490

DERVED SEHMANTICS FOR SOVE PROGRAMMINCT
LANGUAGE CONSTRUCTS

Peter Henderson

Computing Laboratory, University of
Newcastle upon Tyne. England.

Some familiar programming language constructs
are described and an implementation for a
hypothetical computing device is given. The
semantics of the object language are described
as mappings of the internal states of this
device. By compounding the sequence of
mappings corresponding to the translation of a
source phrase, the semantics of the source
phrase can be derived as a complex mapping.
The recursive nature of the syntax of the
source 1anguage requires an inductive approach
to this derivation. If the derived semantics
are acceptable then the implementation can be
regarded as correct in an informal sense.

1. Introduction

McCarthy and Painter (8) prove the
correctness of a compiler for simple arithmetic
expressions according to a definition of
correctness first defined by McCarthy (7). By
means of an abstract analytic syntax for the
source language they give a functional
description of its semantics. Sinn larly the
semantics of an object Janguage are specifled
and then the rules governing a translation from
the source language to the object 1anguage are
defined. It is the correctness of tlus
translator which is in question. The proof
takes the form of showing that the translated
source phrase leaves the value predicted by the
functional description of the source language
semantics, in the accumulator of the object
machine.

There are strong parall els between the
semantic description and the translation of a
source language. Indeed , semantic drscription
Is accomplished by translation into a semantic
object language which is usually of a functional
nature, as opposed to the command structure of
the machine language of an object machine.
Conversely, the formal description of a
translator, mapping the source language into
such a procedural 1anguage is an adequate
description of the source language semantics,
given a description of the object Janguage
semantics. This point is made by Virth (10).

In this paper we shall be concerned with an
approach to imp]ementation correctness very
similar to McCarthy and Painter, except that we
make no a priori description of the source
language semantics and consequently no
definition of correctness. Rather, we shal1
define a procedural object language and a
translator mapping the source language into it.
We shall derive from these definitions a
functiona1 description of the source language

Session No. 11 Theoretical Foundations

semanti cs. Correctness is then involved with
the acceptance of this functional description
as truly representing the meaning informally
attributed to the source language. This is
no less formal, except possibly in order of
presentation, than the technique of McCarthy
and Painter. Where those authors require
acceptance of a definition of source language
semantics a priori, this author requires the
same a postiori.

The mam results of this paper are taken
from Henderson (3) where a programming
language is presented, analysed and a
functional description of its semantics
derived. The techniques are presented there
as a language design tool, since this is how
they were developed. As such they are
sewrely critical of irrational source language
and implementation features. The language
ALEPH, which is based on ideas from many
current high level languages is quite
sophisticated, in that it allows for
recursively activated functions and has a
block structure within the eonfines of which
one may declare storage for arrays. Notably,
however, ALEPH does not contain an explicit
control transfer (goto) facility. It was
possible to derive a semantic description of
the 1anguage up to but not including the use
of vectors. The probJem here was that of
"sharing" of storage whieh had been identified
by Landin (6) . In this paper, three of the
more interesting results wild be described to
iIllustrate the techniques used. There is no
doubt that the constructs chosen are the
simpler ones derived in Henderson (3). It
Is hoped to publish other results, those
concerning functions in particud ar, elsewhere.

2. Sore programming 1anguage constructs

It is not necessary to describe the whole of
a programming language in detail in order to
discuss some of the constructs available in it.
It is, however, judicious to describe a little
more than is formally necessary in order to
cuJ11vato understanding. Consider then a
programming language in which a program is
constructed from phrases ralled expressions.
Each expression is defined syntactically as a
combinntion of symbols and phrases, some of
which may be expressions. We shall not be
concerned here with phrases other than
expressjons. For reasons of expediency in
semantic description we do not distinguish the
concept, familiarly known as a statement, In
our language. Rather we allow an expression
to he evaluated solely for the side-effect it
will have. This saves us, for example,
having to define separately the concept of
conditional statement and conditional expression.
In the case of constructs more frequently

associated with a . sid -vffec%.than a vaIu%
such as assignment and iterating statements,

Session No. 11 Theoretical Foundations

conventional ad if possible, convenient values
will be designated for them. An assignment
statement ney yield as its value, the value
assigned, for example. This sort of concept

IS not new, it appears in Wirth (10) ad others.

The three constructs we wish to consider can
be defined as follows.

1. There are certain basic expressions,
which we shall not specify, here, which
perform primitive computations of a
desirable nature. For exarpe

P +q <1

X:=y :myt 1

2, Ife , e , ..., € B8Bre exprcssions,
) P k
then so 18
begin e ; e ; ... ; e end
! o K

3. If e, e , e are expressions, then =so

1f ¢ then ¢ else e
- 1 o i

4, If e and ¢ are expressions, then so 1s
1 b

while e do e

1]

To define what each of these constructs
means, it is necessary to consider what we mean
by value and side—effect. We assume that the
computation expressed by a program manipulates
the elements of some domain, which elements we
shall call values. Each expression, therefore
specifies the computation (assuming it termin-
ates) of a value from this domain. We
assume this computation takes place in an
environment consisting of a collection of
variables, each of which may or may not possess
a value. When an expression is evaluated it
may or may not produce a value. When an
expression is evaluated it may alter the values
associated with some of these variables. This
effect is known as the side-effect (of the
evaluation). In particular if the effect is
to leave the variables unchanged, then it is
said to be a null side-effect. A subset of
the domain is distinguished and called zero,
where we assume it Is possible to test a value
for membership of this subset.

We shall see that this predicate is used to
construct conditional computations.

1. The value and side-effect of each basic
expression is assumed to be defined.

2. The value and side-effect of evaluating

begin e ; e ; ; e end
! o k

is just the value and side-effect of
evaluating e in the environment produced

by evaluatlng € Lesey © in order from
1 ¥ _1

left to right.

491

3. The value and side-effect of evaluating
if e then e else e

iIs the value and side-effect of evaluating

one of e or e in the environment produced

by evaluating eI , according to whether the

value of eI IS in zero or not. If the

value of e is in zero then e is selected,
1 3

otherwise e Is selected.
4. The side-effect of evaluating

while e, do e
i p

Is thp side-effect of evaluating e and e

alternaﬁ ¥hr
1S ,flrst In zero.

nnln%fand endlng with
The value of

while e do e

1 T
Is the value produced by e when it is last

evaluated according to the above scheme, or
0 (which is some element of zero) if e s

r
not evaluated, that is when e Yyields an
element of zero when first evaluated.

We shall not attempt to be more precise
about this informal semantic description here.
The nature of zero is confusing. To clarify,
If the domain is the direct union of integers
and booleans then zero may have the single
element false. However, we do not wish to
confine these results to such a choice of domain.
3. An_implementation for a hypothetical machine

Let us consider a computing device (not
unlike a current day machine in which core and
registers are used in a special way), which
includes an accumulator T and a stack P. The
names T and F were derived from the "top"
element and the "first stacked" element in a
single stack structure. The basic operations
which this device can perform may be specified
simply in terms of the accumulator T and the
stack F as follows.

TTF place the current value of T on top
of the stack F, leave T unchanged.

TF replace the value of T by the value
at the top of the stack. Remove
this value from the stack.

pop F Remowe the top value from the stack.
T<—O replace the current value of T by O.

The basic tests which the device can perform
include:

(T=0)? test if the current value of T is in
Zero.

A program for this device is a graph with a
single entry and a single exit.

492

The nodes of the graph are of three kinds.

1. Gomad single entry, single exit,
labelled with a basic

operation.

2. Test: single entry, double exit,
labelled with a basic test
ad with the exits maked
YES and NO

3. Join: double entry, single exit,
unlabel led.

Such a progam foms a flow diagram in a fairly
obvious sense. We are rown in a position to
give the translations of our three principal
expressions. Saquare brackets are used
throughout merely to indicate structure in a
(mefa) expression. Souce expressions will be

used autonomously.

Given an expression e in the source
language, we denote by ue its translation to a
progam for our hypothetical computing device.
In displaying this progam as a graph we
encircle the (unspecified) subgaphs for
aconponat expressions with a dotted line.

1 e k
e /! e | fae \
NP, ¥] -)-.——a-.\ u 2 P == ')-.—-’-\ " P
. TIF ‘.. TIF TIF «_ 7

2. pl[if e then e else e]

1 e i
e
/
s & — — - ¢ —_— -
/.TlF o o \
NO B
/ N
\
*‘ﬂuel A= (T=0)7 -3
- S
YES)
/ \ '
N o - | U es —
TlF \ /

3. ulwhile e do e]
1 2

Session No. 11 Theoretical Foundations

The assumption, which we shall establish
iInductively in section 5, in that the translat-
lon of an expression is a progam which:

1. Stacks the current value of T;
2. otherwise leaves F unaltered:;

ad 3. leaves the value of the translated

expression in T.

The pogam naey of course heve an effect yoon
other, as yet unspecified, compoenis of the
device.

4. Notation for the modd

It is necessary to construct a nodd of our
hypothetical computing device In order to
analyse the progams which we heve constructed
for it. The notation is based on Strachey
(1964), Landn (1963) ad Cuny ad Feys (1958)
ad other papers already cited.

If fis a function ad x an agurent within
the doman of f, we denole by tx the result of
applying f to this algument Application

associates to the left, t h fx x . . x
1

< n
dernotes (...((fx)x) ... x). The function

"dot" product f.gl, where J" ad g are functions
over appropriate domarns is defined by

rf.glx & ffgx1. The function "dot" product hes
a lower binding power than application ad haexce
rfx.gv]z is interpreted as rexirgyzl. Noe
that this product is associative ad we shall
write "f.g.hix for frgfhx117.

By neas of the notation of the j-calculus we
nmay write the definition of f.g as f.g =
w{gx]. Dnal-pXxpression the » is followed
immediately by the boud variable ad then the
body which extends as far to the right as is
consistent with the bracketing. Tre j-express-
ion, »xA denotes the function, whoee value for
agument B, denoked by [AxA)B, s obtained by
evaluating the expression obtained when B is
substituted for all free occumrences of X in A.
Ve shall asaunme that B is evaluated before
substitution ad that any clash of variables
(if the result of B contains any) ~expressions
with free variables) is catered for by renaming
of boud variables.

A particular function which we shall have
need of is the following

Cz = dx\yx 1f z i8 in zero
AXAYY if 7z is not in zero
Noke that Qwmwv selects v if U is In zero ad
w if it is not. In general a function f can
be defined by a sdene
f = ¢

where € is a combination of) -expressions ad
previously defined functions. If, howewver, ¢
contains an occurrence of f then we denole by

Y[»fe] or simply Y)fe

Session No. 11 Theoretical Foundations

the solution of f = ¢, if it exists. Y is
called the paradoxical combinator by Cunry ad
Feys (2) ad thp fixed-point operator by Landin
(5). Effoelively it allows us to rare the
function f independentty of the letter used to
designate it.

Finally , let us introduce sare notation
for stacks, A denoles the enpy stack ad 1 f
S is thp stack with the n elements s] 'y D

g wevritc ;
=8 = (51’ (SF, (Sn, A).od))

We denote by S™ the top élement S ad by S
the stack remaining when S is remowved.

(s ,8)' = s
) O

(s ,8) = s
O

(s',s7) = s

Vhen we consider the hypothetical computing
device, there are various eements which can
alter as the result of executing a canmad
The accumulator ad the stack can alter, since
ail the basic armatds introduced here refer to
them directly. The rest of the elements that

can alter we shall call collectively the (source)

envilmnment. The environment is effec(lvely a
data structure which includes information about
the values of all currently declared variables.
If we denote the (source) environment by v we
can consider the objec—environment F~ to be a
triple

T o= Tt,r,v]

where t ad f denole the current values of the
accumulator and the stack respectively. The
notion ¢ is what McCathy (7) refers to as a
state vector. W we have doe iIs simply to
impart to it a little noe structure.

The semantics of the object brgua ge can row
be defined as maopngs on the object-environment
as follows.

Tt,f.v] TR [t,(1,f),v]

[t I ,V] M rf+ ,f-,v]
[t,f,v] popF rt,f-,v]

t,2,v] T [0,f,V]

By compoundng the effect of these basic
object-environment mappngs we can derive the

mappng cormresponding to a progam for our
hypothetical computing device.

5. Derivation of semantics for the three
constructs

The recursive nature of the syntax given for
the expressions In section 2 necessitates an
iInductive approach to derivation for an
expression. Given an expression e constructed
from expressions € , e , ..., e we shall

493

establ ish a éma stating that e had a certain
property under the assumption that e , e , ..

. € havwe that property. In Henderson (3)
K
by an agument using structural induction, it
Is doonwn that for a certain choice of expression
types, that such a éma is suf ficient to
establish the property absolutely for e. The
iInduction principle used is similar to that
required by McCathy ad Painter ad explained
fully by Burstal | (1).
The property which concems us Iin this paper
we shall call property A
property A: the expression e iIs said to possess
property A, written Ale], If the
result of evaluating e in the
object-environment F = [t,f,v] is the
objectenvironment F' = f, (),]
where tf = gv ad Vv = hv for sore
functions g ad h, determined by the
expressi on €.

Ve see that in particular the original value of
t s ssved ad the rew values of the accumulator
ad environment degoed only on the old value of
the envilonment. (o t& we mean source
environment). The function g is called the
value function associated with e ad h is the
associated side-effect function.

We shall asaume that there exist functions
cr ad il such that given o, as in the definition
of property A, we have

the = g ubzzll
Thus we can write

[t,f,v] UP [Wev, (t,f), llevi since Ale]

to dow the object-environment maopng due to
an expression with property A. Noke that e
ad le are the functions which determine the
semantics of e. VWe are rov in a position to
establish the enmmes which we should use n an
agument of comrectness of the iImplementation

of the three expressions introduced in section 2.

Bhha 1 If the expressions e , e, *** |, €

| 2 K
possess property A then so does the expression
begin e ; e ; ... ; ¢ end

1 2 k

proof We shall prove by induction on the
index k, that 1f

Ax = ulbegin 91; P?; ceo 3 Pk end |
then

[t,f,v] _!L_af[fml.LE_a. Voo e meljv,

(t,f), dek. cee U91]v1

For if k = 1 we have y (begin e end]

1

= e and hence
1

ft,f,v] B1 rme]v,(t,f),ljlp v
l

since Ale]
1

494

which establishes our hypothesis for k = 1.

The translation Bk for k>1, given in

k
section 3 can be written

_;%u[b981n € 5 eea } ek_1 end P upk -
N - TIF
which 1is
- -
HHBI: /_7-." > e \.r- i
-11 TlF \ I!/
Hence

B
[t,f,v] "v [rwek_l.wek_g. cee mvljv,

(t,flf®ek_1. coe s $61]v]
by the inductive hypothesis
T|F [t,f,[mek . e Ueljv] by defn.

M Sy e v
__)rrpf‘kr[ll]f’k_l. ceo o | 1]],

(t’f),llleﬂlhp ... e Jv]] since Ale]
K k=1 1 X
= [[epe) e v,
Kk k=l 1

(1,f), rwek. cee o e V]

1

This completes the induction and shows that
begin e ; ... : ¢ c¢nd possesses property A with

1 k

o begin e ; ... ; ¢ end]
1 K

= e . llle ¢ o o8 lllf’

k k =1 1
and $[bp ine ; ... ; & end]

1 k
= e . oo o € l
Ll X L' 1 I

Jeimma 2 If the expressions e , e , and e
— 1 2 a

possess property A, then so does the expression

if ¢ then e else ¢

3

roof First we consider the derivation
connected with the following diagram, for sore
e which has property A.

The diagram comesponds to the form of each am
of the conditional expression. The initial
operation, TIF is used to remowe the redundant
value of the tested expression. This context
allows us to assume that F is not emply.

i —

e

™

\
-ﬂbw-——4>\ we p—e
TIF . ,_/

rt’fy‘f] 1‘_1?’ rf+,f-, VJ agsume f ?/ A
wey, gev,f,ev] since Ale]

Session No. 11 Theoretical Foundations

Now In the program

/ -

fue \
P ey R | 2 |——
TIF _‘_ _ /

TIF

the condition selects between two functions of
the same form, thus

Mt,f,v] _ﬂ,rCtrw§R]&,;1v, £, Celile]e Iv]

for the value of the accumulator since this

suggests that both ¢ and e are evaluated.
2 a

Finally, for the whole program as shown 1in
section 3 we have

[t,f,\f] LL(:‘]i FLDPIV, (t‘vf)! le(‘lv-]

since Afe]
1

—_ rCfmolvquea]rmea]r¢vlv7, (t,f),
Clpe v][we Twe [the v]
1 3 < 1

which establishes property A, with:

of if e +then e else e
! o A

= AVC[e v][pe][me 7[Wﬂ v
1 3 e 1

ljl(1f e t1hen e else ¢]
o e 3

= }vamelequgrﬂw?]de]V7 i

lemma 3 1f the expressions e and e possess
1 2

property A, then so does the expression

while e do e

] 2

proof Consider the program:

- (T=0)?
/ A . .!ES
‘)I > We / o r ol
- - pop F
B T|F
N/ he |
. 3

we postulate that there exist functions a, 3
with the property that the object-environment
mapping of this progam (if it terminates) is

rt!f’v] — [Q’tvf f,ﬁ"]

Session No. 11 Theoretical Foundations

We postulate that there exist functions aad p
constructively by induction on k, the runta of
tihmes the condition In the loop proves false.

oo k =0, then the doove pogam
coresponds o

d N\
/ue \
—-a-“ 1] [T el

~ i TI|F

o

which has

ft,f,v] uP1 f@t v, (t,f), wo v
TlF! M, f ,|||e] v)

Thus the hypothesis 18 true for k = 0, wit

OJtVZ't:

Bv :[IJPV

1

S goose rowv the hypothesis s true N case we
shoud go roud the loop kK - 1 times, ad that
Nthiscaeceewehavea=aad = 3, then if
the condition shoud prove false k times, we
heve the dernvation.

Ft,f,v] b1 [we v, (L, 1) dlle v since Ale 7
> 1 1] 1

pop F Foe v, e v
, 1,’Ll1

TIF rf+,f_,mplv]

W €2
E—

Fo'[we Nie v1T[ie Mpe v]7,
2)| e 1
, he v
£y p Ttherhe vI7]

by the inductve hyoo thesis, since condition
poves false after K - 1 noe loops. This
establishes the hypothesis ad v ad p hae the
fom

atv

——

[cpe rllle vl], I, e f]'le v
2 1 P44 1

—

Il

o rrmoa [1'!01 v]] fl‘log [-I'lF'l v
R/Tie_[ite v1]

BV

However, iIn oder to get a definitional fom
foraad p we ma consider the partial

denvations dxesen by the condition in the loop.

i) [t,f,v] T E]f ., v] for the YES branch
ii) [tfﬂul'[tf,ﬂ
T|F [f £ ,v]

uea [qwav,f ,qwsv] since Afeaj
r .
_— [-cyrcpez\!] J*pgv'l S ar\begvﬂ
for the NO brandh

Nwv for the whde diagram, we have

495

Ly e :
rt,f,v1 =71 rnelv, (t,1), WeIVW since Ar911

—> [Clee vIF)vtIMavaleoe vIMile vITMifle v
| 2 2 1

f,CMene vITAvv Py valibe VWWFWP v19
1 1 <

and hence

atv = Clene vIMavtIMyvglene v e v11Tlie v
] . e 1

e DIDVare v]3de v
2 1 -

»
<
i

1

8
I

Y) o) L3 vC ene er}Vt-]r)gVn'rm[' de;e v']'H""P 1
1 c: P2]

P = Naavlime vINavvirp . le 1Mijle v
1 2 1

Now to establish property A, we have simply to
construct a derivation for the whole program
given 1n section 3,

[t,f,v] M Ct,(t,f),v]
Tq-s)i [0,(t,f),v]
— [oOv,(L,f) ,pv]
which establishes properly A. We have

rn[whlle e do e 1 =

)| c

M 12 vCl o JO0vE]avaloe viTle vITge vI10
) a2’ 2 1 -

mrwhllo e do e] =
e -

Y)\p}\vcrcpo] VJ‘.)\WJ [E .l'le.]rlllol v'l

5. Conclusions

h eexh o the dooe Bmes we heve
dernved a value f urt tion ad n side-effect
function , for the expression concemed, In
erms of the value ad side-effect functions
o the corpoat expressons. These
functions are in a fom whidh this author hes
found convenient for manipulative purposes.
The formulation woud be called ‘applicative’
by Cuny ad Fes (2) (in a lose sense).
They are not, honever, in a digestible fom for
the defmition of bguge N an educational
sense. In Hedason (3), the result on the
while expression is anaysed ad alternative
foms given. In particular the side-effect
function is doAan to be equivalent to that
defined by Hoae (4).

The requrement for foma semanic
description, in the author's view, is nod
essential In the aea of pogam cormreciness.
Depenci‘g yoon Whether the correciness proof
s the duty of the pogama o the madine,
the semanic meaaguage M be so onented.
Thre mea Bguage us=d here 15 only nominally
onented towads mednancad handling but this
IS an aea In which the author iIs currently

expernmenting.

496

To summarse, ve have defined a language
informally ad then an implementation for it.

The semantics of the object language ad the
definition of a translator into the object

language specify the semantics of the source
language In a procedural way. By analysing
the translation of the source phrase it has
been possible to derive a functional
description of the source language semantics.
Correclness of the implementation involves
acoeptance that the informal interpretation

of the denved semantic functions comresponds
to the meanng informally attributed to the

phrases when they were defined.

A final point worth noting is that the
results presented here were developed In the
context of a particular implementation. Yet

they tumed out to be remarkably independent
of may of the design features of that

iImplementation. This fact has enabled us to
investigate just three of the constructs here
without concem for the others. It Is
heartening to note that the darmadks of the
proofs rationalised the language design to a
point where it was easy to describe to both
man and machine.

Acknowiedoemenis

This research, which was carried out in the
Computing Laboratory of the University of
Newcastie yoon Tyre from 1967 o 1970, WAS
supported initially by the Scence Research
Council ad subsequently by the University.
The author is extremely grateful to Mr. M.J.
Elphick of the Laboratory for the tme he
devoted to reading ad discussing this material

1 Burstall, RM. (1969) 'Proving properties
of progams by structural induction’.

Compuer Journal. Vol 12, p. 41.

Curry, HF. ad Feys, R (1958)
'‘Combinatory Logic'. Vol. 1.
North Holland, Amsterdam.

Henderson, P. (1970) 'Design axd Semanic-

Analysis of a progamming language ad its
compiler'. Ph.D. Thesis, University of

Newcastle uoon Tyne.

Hoare, CR (1969). 'An axiomatic basis
for computer programming’. CAOM
Vol. 12 Nov. 1969, p. 576.

5 Landin, P.J. (1963) "The mechanical

evaluation of expressions’. Cormpuer
Journal, Vol. 6, p. 308. 1963.

6. Landin, P.J. (1965) 'A ocorespondence
between Algol ad Church's A-calcuius’.

QM Vol. 8, 1965, p.89 + p.158.

/. McCarthy, J. Towards a mathematical
science of computation’. IFIP Proc.

(1962) p. 21.

8. McCarthy, J. ad Painter, J. (1967)
'‘Correctness of a Compiler for Arithmetic

Session No. 11 Theoretical Foundations

expressions'. AB Synp n Appl. Mah 19,
1967.

9. Strachey, C. (1964) Towards a formal
semantics' in 'Fomal language description
languages for computer programming. Ed.
T.H. Steel. Publ. North Holland.

1954 IFIP Conf. Proc. Baden.

10. Wirth, N. (1966) 'Euler, a generalisation
of Algol ad its formal definition' GCACOM

Vol. 9, p. 13.

Typographical note: In the iterated fuinction
"dot" product lite . . le the "dot" should
1

not be confused with the ellipses. A
succession of three dots is used consistently

as ellipses, a single dot must therefore be
interpreted as "dot" product.

file:///-cal

