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Some fami l iar programming language constructs 
are described and an implementation for a 
hypothetical computing device is given. The 
semantics of the object language are described 
as mappings of the internal states of th is 
device. By compounding the sequence of 
mappings corresponding to the translat ion of a 
source phrase, the semantics of the source 
phrase can be derived as a complex mapping. 
The recursive nature of the syntax of the 
source 1anguage requires an inductive approach 
to th is derivat ion. If the derived semantics 
are acceptable then the implementation can be 
regarded as correct in an informal sense. 
1. Introduction 

McCarthy and Painter (8) prove the 
correctness of a compiler for simple arithmetic 
expressions according to a def in i t ion of 
correctness f i r s t defined by McCarthy (7). By 
means of an abstract analytic syntax for the 
source language they give a functional 
description of i t s semantics. Sinn lar ly the 
semantics of an obj ect ]anguage are spec i f led 
and then the rules governing a translat ion from 
the source language to the object 1anguage are 
defined. It is the correctness of t lu s 
translator which is in question. The proof 
takes the form of showing that the translated 
source phrase leaves the value pred i cted by the 
functional description of the source language 
semantics, in the accumulator of the obj ect 
machine. 

There are strong parall els between the 
semantic description and the translat ion of a 
source language. Indeed , semantic drscr ipt ion 
is accomplished by translat ion into a semantic 
object language which is usually of a functional 
nature, as opposed to the command structure of 
the machine language of an object machine. 
Conversely, the formal description of a 
t ranslator , mapping the source language into 
such a procedural 1anguage is an adequate 
description of the source language semantics, 
given a description of the object J anguage 
semantics. This point is made by Vi r th (10). 

In this paper we shall be concerned with an 
approach to imp]ementati on correc tness very 
similar to McCarthy and Pa in ter , except that we 
make no a p r i o r i description of the source 
1anguage semantics and consequently no 
def in i t ion of correctness. Rather, we shal1 
define a procedural object language and a 
translator mapping the source language into i t . 
We shall derive from these def in i t ions a 
functiona1 description of the source language 
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semanti cs. Correctness is then involved with 
the acceptance of th is functional description 
as t ru ly representing the meaning informally 
attr ibuted to the source language. This is 
no less formal, except possibly in order of 
presentation, than the technique of McCarthy 
and Painter. Where those authors require 
acceptance of a de f i n i t i on of source language 
semantics a p r i o r i , this author requires the 
same a pos t io r i . 

The mam results of th is paper are taken 
from Henderson (3) where a programming 
language is presented, analysed and a 
functional description of i t s semanti cs 
derived. The techniques are presented there 
as a language design tool , since th is is how 
they were developed. As such they are 
sewrely c r i t i ca l of i r ra t ional source language 
and implementation features. The language 
ALEPH, which is based on ideas from many 
current high level languages is quite 
sophisticated, in that it allows for 
recursively activated functions and has a 
block structure within the eonfines of which 
one may declare storage for arrays. Notably, 
however, ALEPH does not contain an exp l ic i t 
control transfer (goto) f a c i l i t y . It was 
possible to derive a semantic description of 
the 1anguage up to but not including the use 
of vectors. The probJem here was that of 
"sha ri ng" of storage whi eh had been identi f ied 
by Land in (6) . In th i s pape r, three of the 
more interesting results wilJ be described to 
i l l us t ra te the techniques used. There is no 
doubt that the constructs chosen are the 
simpler ones derived in Henderson ( 3 ) . It 
i s hoped to publish other results, those 
concerning functions in particuJ ar, elsewhere. 

2. Some programming 1anguage constructs 

It is not necessary to describe the whole of 
a programming language in detai l in order to 
discuss some of the constructs available in it. 
It is, however, judicious to describe a l i t t l e 
more than is formally necessary in order to 
cuJ11vato unde rstand i ng. Consider then a 
programming language in which a program is 
constructed from phrases ral led expressions. 
Each expression is defined syntactically as a 
combinntion of symbols and phrases, some of 
which may be expressions. We shall not be 
concerned here with phrases other than 
express]ons. For reasons of expediency in 
semantic description we do not dist inguish the 
concept, fami l iar ly known as a statement, in 
our language. Rather we allow an expression 
to he evaluated solely for the side-effect it 
w i l l have. This saves us, for example, 
having to define separately the concept of 
conditional statement and conditional expression. 
In the case of constructs more frequently 
associated w i t h a side-vffect than a value, such as assignment and i tera t ing statements, 
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conventional and if possible, convenient values 
will be designated for them. An assignment 
statement may yield as its value, the value 
assigned, for example. This sort of concept 
is not new, it appears in Wirth (10) and others. 

The three constructs we wish to consider can 
be defined as follows. 

1. There are certain basic expressions, 
which we shall not specify, here, which 
perform primitive computations of a 
desirable nature. For example 

To define what each of these constructs 
means, it is necessary to consider what we mean 
by value and side—effect. We assume that the 
computation expressed by a program manipulates 
the elements of some domain, which elements we 
shall ca l l values. Each expression, therefore 
specifies the computation (assuming it termin­
ates) of a value from th is domain. We 
assume this computation takes place in an 
environment consisting of a col lect ion of 
variables, each of which may or may not possess 
a value. When an expression is evaluated it 
may or may not produce a value. When an 
expression is evaluated it may a l ter the values 
associated with some of these variables. This 
effect is known as the side-effect (of the 
evaluation). In part icular i f the effect is 
to leave the variables unchanged, then it is 
said to be a nu l l side-effect. A subset of 
the domain is distinguished and called zero, 
where we assume it is possible to test a value 
for membership of th is subset. 

We shall see that th is predicate is used to 
construct conditional computations. 

1. The value and side-effect of each basic 
expression is assumed to be defined. 
2. The value and side-effect of evaluating 

3. The value and side-effect of evaluating 
if e then e else e 

is the value and side-effect of evaluating 
one of e or e in the environment produced 
by evaluating e , according to whether the 

l 
value of e is in zero or not. If the 

l 
value of e is in zero then e is selected, 

1 3 
otherwise e is selected. 
4. The side-effect of evaluating 

while e do e 
i p 

is thp side-effect of evaluating e and e 
alternately, beginning and ending with e , unt i l tnr value of e , 
is f i r s t in zero. The value of 

while e do e 
1 T 

is the value produced by e when it is last 
evaluated according to the above scheme, or 
0 (which is some element of zero) if e is 

r 
not evaluated, that is when e yields an 
element of zero when f i r s t evaluated. 
We shall not attempt to be more precise 

about this informal semantic description here. 
The nature of zero is confusing. To c l a r i f y , 
if the domain is the direct union of integers 
and booleans then zero may have the single 
element false. However, we do not wish to 
confine these results to such a choice of domain. 
3. An implementation for a hypothetical machine 

Let us consider a computing device (not 
unlike a current day machine in which core and 
registers are used in a special way), which 
includes an accumulator T and a stack P. The 
names T and F were derived from the "top" 
element and the " f i r s t stacked" element in a 
single stack structure. The basic operations 
which th is device can perform may be specified 
simply in terms of the accumulator T and the 
stack F as follows. 

T↑F place the current value of T on top 
of the stack F, leave T unchanged. 

TF replace the value of T by the value 
at the top of the stack. Remove 
th is value from the stack. 

pop F Remove the top value from the stack. 
T←O replace the current value of T by 0. 

The basic tests which the device can perform 
include: 

(T=O)? test if the current value of T is in 
zero. 
A program for th is device is a graph with a 
single entry and a single ex i t . 
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The nodes of the graph are of three kinds. 
1. Command: single entry, single exit, 

labelled with a basic 
operation. 

2. Test: 

3. Join: 

single entry, double exit, 
labelled with a basic test 
and with the exits marked 
YES and NO. 
double entry, single exit, 
unlabel led. 

Such a program forms a flow diagram in a fairly 
obvious sense. We are now in a position to 
give the translations of our three principal 
expressions. Square brackets are used 
throughout merely to indicate structure in a 
(meta) expression. Source expressions will be 
used autonomously. 

Given an expression e in the source 
language, we denote by u,e its translation to a 
program for our hypothetical computing device. 
In displaying this program as a graph we 
encircle the (unspecified) subgraphs for 
component expressions with a dotted line. 

The assumption, which we shall establish 
inductively in section 5, in that the translat­
ion of an expression is a program which: 

1. Stacks the current value of T; 
2. otherwise leaves F unaltered; 

and 3. leaves the value of the translated 
expression in T. 

The program may of course have an effect upon 
other, as yet unspecified, components of the 
device. 
4. Notation for the model 

It is necessary to construct a model of our 
hypothetical computing device in order to 
analyse the programs which we have constructed 
for i t . The notation is based on Strachey 
(1964), Landin (1963) and Curry and Feys (1958) 
and other papers already cited. 

If f is a function and x an argument within 
the domain of f, we denote by fx the result of 
applying f to this argument. Application 
associates to the left, t h u s . . . 
denotes The function 
"dot" product f.g, where J" and g are functions 
over appropriate domains is defined by 

The function "dot" product has 
a lower binding power than application and hence 

is interpreted as Note 
that this product is associative and we shall 
write for 

By means of the notation of the -calculus we 
may write the definition of f.g as f.g = 

pxpression the is followed 
immediately by the bound variable and then the 
body which extends as far to the right as is 
consistent with the bracketing. The -express­
ion, denotes the function, whose value for 
argument B, denoted by is obtained by 
evaluating the expression obtained when B is 
substituted for all free occurrences of x in A. 
Ve shall assume that B is evaluated before 
substitution and that any clash of variables 
(if the result of B contains any -expressions 
with free variables) is catered for by renaming 
of bound variables. 

A particular function which we shall have 
need of is the following 

Note that Cuvw selects v if u is in zero and 
w if it is not. In general a function f can 
be defined by a scheme 

where is a combination of -expressions and 
previously defined functions. If, however, 
contains an occurrence of f then we denote by 
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the solution of f if it exists. Y is 
called the paradoxical combinator by Curry and 
Feys (2) and thp fixed-point operator by Landin 
(5). Effoe lively it allows us to name the 
function f independently of the letter used to 
designate i t . 

Finally , let us introduce some notation 
for stacks, denotes the empty stack and 
S is thp stack with the n elements 

we vritc 
■ 

We denote by S+ the top element S and by S 
the stack remaining when S is removed. 

When we consider the hypothetical computing 
device, there are various elements which can 
alter as the result of executing a command. 
The accumulator and the stack can al ter, since 
ail the basic commands introduced here refer to 
them directly. The rest of the elements that 
can alter we shall call collectively the (source) 
environment. The envi ronment is effec(lvely a 
data structure which includes information about 
the values of all currently declared variables. 
If we denote the (source) environment by v we 
can consider the object—environment F to be a 
triple 

where t and f denote the current values of the 
accumulator and the stack respectively. The 
notion is what McCarthy (7) refers to as a 
state vector. What we have done is simply to 
impart to it a l i t t le more structure. 

The semantics of the object langua ge can now 
be defined as mappings on the object-environment 
as follows. 

By compounding the effect of these basic 
object-environment mappings we can derive the 
mapping corresponding to a program for our 
hypothetical computing device. 
5. Derivation of semantics for the three 

constructs 
The recursive nature of the syntax given for 

the expressions in section 2 necessitates an 
inductive approach to derivation for an 
expression. Given an expression e constructed 
from expressions e , e , . . . , e we shall 

establ ish a lemma stating that e had a certain 
property under the assumption that e , e , .. 
. . . e have that property. In Henderson (3) 

k 
by an argument using structural induction, it 
is shown that for a certain choice of expression 
types, that such a lemma is suf ficient to 
establish the property absolutely for e. The 
induction principle used is similar to that 
required by McCarthy and Painter and explained 
fully by Burstal I (1 ). 

The property which concerns us in this paper 
we shall call property A. 
property A: the expression e is said to possess 

property A, written A [e] , If the 
result of evaluating e in the 
object-environment F = [t,f,v] is the 
object-environment F' = [t',(t,f),' ] 
where t' = gv and v' = hv for some 
functions g and h, determined by the 
expressi on e. 

Ve see that in particular the original value of 
t is saved and the new values of the accumulator 
and environment depend only on the old value of 
the environment. (No te we mean source 
environment). The function g is called the 
value function associated with e and h is the 
associated side-effect function. 

We shall assume that there exist functions 
cr and ill such that given o, as in the definition 
of property A, we have 

Thus we can write 
[t,f,v] UP [Wev, (t, f), l|levl since A[e] 

to show the object-environment mapping due to 
an expression with property A. Note that e 
and Ie are the functions which determine the 
semantics of e. We are now in a position to 
establish the lemmas which we should use in an 
argument of correctness of the implementation 
of the three expressions introduced in section 2. 
lemma 1 If the expressions e , e , • • • , e 

l 2 k 
possess property A then so does the expression 
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which establishes our hypothesis for k = 1. 
The translation βk for k>1, given in 

k 
section 3 can be written 

Now in the program 

proof First we consider the derivation 
connected with the following diagram, for some 
e which has property A. 
The diagram corresponds to the form of each arm 
of the conditional expression. The initial 
operation, TlF is used to remove the redundant 
value of the tested expression. This context 
allows us to assume that F is not empty. 

we postulate that there exist functions α , β 
with the property that the object-environment 
mapping of this program (i f it terminates) is 
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We postulate that there exist functions α and p 
constructively by induction on k, the number of 
times the condition in the loop proves false. 

Suppose k = 0, then the above program 
corresponds to 

Suppose now the hypothesis is true in case we 
should go round the loop k - 1 times, and that 
in this case we have α= α' and β = β', then if 
the condition should prove false k times, we 
have the derivation. 

by the inductive hypo thesis, since condition 
proves false after k - 1 more loops. This 
establishes the hypothesis and rv and p have the 
form 

However, in order to get a definitional form 
for α and p we must consider the partial 
derivations chosen by the condition in the loop. 

for the NO branch 
Now for the whole diagram, we have 

1 

In each of the above lemmas we have 
denvecl a value f unc tion and n side-effect 
function , for the expression concerned, in 
terms of the value and side-effect functions 
of the component expressions. These 
functions are in a form which this author has 
found convenient for manipulative purposes. 
The formulation would be called 'applicative' 
by Curry and Feys (2) (in a lose sense). 
They are not, however, in a digestible form for 
the defmition of langunge in an educational 
sense. In Henderson (3), the result on the 
while expression is analysed and alternative 
forms given. In particular the side-effect 
function is shown to be equivalent to that 
defined by Hoare (4). 

The requirement for formal semantic 
description, in the author's view, is most 
essential in the area of program correctness. 
Depending upon whether the correctness proof 
is the duty of the programmer or the machine, 
the semantic metalanguage must be so oriented. 
The meta language used here is only nominally 
oriented towards mechanical handling but this 
is an area in which the author is currently 
experimenting. 
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To summarise, ve have defined a language 
informally and then an implementation for i t . 
The semantics of the object language and the 
definition of a translator into the object 
language specify the semantics of the source 
language in a procedural way. By analysing 
the translation of the source phrase it has 
been possible to derive a functional 
description of the source language semantics. 
Correctness of the implementation involves 
acceptance that the informal interpretation 
of the derived semantic functions corresponds 
to the meaning informally attributed to the 
phrases when they were defined. 

A final point worth noting is that the 
results presented here were developed in the 
context of a particular implementation. Yet 
they turned out to be remarkably independent 
of many of the design features of that 
implementation. This fact has enabled us to 
investigate just three of the constructs here 
without concern for the others. It is 
heartening to note that the demands of the 
proofs rationalised the language design to a 
point where it was easy to describe to both 
man and machine. 
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Typographical note: In the iterated fuinction 
"dot" product lite . . . . . l|le the "dot" should 

1 
not be confused with the ellipses. A 
succession of three dots is used consistently 
as ellipses, a single dot must therefore be 
interpreted as "dot" product. 
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