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Summary

In the paper is presented a new method
for accelerating the convergence of the
stochastic approximation method.which can
be used as a mathematical technique to
solve some learning problems.

1. Introduction

One of the main aims of contemporary theo-
ry of adaptive,learning and self-learning
systems is the unification of the prob-
lems of adaptation,learning and self-lear-
ning from one point of view,i.e.the de-
termination of the appropriate mathema-
tical technique which would be able to
solve as large a class of problems as
possible.Theoretically it seems that the
theory of stochastic approximation could
solve this problem®’*

In the learning problem of dividing
input situations into n classes,it is pos-
sible in a deterministic _case to consider
the learning-is is known'? -as an approxi-
mation of the function,which divides two
disjoint classes.Let this decision func-
tion be written as

.‘Ja;(_{) 0)
where x is an 1-dimensional vector and vy
is a quantity showing the class to which
a pattern belongs.In the stochastic for-
mulation of the problem where the condi-
tion of disjoint classes is not required,
y can be taken as the probability that x
belongs to one class and 1-y is the pro-
bability that x belongs to another class.
The function f in equation (1)can be ap-
proximated by the finite expansion

fiiy = z' 6B )= Pk
w:f

where is an n-dimensional vector of
coefficients, (p(2)iB an n-dimensional vec-
tor of linear independent functions and

T stands for transposition.Let P) be an
unknown probability density function of
the observed vector "x\A measure of the
approximation of i) through c2) can be
provided by the mean value of any strict-
ly convex function/" with argumentf£u;-ftf))*
Then we can write the measure of the ap-

Czechoslovakia

proximation in the form of

- ! T , 2T, = 4 2
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where”l is the space of all observed vec-
tors A .The best approximation corres-
ponds to such a choice of vector” that
t?a; attains its minimum.This problem can

be solved by the stochastic approximation
method where the influence of noise can

also be considered.

The practical use of the stochastic
approximation method as a mathematical
technique for learning,self-learning, and
adaptation depends on the speed of con-
vergence of the methods used.This paper
deals with this problem.From the prac-
tical point of view,the solution of ex-
tremumsearching problems has great sig-
nificance .The stochastic approximation
methods,as methods of sequential itera-
tions in the case of extremum-searching
problems,exploit various forms of the
iterative gradient method.Asymptotic be-
haviour and the speed of convergence we-
re observed by many authors for various
modifications of this method.A common
feature of all these algorithms of gra-
dient methods an all these modifications
did not,however,change.This is a way in
which information is gained during the
iterative process.The way of gaining in-
formation,the structure of the informa-
tion and its interconnection provide the
basic clue to the construction of the new
algorithms and are also the criterion of

quality.If there is not sufficient infor-
mation to make the next step in the ite-
rative scheme,then additional information
must be gained by experimental interim

steps.From this point of view,those al-
gorithms are important which do not need
experimental steps before the next step
can be made.The stability of used algo-
rithms against noise depends directly on
the structure of gained information and
its interconnection.Not every algorithm
which solves the problem in the determi-
nistic case is stable against noise.
Many control processes can be described
only through the mathematical models pos-
sessing some uncertainties in the form
of a set of random variables with un-
known probabilistic descriptions.
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In this paper we describe an algo-
rithm which has the above mentioned pro-
perties;i.e.,it does not use experimental

steps and information is gained by steps
during the iterative process,and it sol-
ves the extremum-searching problem in the

presence of noise.

2. Stochastic approximation
methods"

The first methods of stochastic approxi-
mation were the algorithms of Robbins and
Monro* ,Blum* ,Kiefer and Wolfowitz '
for finding the zero point of the func-
tion or the extremum of the one-dimen-
sional function in the presence of noise.
A generalization for multidimensional
functions was made later by Blum* and
these results were unified by Dvoretzky',
whose results we shall use.As the speed
of convergence of the method given by Ro-
bbins and Monro depends on the type of
function,often this speed is not satisfac-
tory from the practical point of view.
We shall use the two following ways
of accelerating the convergence .Let %)
be a fixed but unknown function,which has
a unique rootx= .Let 2 is a random va-
riable with distribution function W\Vf o
which depends on the real parameterf <
The Robbins-Monro procedure is defined
for searching the zero point of regresion

function
(-

Jlx) = fz dH (£/0)

-

as 4 sequence fr,}! given by relation

Xors = Xp = Q75 (4)

where §a,¢ is a sequence of positive
constants such that

ol w3 Py
a »o, ,Z.a~'“°',.‘,zqa'*"° ¢)
Fabian’ gives the modification of the
algorithm which makes it posseble to ac-
coelerate the convergence to within cer-
tain limitg of the probability density
function #¢x/¢) .Thie limitation for the
probability density function results from
the condition that the regresion function
ML) corresponding to the random variable
;-,,;?,,g should satisfy
-l

4 o
yeo)= f ﬁqmnfrr/o)dzhf funds +Jgtm)dz=0
et w0 0 {(6)

as was shown by Avedjan™ .,

The other method of accelsrating the
convergonce of the Jtochastic approxima-
tion method was given by Kesten® .The
idea behind this method im that if the

expression 4«y*CVVi) retains its signore,
then the value of o in the algorithm does
not decrease /as it does in the algorithm
of Robbins and Monro/*but remains unchan-
ged until the first change of signum.On
the condition that a* is a nonincreasing
sequence,Kesten shows the convergence of
this algorithm with probability one.The
advantage of this algorithm lies in the
fact that,until the iterative process
reaches the domain of its extremum,the
algorithm retains a greater value of step
and so decreases the influence of noise,
as this is indirectly dependent on the
value of the step,i.e.,the greater the va-
lue of the step the smaller the influence
of the random component.Kesten examined
the possibility of also utilizing this idea
also for the algorithm of Kieffer-Wolfo-
witz

_ (X, TLo) =X~
xM' = X.‘ a~[ FAL 2)“* L C.)J a)

in order to find the extremum of the re-
gression function.Kesten shows the con-
vergence of this algorithm only with an
additional strong condition for sequence
C. Instead of the original condition Co;
the condition c+*coast, is essential .And so,
in this case,*, in general does not have
to converge to the point in which the
regression function achieves its extre-
mum.This leads to two opposing demands:

on one hand,the condition of con-
vergence itself,i.e.that the value of
should be as low as possible;on the other
hand,the question of the speed of conver-
gence, because, the greater the value of
the smaller the influence of noise.
Obviously, this is valid only so long as
the algorithm does not achieve its extre-
mum domain.The idea behind these algo-
rithms for extremum-searching of the
k-dimensional function is the way of de-
termination of the gradient.Up to now
used standard method for searching the
gradient is a static one and the gradient
is determined using the experimental
steps.In the case of stochastic approxi-
mation the symmetric gradient is the most
suitable,and this needs 2k experimental
steps for the determination of direction
of the gradient.Further,it will be given
the algorithm which creates a sequential
process during which the gradient is
searched without using the experimental
step8.This sequential multidimensional
search algorithm creates a sequential
process of k onedimensional search algo-
rithms.This algorithm does not have the
above drawbacks and its speed of conver-
gence is better than the speed of conver-
gence of the above-mentioned modifica-
tions.
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3. Multidimensional stochastic
approximation mefhod

Let §Z¢%} be a vell-defined family
of random variables with unimodal regres-
sion functionyr)which achieves its maxi-
mum at the point x~¢ .Let f be k-~dimensmio-
nal Euglidean space,If X=rx,, wel ek,
then we denote its norm am |3 .Let

usc) be a probability density function
which satisfies the condition
o~ o
ffmzshlu —ff.‘rnm)fu« =0 (4)

L -
where 4 will be defined latter.

Let I(E)-—g&}q--f* ,where 7/} is an un-
known comwt inuous fuction,possessing con-
tinuougs-partial ferivativives of the first
order,and § is a random noime
Let

y(9,9, -'L--__;‘?L)Jd,qu, ~B[+Bcw

r
(9

v

vzl k
where A,B are constants,

Theorem /of Dvoretzky/a

Let Xa, fn be non-negative numbers defined

for .m.sz, swhich satisfy the condi-
tions
i &y * 0 o)
e o
S pn "
med / { )

Let{7} be Borel measurable vector mappings
which satisfy the condition

BT, ie,) -0l & mue fcx.mﬂxw-'a)'-ﬂ.} 1)

Letx,,x be random variables and let the
following sequence be defined as

Koy = T () + N, (13)

Then,if the following conditions are sa-
tisfied

SEIN <o  ElxJco, Elnal=o
LIk P“f)

where £ Adenotes a mathematical expecta-
tion,the sequence {t.lconverges with pro-
bability one and in the mean square to €
i.e.

g’u 4

Fribmu, =9 =41 %)
Lom E{ g, -9f"f =0 ()

T 5]

Proof:

To prave the convergence ¢, inf, space it
ls sufficient to prove the convergence

- " )
of every component of vector "2-.'(*',:,&......\',)_
Let us define the algorithm
1 it] —f.',F . N e "
A rgwlen | g (- x [ 147)
where + is changing cyclically from +«
te < and
ted ) (@) (i (ewad (k)
AZ = AT ST RN ST A B
14) vty ) e}
- z(xw.n L TR 1"'«-1)
Let
o i = ted 2 ! 4
Lalzw (00w & €4 Ud)
ned LT3 ]
for ©=12, .k
Te find an extremum of & function is
formally equal to finding the roots
of its derivative.Thus instead of equa-
tion (11) we can write
k 1 v 5 re )
x'mﬂ = xm = G, 4"’3”'" A, (19)
where £ im changing cyclieally from «
to ¥ and
PR
o = Y, F d, (20)
where
. Wbt KGR} k)
"h'l.... r;) ?({ﬁ ]Iﬁl '1r"'tﬂ‘¥"ll' --x,.,) 1)
?ﬂu - . otﬁj (’!'
Y] 8y L
and Na= 0 for L =9
Let
- - 2
Ehut =y, («"f;.)iffﬂu-yﬁé Geso (22

be valid.
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From the squation(20) we have

- el ldu]
jf%ﬁ? %r"am :ﬂ h“fufd:

Let us denote

where 'af,: satisfy the condition ().

Theretore from equation(/9)we obtain

1) ‘I-l ‘“- Y=
% .. *[x, -a, “?”JMJ ~ J;
Let us denote

T“J |‘J
(x,.) = x. -a. wpam (@3)
which represents the deterministic part of
the algorithm,and

() I
Ko = =an d. Qv

e

is the stochastic component.
Then the squation () can be written

. &)y o)
'-1;(4w)+1%'

for J‘LLu1t ; and

o)
T = (T To
2)

Mo Efﬂw.m,-..,m,,),

Now we prove that conditiona of TNvoretz-
ky 8 theorem are satisfied for every

3.1. Stochastic part

It wust be proved that the following con-
ditiona are satisfied for our algorithm:

T EICE) o, Bl

for o-42...x

EIL E!" “)d-,__ a,“;E/a!‘, (33_)

for ¢=42,.-,k

If the noise makes a seguence of indepen-
dent random variablea,then we can write

= r.;-,_
EICE&.,) ZE (%,

mnd

Now we denote thes sum of tho right side
of the above equation as 5'"for every t={.«

S“i§tl(,{, )"ZEI(HJJ.

mwy
i
- 3 (a1 26)
mw i
-l
The mathematical expectation of d is the
error dispersion which,according to the

assumption, 18 limited

E( / < K'O'd 22 K >0
Then )
3 fKoO’Z(a
maq

and this sum is finite then and only then,
when

-— £ o2
Z_ (W, ) <
My

for every <:=42,.-k;
which is satisfied in accordance with the
assumption.

3.2, Deterministic part

Let us cunsider a family of functions
Il.r 1&)

5 T )

whereby el F”

y qm(Q =0
Let fk..‘, 8,78, & for &, ¢
and denoter) l' iD

v, 9.,
Then =
f 14y

!T"(’xfi- ,,,,{ ’)&,.,— wm‘:p;, 9,,,I Ix - :,I-
L PY P R P

(2%
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" : .
Pz 7 R () _fkr
[ "~ (d"wlamlw-.am‘ a,m_h_._’,;k-‘)
____u?
It 1£wucy,-tj for every J«<42, .. ¢ ,
then o
Limo |V 1 =
il X

which results from the fact that the
function is continuous and unimodal.

Let ua denote

i} tch )

ah,~pr1 =*:
then

l..:]

&W :‘_’ = )

P e
and e

)
Zr‘w =

Mz - W-’
for every (:1,2,...K (_Z!J),t(* it follows
from Cauchy~Bolzano criterion/

Thus the conditions of the theorem are
sastiafied,

wh

Let @

maA

il
Mk, =~

i

ol
Let o, be the maximum overstepping of
the zero point in the m-th step for <-th
parameter,

Then we can write

’Tl.'l 128

| w) _w
=X, "Q.Mm-?w
) T TR I

}m t‘ll,,,‘l’,w—ﬁw
10

}

)
W=

(x_y-9

sl “w

et | P
e

= G/N ’IWTV

W)

“ -8,

:sa,’j'fmqwgf’[ -
(2)

According to the assumption for m ) m,
wa can write that

| gl < Al -9 1+ B

and

€ & & _& PN A I SR
1T a0 [ (B A1) [1,-0, [+T B4l
as Ma}i’: 0 then '5,:) Acd

and therefore
$) oy il o) )
I T (4,9, 1<, B+1P, | @9

for every |-42,.--K.
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Let us now denote

)

W) )
T B =,
As L~ «''=, the assumptions
o )
of the theorem are fulfilled. .
) h')
As we can see from the above L= B =9

e -
;w;ﬂ.w gt'g.&..,xdza(o“_,.t'a;)
where @ =@ .

and thus

Up to nov we have assumed that the
function ¥t,,..,4.) has only one extremum
on an arbitrary straight line.The algo-
rithm is not limited only to thies class
of functions,but satisfies also the clms
of functions which have more than one
extremum on this straight line.This re-
sults from the unimodality of the func-

tion,The algorithm is sho;n in fig.l,
where the sequencef A .. 4" icorresponds

to those ;¥ in which the corresponding

purtial derivative changer its signum.
The conditions given forfu lare sa-

tisfied by the harmonic sequence § /.2

or 5 % d ¢ « congt,

and also by Kesten's sequence which is
constructed with the help of harmonic
seyuence according to the following de-
finition,as the sequencofﬁL?whose terms
are

d4=®4 J ‘Lg'q‘l.l
"
Stwdy=2 v 2 blle -2, ’(C“q'*:-lﬂ
¢t xeo
ﬁ(r)— { o

X oo

Using Kesten's sequence, the convergence
is accelerated and we avoid the diffi-
culties which occured in part 2,In the
domain of the extremum,the value of the
atep does not affect the noise level

and then only the law of large num
bers is valid.Therefore,in the domain of
the axtremum,Kesten s sequence does not
accelerate the convergence,and it is
better fo uses the harmonic sequence,i.e.,
to lessen the value of the step as quick-
ly as possible.This modification gives
better results than other modifications.

LR (’LMSCL‘S{M)

(30)

4, Coclusion

The above~mentioned method of stochastic
approximation accelerates the convergens
and therefore has an influence on the qu-
1ity of learning.This method satisfies
the condition mo-called "An ideal sto-
chastic approxiwation”,i.s,steps of lar-



Fig.l.

ge value are used far from the extremum;
and the nearer the extremum,the smaller
the step becomes*The fact
thod does not use the experimental
means
is accelerated and
siderable better
thods .The method was used
cognition for

that this me-
steps
that,in this case,the convergence
the method gives con-
than other me-

in pattern re-
classes.

results

disjoint

The multidimesional search algo-

rithm
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Figure 1. The Multidimensjonal Search Algorithm
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