
490

DERIVED SEMANTICS FOR SOME PROGRAMMINCT

LANGUAGE CONSTRUCTS
Peter Henderson

Computing Laboratory, University of
Newcastle upon Tyne. England.

Some fami l iar programming language constructs
are described and an implementation for a
hypothetical computing device is given. The
semantics of the object language are described
as mappings of the internal states of th is
device. By compounding the sequence of
mappings corresponding to the translat ion of a
source phrase, the semantics of the source
phrase can be derived as a complex mapping.
The recursive nature of the syntax of the
source 1anguage requires an inductive approach
to th is derivat ion. If the derived semantics
are acceptable then the implementation can be
regarded as correct in an informal sense.
1. Introduction

McCarthy and Painter (8) prove the
correctness of a compiler for simple arithmetic
expressions according to a def in i t ion of
correctness f i r s t defined by McCarthy (7). By
means of an abstract analytic syntax for the
source language they give a functional
description of i t s semantics. Sinn lar ly the
semantics of an obj ect]anguage are spec i f led
and then the rules governing a translat ion from
the source language to the object 1anguage are
defined. It is the correctness of t lu s
translator which is in question. The proof
takes the form of showing that the translated
source phrase leaves the value pred i cted by the
functional description of the source language
semantics, in the accumulator of the obj ect
machine.

There are strong parall els between the
semantic description and the translat ion of a
source language. Indeed , semantic drscr ipt ion
is accomplished by translat ion into a semantic
object language which is usually of a functional
nature, as opposed to the command structure of
the machine language of an object machine.
Conversely, the formal description of a
t ranslator , mapping the source language into
such a procedural 1anguage is an adequate
description of the source language semantics,
given a description of the object J anguage
semantics. This point is made by Vi r th (10).

In this paper we shall be concerned with an
approach to imp]ementati on correc tness very
similar to McCarthy and Pa in ter , except that we
make no a p r i o r i description of the source
1anguage semantics and consequently no
def in i t ion of correctness. Rather, we shal1
define a procedural object language and a
translator mapping the source language into i t .
We shall derive from these def in i t ions a
functiona1 description of the source language

Session No. 11 Theoretical Foundations

semanti cs. Correctness is then involved with
the acceptance of th is functional description
as t ru ly representing the meaning informally
attr ibuted to the source language. This is
no less formal, except possibly in order of
presentation, than the technique of McCarthy
and Painter. Where those authors require
acceptance of a de f i n i t i on of source language
semantics a p r i o r i , this author requires the
same a pos t io r i .

The mam results of th is paper are taken
from Henderson (3) where a programming
language is presented, analysed and a
functional description of i t s semanti cs
derived. The techniques are presented there
as a language design tool , since th is is how
they were developed. As such they are
sewrely c r i t i ca l of i r ra t ional source language
and implementation features. The language
ALEPH, which is based on ideas from many
current high level languages is quite
sophisticated, in that it allows for
recursively activated functions and has a
block structure within the eonfines of which
one may declare storage for arrays. Notably,
however, ALEPH does not contain an exp l ic i t
control transfer (goto) f a c i l i t y . It was
possible to derive a semantic description of
the 1anguage up to but not including the use
of vectors. The probJem here was that of
"sha ri ng" of storage whi eh had been identi f ied
by Land in (6) . In th i s pape r, three of the
more interesting results wilJ be described to
i l l us t ra te the techniques used. There is no
doubt that the constructs chosen are the
simpler ones derived in Henderson (3) . It
i s hoped to publish other results, those
concerning functions in particuJ ar, elsewhere.

2. Some programming 1anguage constructs

It is not necessary to describe the whole of
a programming language in detai l in order to
discuss some of the constructs available in it.
It is, however, judicious to describe a l i t t l e
more than is formally necessary in order to
cuJ11vato unde rstand i ng. Consider then a
programming language in which a program is
constructed from phrases ral led expressions.
Each expression is defined syntactically as a
combinntion of symbols and phrases, some of
which may be expressions. We shall not be
concerned here with phrases other than
express]ons. For reasons of expediency in
semantic description we do not dist inguish the
concept, fami l iar ly known as a statement, in
our language. Rather we allow an expression
to he evaluated solely for the side-effect it
w i l l have. This saves us, for example,
having to define separately the concept of
conditional statement and conditional expression.
In the case of constructs more frequently
associated w i t h a side-vffect than a value, such as assignment and i tera t ing statements,

Session No. 11 Theoretical Foundations 491

conventional and if possible, convenient values
will be designated for them. An assignment
statement may yield as its value, the value
assigned, for example. This sort of concept
is not new, it appears in Wirth (10) and others.

The three constructs we wish to consider can
be defined as follows.

1. There are certain basic expressions,
which we shall not specify, here, which
perform primitive computations of a
desirable nature. For example

To define what each of these constructs
means, it is necessary to consider what we mean
by value and side—effect. We assume that the
computation expressed by a program manipulates
the elements of some domain, which elements we
shall ca l l values. Each expression, therefore
specifies the computation (assuming it termin­
ates) of a value from th is domain. We
assume this computation takes place in an
environment consisting of a col lect ion of
variables, each of which may or may not possess
a value. When an expression is evaluated it
may or may not produce a value. When an
expression is evaluated it may a l ter the values
associated with some of these variables. This
effect is known as the side-effect (of the
evaluation). In part icular i f the effect is
to leave the variables unchanged, then it is
said to be a nu l l side-effect. A subset of
the domain is distinguished and called zero,
where we assume it is possible to test a value
for membership of th is subset.

We shall see that th is predicate is used to
construct conditional computations.

1. The value and side-effect of each basic
expression is assumed to be defined.
2. The value and side-effect of evaluating

3. The value and side-effect of evaluating
if e then e else e

is the value and side-effect of evaluating
one of e or e in the environment produced
by evaluating e , according to whether the

l
value of e is in zero or not. If the

l
value of e is in zero then e is selected,

1 3
otherwise e is selected.
4. The side-effect of evaluating

while e do e
i p

is thp side-effect of evaluating e and e
alternately, beginning and ending with e , unt i l tnr value of e ,
is f i r s t in zero. The value of

while e do e
1 T

is the value produced by e when it is last
evaluated according to the above scheme, or
0 (which is some element of zero) if e is

r
not evaluated, that is when e yields an
element of zero when f i r s t evaluated.
We shall not attempt to be more precise

about this informal semantic description here.
The nature of zero is confusing. To c l a r i f y ,
if the domain is the direct union of integers
and booleans then zero may have the single
element false. However, we do not wish to
confine these results to such a choice of domain.
3. An implementation for a hypothetical machine

Let us consider a computing device (not
unlike a current day machine in which core and
registers are used in a special way), which
includes an accumulator T and a stack P. The
names T and F were derived from the "top"
element and the " f i r s t stacked" element in a
single stack structure. The basic operations
which th is device can perform may be specified
simply in terms of the accumulator T and the
stack F as follows.

T↑F place the current value of T on top
of the stack F, leave T unchanged.

TF replace the value of T by the value
at the top of the stack. Remove
th is value from the stack.

pop F Remove the top value from the stack.
T←O replace the current value of T by 0.

The basic tests which the device can perform
include:

(T=O)? test if the current value of T is in
zero.
A program for th is device is a graph with a
single entry and a single ex i t .

492 Session No. 11 Theoretical Foundations

The nodes of the graph are of three kinds.
1. Command: single entry, single exit,

labelled with a basic
operation.

2. Test:

3. Join:

single entry, double exit,
labelled with a basic test
and with the exits marked
YES and NO.
double entry, single exit,
unlabel led.

Such a program forms a flow diagram in a fairly
obvious sense. We are now in a position to
give the translations of our three principal
expressions. Square brackets are used
throughout merely to indicate structure in a
(meta) expression. Source expressions will be
used autonomously.

Given an expression e in the source
language, we denote by u,e its translation to a
program for our hypothetical computing device.
In displaying this program as a graph we
encircle the (unspecified) subgraphs for
component expressions with a dotted line.

The assumption, which we shall establish
inductively in section 5, in that the translat­
ion of an expression is a program which:

1. Stacks the current value of T;
2. otherwise leaves F unaltered;

and 3. leaves the value of the translated
expression in T.

The program may of course have an effect upon
other, as yet unspecified, components of the
device.
4. Notation for the model

It is necessary to construct a model of our
hypothetical computing device in order to
analyse the programs which we have constructed
for i t . The notation is based on Strachey
(1964), Landin (1963) and Curry and Feys (1958)
and other papers already cited.

If f is a function and x an argument within
the domain of f, we denote by fx the result of
applying f to this argument. Application
associates to the left, t h u s . . .
denotes The function
"dot" product f.g, where J" and g are functions
over appropriate domains is defined by

The function "dot" product has
a lower binding power than application and hence

is interpreted as Note
that this product is associative and we shall
write for

By means of the notation of the -calculus we
may write the definition of f.g as f.g =

pxpression the is followed
immediately by the bound variable and then the
body which extends as far to the right as is
consistent with the bracketing. The -express­
ion, denotes the function, whose value for
argument B, denoted by is obtained by
evaluating the expression obtained when B is
substituted for all free occurrences of x in A.
Ve shall assume that B is evaluated before
substitution and that any clash of variables
(if the result of B contains any -expressions
with free variables) is catered for by renaming
of bound variables.

A particular function which we shall have
need of is the following

Note that Cuvw selects v if u is in zero and
w if it is not. In general a function f can
be defined by a scheme

where is a combination of -expressions and
previously defined functions. If, however,
contains an occurrence of f then we denote by

Session No. 11 Theoretical Foundations 493

the solution of f if it exists. Y is
called the paradoxical combinator by Curry and
Feys (2) and thp fixed-point operator by Landin
(5). Effoe lively it allows us to name the
function f independently of the letter used to
designate i t .

Finally , let us introduce some notation
for stacks, denotes the empty stack and
S is thp stack with the n elements

we vritc
■

We denote by S+ the top element S and by S
the stack remaining when S is removed.

When we consider the hypothetical computing
device, there are various elements which can
alter as the result of executing a command.
The accumulator and the stack can al ter, since
ail the basic commands introduced here refer to
them directly. The rest of the elements that
can alter we shall call collectively the (source)
environment. The envi ronment is effec(lvely a
data structure which includes information about
the values of all currently declared variables.
If we denote the (source) environment by v we
can consider the object—environment F to be a
triple

where t and f denote the current values of the
accumulator and the stack respectively. The
notion is what McCarthy (7) refers to as a
state vector. What we have done is simply to
impart to it a l i t t le more structure.

The semantics of the object langua ge can now
be defined as mappings on the object-environment
as follows.

By compounding the effect of these basic
object-environment mappings we can derive the
mapping corresponding to a program for our
hypothetical computing device.
5. Derivation of semantics for the three

constructs
The recursive nature of the syntax given for

the expressions in section 2 necessitates an
inductive approach to derivation for an
expression. Given an expression e constructed
from expressions e , e , . . . , e we shall

establ ish a lemma stating that e had a certain
property under the assumption that e , e , ..
. . . e have that property. In Henderson (3)

k
by an argument using structural induction, it
is shown that for a certain choice of expression
types, that such a lemma is suf ficient to
establish the property absolutely for e. The
induction principle used is similar to that
required by McCarthy and Painter and explained
fully by Burstal I (1).

The property which concerns us in this paper
we shall call property A.
property A: the expression e is said to possess

property A, written A [e] , If the
result of evaluating e in the
object-environment F = [t,f,v] is the
object-environment F' = [t',(t,f),']
where t' = gv and v' = hv for some
functions g and h, determined by the
expressi on e.

Ve see that in particular the original value of
t is saved and the new values of the accumulator
and environment depend only on the old value of
the environment. (No te we mean source
environment). The function g is called the
value function associated with e and h is the
associated side-effect function.

We shall assume that there exist functions
cr and ill such that given o, as in the definition
of property A, we have

Thus we can write
[t,f,v] UP [Wev, (t, f), l|levl since A[e]

to show the object-environment mapping due to
an expression with property A. Note that e
and Ie are the functions which determine the
semantics of e. We are now in a position to
establish the lemmas which we should use in an
argument of correctness of the implementation
of the three expressions introduced in section 2.
lemma 1 If the expressions e , e , • • • , e

l 2 k
possess property A then so does the expression

494 Session No. 11 Theoretical Foundations

which establishes our hypothesis for k = 1.
The translation βk for k>1, given in

k
section 3 can be written

Now in the program

proof First we consider the derivation
connected with the following diagram, for some
e which has property A.
The diagram corresponds to the form of each arm
of the conditional expression. The initial
operation, TlF is used to remove the redundant
value of the tested expression. This context
allows us to assume that F is not empty.

we postulate that there exist functions α , β
with the property that the object-environment
mapping of this program (i f it terminates) is

Session No. 11 Theoretical Foundations 495

We postulate that there exist functions α and p
constructively by induction on k, the number of
times the condition in the loop proves false.

Suppose k = 0, then the above program
corresponds to

Suppose now the hypothesis is true in case we
should go round the loop k - 1 times, and that
in this case we have α= α' and β = β', then if
the condition should prove false k times, we
have the derivation.

by the inductive hypo thesis, since condition
proves false after k - 1 more loops. This
establishes the hypothesis and rv and p have the
form

However, in order to get a definitional form
for α and p we must consider the partial
derivations chosen by the condition in the loop.

for the NO branch
Now for the whole diagram, we have

1

In each of the above lemmas we have
denvecl a value f unc tion and n side-effect
function , for the expression concerned, in
terms of the value and side-effect functions
of the component expressions. These
functions are in a form which this author has
found convenient for manipulative purposes.
The formulation would be called 'applicative'
by Curry and Feys (2) (in a lose sense).
They are not, however, in a digestible form for
the defmition of langunge in an educational
sense. In Henderson (3), the result on the
while expression is analysed and alternative
forms given. In particular the side-effect
function is shown to be equivalent to that
defined by Hoare (4).

The requirement for formal semantic
description, in the author's view, is most
essential in the area of program correctness.
Depending upon whether the correctness proof
is the duty of the programmer or the machine,
the semantic metalanguage must be so oriented.
The meta language used here is only nominally
oriented towards mechanical handling but this
is an area in which the author is currently
experimenting.

496 Session No. 11 Theoretical Foundations

To summarise, ve have defined a language
informally and then an implementation for i t .
The semantics of the object language and the
definition of a translator into the object
language specify the semantics of the source
language in a procedural way. By analysing
the translation of the source phrase it has
been possible to derive a functional
description of the source language semantics.
Correctness of the implementation involves
acceptance that the informal interpretation
of the derived semantic functions corresponds
to the meaning informally attributed to the
phrases when they were defined.

A final point worth noting is that the
results presented here were developed in the
context of a particular implementation. Yet
they turned out to be remarkably independent
of many of the design features of that
implementation. This fact has enabled us to
investigate just three of the constructs here
without concern for the others. It is
heartening to note that the demands of the
proofs rationalised the language design to a
point where it was easy to describe to both
man and machine.

Acknowledgements
This research, which was carried out in the

Computing Laboratory of the University of
Newcastle upon Tyne from 1967 to 1970, WAS
supported initially by the Science Research
Council and subsequently by the University.
The author is extremely grateful to Mr. M.J.
Elphick of the Laboratory for the time he
devoted to reading and discussing this material

Burstall, R.M. (1969) 'Proving properties
of programs by structural induction'.
Computer Journal. Vol 12, p. 41.
Curry, H.F. and Feys, R. (1958)
'Combinatory Logic'. Vol. 1.
North Holland, Amsterdam.
Henderson, P. (1970) 'Design and Semantic-
Analysis of a programming language and its
compiler'. Ph.D. Thesis, University of
Newcastle upon Tyne.
Hoare, C.R. (1969). 'An axiomatic basis
for computer programming'. CACM,
Vol. 12 Nov. 1969, p. 576.
Landin, P.J. (1963) 'The mechanical
evaluation of expressions'. Computer
Journal, Vol. 6, p. 308. 1963.

6. Landin, P.J. (1965) 'A correspondence
between Algol and Church's λ-calcuius'.
CACM Vol. 8, 1965, p.89 + p.158.

7. McCarthy, J. 'Towards a mathematical
science of computation'. IFIP Proc.
(1962) p. 21.

8. McCarthy, J. and Painter, J. (1967)
'Correctness of a Compiler for Arithmetic

expressions'.
1967.

AMS Symp. in Appl. Math 19,

1

5

9. Strachey, C. (1964) 'Towards a formal
semantics' in 'Formal language description
languages for computer programming'. Ed.
T.H. Steel. Publ. North Holland.
1964 IFIP Conf. Proc. Baden.

10. Wirth, N. (1966) 'Euler, a generalisation
of Algol and its formal definition' CACM,
Vol. 9, p. 13.

Typographical note: In the iterated fuinction
"dot" product lite l|le the "dot" should

1
not be confused with the ellipses. A
succession of three dots is used consistently
as ellipses, a single dot must therefore be
interpreted as "dot" product.

file:///-cal

