S .Then there is no other k-d._h._
grammar G' such that: S L([G') L([Gt_).

Proof The productions of G are clearly
necessary for any k-d.h. grammar
in order to generate S . Therefore G' may
differ from G only by some additional
pradictions, 5d it follows that L([G']
S L(fc_D.
Our main result can now be proved.

Theorem 5 - Let S be a sample from a po-
sitive iInformation sequence

s, where Lg is generated by a k-d.h. gam_

mar G . Let G, be the k-d.h. grammar con-

structed by the algorithm from S . Then

lim L([G_]D = u([6 D,

T+

that is the algorithm identifies Gg in the

limit .
Proof Let n be an upper bound on the
length of any production in G .
rrom the facts that 1) the class of k-d.
h. grammars with productions of bounded
length has finite cardinality, and 2) G
generates the smallest language among the
grammars of the previous class which are
compatible with S , it follows that there
Is a time t' and a sample S,é which causes
the algorithm to derive a grammar which
Is not later changed and is strongly equi
valent to G .

We note t'hat we are able to identify
a language in the I|limit without knowledge
of a negative information sequence. The
paradox, with respect to Gold's Theorem
2, comes from the fact that the class of

k-d.h. grammars with productions of bound
ed length does not generate all finite
languages.

We now discuss the case that the source
language is k-d.h. , but the order k is un
known. In this case we make use of nonsen

tences, provided by a negative sample M ,
iIn order to discard the grammars produced
by the previous algorithm which are not

compatible with the negative sample. The
algorithm is the following:

comment acquisitrion of a k-d.h. grammar
for a source language of order k

unknown. A positive sample S and a nega-

tive sample Mt are given; t

L: k := 1 3

G_:= k-d.h. prammar derived from S

vious algorithm,

if e pnou_ o

b r
. y pr _

then
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k := k + 1;
g0 to Lj
end;

In this case identification in the |-
mit is still possible but a negative in-
formation Ng is needed in order to deter
mine the value of k which a priori is un-
kKnown .

Example

The source language 1is defined by the
grammar Gu

Gu: S -+ HS|Hb
H + HH|a

It can be computred that L4 is a 2-d.h.

language. Consider the positive sample S
S, = {g_E , ;ﬁ;_g ,aab ,aaaabl
Assume k = 1, and derive a 1-d.h. gral
mar from the four sentences of Su
G(i) <a ;, a>» + a A-+a
<[ 5 b>+<a ; a>b B+Ab|Ch
<[ ;] >+<a ; a><a ; a> C+AA|AB|C
<[ ; b>+<E ;] >b S+B|C
<[ ;:]>+<a y a> <[} b>

€3]+ s

S 3> C i£>
g < ;_|>

Suppose now that a nepgative sample is gi
ven:

M, = {a a}) = {n,}

Since n, is 1in L([C(i):b, this implies

that a 1-d.h. hypothesis is not adequate.

In other words G , which defines the

smallest language in the 1-d.h. class,

over-generalizes the sample S .

Consequently, we consider the 2-d.h.

grammar derived from S

G(i) : <a$ ; $a>+a A+a
<[é ;:b>+<a$ ; $a>b B+Ab
<Ea ;a:}*<l$ ;$a><a$ $a> C+AA
L [ p>+<[a ;s ap b D+CbFb
<E , b beca} ; $a><[ a ':b> E+ABR
[ [ ]}-n[a a ><Ea 5 } F+CCFFC
<[ [ :)b>+<|: [ ] } b S+ BpE

LCOIy<C0d peLas b

S -+ <E§ ; b>
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It can be verified that ny = a a is not
generated by G , which can be assumed
as the current hypothesis. Actually, iden

tification of G4 is not yet complete. If
the positive sample were enlarged, the al
gorithm would eventually derive a 2-d.h.
grammar which is strongly equivalent to
Gy.

The last case to be discussed occurs
when there is no integer k such that Gg

Is k-d.h.Then any attempt of identifying
Gsby means of our algorithm will fail.The
current hypothesis of order k derived by
the algorithm from any positive sample
can always be falsified by suitable enlar
gement of the negative sample against
which the grammar is tested.

3. CONCLUSION

If we compare our results with
Chomsky's formulation of the problem of
grammar acquisition, we see that we are
far from a fully satisfactory solution,
since the class of k-distinct, k-homoge-
neous grammars that we have considered
does not cover the full spectrum of con-
text-free languages, much less that of
Chomsky's transformational grammars.

On the positive side, the class of
grammars for which we have provided a so-
lution does not seem l|less adequate than
context-free grammars for modeling lin-
guistic competence, since self-embedding
and nesting can be accounted for.

Our approach aimed at studying a learjn
ing situation where the language acquisi-
tion device uniquely determines a grammar
from given primary data, which consist of
a sample of sentences and structure de-
scriptions. Following this step, the grar®
mar can be tested for over-generalization
against a set of non-sentences. If any
non-sentence Iis accepted by the grammar,
the learning device steps up a parameter
which enlarges the class of attainable
grammars, and determines a grammar in the
enlarged class. The procedure always con-
verges to the source grammar, if the lat-
ter falls in the hypotheses space that we
have already mentioned.

Perhaps the most significant result of
this study is the definition of a suffi-
ciently limited - and still iInteresting
- class of grammars, and the use of pri-
mary data which include structure descriL
tions in order to reduce the number of
grammars which, at a certain moment, are
compatible with the available data.

A simple strategy selects an appropria
te "minimal®™ grammar which can be extended,

if necessary ,as additional input sentences
are added to the sample.
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